Part Number Hot Search : 
ZN448E 03209806 LPC2927 OP490 10005 KA2511B ML60171C 24001
Product Description
Full Text Search
 

To Download TLE9255W Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet 1 rev. 1.02 www.infineon.com/automotive-transceiver 2018-02-02 TLE9255W hs can transceiver with partial networking 1 overview features ? fully compliant to iso 11898-2 (2016) ? hs can standard data rates up to 1mbit/s ? can fd data rates up to 5 mbit/s ? wide common mode range for el ectromagnetic immunity (emi) ? very low electromagnetic emission (eme) ? excellent esd robustness, 1 0 kv according to iec 61000-4-2 ? independent supply concept on v cc and v bat pins ? fail safe features ?txd-timeout ? overtemperature shutdown ? overtemperature warning ? extended supply range on v cc and v io supply ? can short circuit proof to ground, battery and v cc ? overtemperature protection ? advanced bus biasing according to iso 11898-2 (2016) ? wake filter time 0.5s < t filter < 1.8s meeting worldwide oem requirements ? wake-up pattern (wup) detection in all low-power modes ? wake-up frame (wuf) detection according to iso 11898-2 (2016) ? wake-up frame detection with can fd tolerant feature ?local wake-up input ? spi clock frequency up to 4 mhz ? green product (rohs compliant) ? aec qualified applications ?hscan networks in au tomotive applications ?hscan networks in industrial applications
data sheet 2 rev. 1.02 2018-02-02 TLE9255W hs can transceiver with partial networking overview description as an interface between the physical bus layer and the can protocol controller , the TLE9255W drives the signals to the bus and protec ts the microcontroller from interference generated wi thin the network. based on the high symmetry of the canh and ca nl signals, the TLE9255W provides a very low level of electromagnetic emission within a wide frequency range, allowing the operation of the TLE9255W without a common mode choke in automotive and industrial applications. the TLE9255W is enclosed in an rohs compliant pg-dso-14 or pg-tson-14 package and fulfills the requirements of the iso11898-2 (2016). the TLE9255W is part of the infineon standard hs can transc eiver family and provid es beside can partial networking functions also a can fd ca pability up to 5 mbit/s in hs can networks. configured as a partial networking hs can transceiver the TLE9255W can drive and receive can fd messages. it can also be used to block the payload of can fd messages. this can fd tolerant feature allows the usage of microcontrollers in can fd networks, which ar e not can fd capable. the spi of TLE9255W controls the setu p of the wake-up messag es and the status mess age generated by the internal state machine. most of the functions, including wake-up functions, inh output control, mode control, undervoltage control are configurable by the spi. this allows a very flexible usage of the TLE9255W in different applications. the two non-low power modes (normal-operating mode and receive-only mode) and the two low power modes (sleep mode and stand-by mode) provide mi nimum current consumptio n based on the required functionality. in sleep mode the TLE9255W can detect a wake-up patte rn (wup) on the hs can and then change the mode of operation accordingly; even at a quiescent current below 26 a over the full temperature range. in selective-wake sub-mode the TLE9255W monitors the can messages on the hs can bus. if the TLE9255W detects a matching wake-up frame, then it triggers a mode chan ge. the TLE9255W monitors wake-up identifiers up to 29 bit as well as up to 64 bit wide data . the internal protocol handler counts all bus errors. the spi indicates failures, er ror counter overflow and synchronizat ion failures to th e microcontroller. the unique power-supply manageme nt allows the application to us e the TLE9255W without the battery supply v bat connected. in this case the TLE9255W is supplied over the v cc pin. the v io voltage reference supports 3.3 v and 5 v su pplied microcontrollers. based on infineon smart power techno logy (spt), the TLE9255W provides excellent immunity together with a very high electromagnetic immuni ty (emi). the TLE9255W and the in fineon spt are ae c qualified and tailored to withstand the harsh condit ions of the automotive environment. type package marking TLE9255Wsk pg-dso-14 9255w TLE9255Wlc pg-tson-14 9255w
TLE9255W data sheet 3 rev. 1.02 2018-02-02 1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 high speed can functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 high speed can physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.1 normal-operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2 receive-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.3 stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.4 sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.4.1 sleep wup sub-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.2 selective wake sub-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4.3 selective sleep sub-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5 power on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.6 automatic bus voltage biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.7 wake-up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7.1 wake-up pattern (wup) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7.2 wake-up frame (wuf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.7.3 local wake-up (lwu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.8 rxd pin wake-up behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.8.1 rxd permanent ?low? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.8.2 rxd toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 fail safe functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.1 short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.1 undervoltage detection on v bat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.2 short-term undervoltage detection on v cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2.3 long-term undervoltage detection on v cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2.4 short-term undervoltage detection on v io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2.5 long-term undervoltage detection on v io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3 unconnected logic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.4 txd time-out function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.5 overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.6 delay time for mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7 can partial networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.1 wake-up frame evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.1.1 wake-up frame identifier evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.1.2 dlc and data field evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.2 activation of selective wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3 frame error counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.4 selective wake configuration error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 table of contents
data sheet 4 rev. 1.02 2018-02-02 TLE9255W 7.5 can flexible data rate (can fd) tolerant feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.6 selective wake spi flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.6.1 syserr flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.6.2 sync flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.6.3 canto flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.6.4 cansil flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.6.5 swk_active flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.6.6 cfg_val flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8 serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.1 spi command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.2 control and status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.3 status information field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.4 spi failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.5 invalid spi command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.6 csn timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.7 spi register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.7.1 mode control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.7.2 selective wake control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.7.3 status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9 general product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.2 functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 9.3 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.1 general timing parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.2 power supply interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.2.1 current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.2.2 undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 10.2.3 inh output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 10.3 can controller interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 10.4 transmitter and receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.4.1 transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.4.2 receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 10.4.3 dynamic transceiver parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 10.5 selective wake parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.5.1 general timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.5.2 can fd tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 10.6 wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10.6.1 general timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10.6.2 wup detection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.6.3 local wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 10.7 spi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.1 esd robustness according to iec 61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.2 application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.3 voltage adaption to the microcontroller supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
data sheet 5 rev. 1.02 2018-02-02 TLE9255W 11.4 further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 12 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 13 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
data sheet 6 rev. 1.02 2018-02-02 TLE9255W block diagram 2 block diagram figure 1 block diagram v bat central state machine 10 v cc v io 35 power supply interface inh 7 transmitter receiver gnd 2 host interface 14 csn can controller interface v io voltage monitor miso 6 mosi 11 sclk 8 txd rxd v io 1 4 13 12 canh canl low power receiver wake-up logic local wake receiver wake 9
data sheet 7 rev. 1.02 2018-02-02 TLE9255W pin configuration 3 pin configuration 3.1 pin assignment figure 2 pin configuration for pg-dso-14 and pg-tson-14 3.2 pin definitions table 1 pin definitions and functions pin symbol function 1txd transmit data input; integrated pull-up current source to v io , ?low? to drive a dominant signal on canh and canl 2gnd ground. 3 v cc transmitter supply voltage; 100 nf decoupling capacitor to gnd is recommended txd csn mosi 1 2 3 4 13 12 11 gnd v cc rxd canh canl 1 2 3 4 14 13 12 11 (top-side x-ray view) pad 5 6 7 10 9 8 sclk 5 6 7 10 9 8 v io miso inh v bat wake 14 txd gnd v cc rxd v io miso inh csn canh canl mosi v bat wake sclk
data sheet 8 rev. 1.02 2018-02-02 TLE9255W pin configuration 4rxd receive data output; ?low? while a dominant signal is on the hs can bus, output voltage adapted to the voltage on the v io level shift input 5 v io level shift input; reference voltage for the digital input and output pins, 100 nf decoupling capacitor to gnd is recommended 6miso spi serial data output; tri-state while csn is ?high? 7inh inhibit output; open drain output to control external circuitry 8sclk spi clock input; integrated pull-down current source to gnd 9wake wake-up input; local wake-up input, terminated against gnd and v bat , wake-up input sensitive to sign al changes in both directions 10 v bat battery supply voltage; 100 nf decoupling capacitor to gnd is recommended 11 mosi spi serial data input; integrated pull-down current source to gnd 12 canl low-level hs can bus line 13 canh high-level hs can bus line 14 csn spi chip select not input; integrated pull-up current source to v io pad - connect to pcb heat sink area. do not connect to other potential than gnd. table 1 pin definitions and functions (cont?d) pin symbol function
data sheet 9 rev. 1.02 2018-02-02 TLE9255W high speed can functional description 4 high speed can functional description high speed can (hs can) is a serial bus system that co nnects microcontrollers, sens ors and actuators for real- time control applications. iso 11898-2 (2016) describes the use of the co ntroller area netw ork (can) within road vehicles. according to the 7-layer osi reference model the physical layer of a hs can bus system specifies the data transmission from one can node to all ot her available can nodes within the network. the can transceiver is part of the physical la yer. the physical layer specificatio n of a can bus system includes all electrical specificatio ns of a can network. the TLE9255W supports: ? standard bus wake-up functionality ? can partial networking with selective wake -up functionality according to iso 11898-2 (2016) ? can flexible data rate (can fd ) transmission up to 5 mbit/s 4.1 high speed can physical layer figure 3 high speed can bus signals and logic signals txd v io t t v cc canh canl t v cc v diff rxd v io t v io = digital supply voltage v cc = transmitter supply voltage txd = transmit data input from the microcontroller rxd = receive data output to the microcontroller canh = bus level on the canh input/output canl = bus level on the canl input/output v diff = differential voltage between canh and canl v diff = v canh C v canl dominant receiver threshold recessive receiver threshold t loop(h,l) t loop(l,h) t d(l)t t d(l)r t d(h)t t d(h)r
data sheet 10 rev. 1.02 2018-02-02 TLE9255W high speed can functional description the TLE9255W is a hs can transceiver operating as an interf ace between the can controller and the physical bus medium. a hs can network is a two wire, differentia l network which allows data transmission rates up to 5 mbit/s. hs can networks have two signal states on the can bus (see figure 3 ): ?dominant ?recessive the canh and canl pins are the interf ace to the can bus and operate both as an input and as an output. the rxd and txd pins are the interface to the microcontroller. the txd pin is the serial data input from the can controller. the rxd pin is the seri al data output to the can contro ller. the hs can transceiver TLE9255W includes a receiver and a transmitte r unit, allowing the transceiver to send data to th e bus medium and monitoring the data from the bu s medium at the same time (see figure 1 ). the TLE9255W converts the serial data stream, which is available on the transmit data input txd, to a differ ential output signal on the can bus, provided by the canh and canl pins . the receiver stage of the TLE9255W monitors the data on the can bus and converts it to a serial, single-ended signal on the rxd output pin. a ?low? signal on the txd pin creates a dominant signal on the can bus, followed by a ?low? signal on the rxd pin (see figure 3 ). the feature of broadcasting data to the can bus and listening to the da ta traffic on the can bus simultaneously is essential to support the bit-to-bit arbi tration within can networks. iso 11898-2 (2016) defines the voltage levels for hs ca n transceivers. whether a data bit is dominant or recessive depends on the voltage differ ence between the canh and canl pins: v diff = v canh - v canl to transmit a dominant signal to the can bus the amplitude of the differential signal v diff is 1.5 v. to receive a recessive signal from the can bus the amplitude of the differential v diff is 0.5 v. partially supplied high-sp eed can networks have can bus nodes wi th different power supply conditions. some nodes are connected to the common power supply, while other nodes are disconnected from the power supply and in power-down state. regardless of whethe r the can bus subscriber is supplied or not, each subscriber connected to the common bus media must not interfere wi th the communication. the TLE9255W is designed to support partially supplied networks. in power-down state, the receiver input resistors are switched off and the transceive r input has a high resistance. for permanently supplied ecus, the TLE9255W provides low power modes. in these low power modes, the current consumption of the TLE9255W is optimized to a minimum, while the tl e9255w can still recognize wake-up patterns or wake-up frames on the can bu s and signal the wake-up event to the external microcontroller. the voltage level on the digital input txd and the digi tal output rxd is determin ed by the reference supply level at the v io pin. depending on the voltage level at the v io pin, the signal levels on the logic pins (csn, sclk, mosi, miso, txd and rxd) are compatible to microcontro llers having a 5 v or 3.3 v i/o supply. it is highly recommended that the digital power supply of v io of the transceiver is connect ed to the i/o power supply of the microcontroller; this is the way it is intended to be used (see figure 53 ).
data sheet 11 rev. 1.02 2018-02-02 TLE9255W modes of operation 5 modes of operation the TLE9255W supports four diff erent modes of operation (see figure 4 ): ? normal-operating mode ( chapter 5.1 ) ?receive-only mode ( chapter 5.2 ) ?stand-by mode ( chapter 5.3 ) ?sleep mode ( chapter 5.4 ) figure 4 mode of operation power on reset stand-by mode receive-only mode normal-operating mode v bat or v cc is in the functional range for at least t pon v cc < v cc_pod and v bat < v bat_pod any mode spi mc command sleep mode any mode wake-up detected or spi mc command or ecnt > 31 any mode v io undervoltage and t vio_uv_t expired and t silence expired spi mc command spi mc command spi mc command spi mc command spi mc command any mode v cc undervoltage and t cc_uv_t expired and t silence expired
data sheet 12 rev. 1.02 2018-02-02 TLE9255W modes of operation table 2 types of modes and sub-modes type of mode mode sub-mode normal power mode normal-operating mode ? receive-only mode ? low power mode stand-by mode ? sleep mode sleep wup sub-mode selective wake sub-mode selective sleep sub-mode
data sheet 13 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.1 normal-operating mode in normal-operating mode all functions of the tle 9255w are available. the tle 9255w can receive data from the hs can bus as well as transm it data to the hs can bus. ? the transmitter is active and drives the serial data stream on the txd input pin to the bus pins canh, canl. ? the normal mode receiver is active and converts the si gnals from the bus to a serial data stream on the rxd output pin. ? the bus biasing is on. ? the txd timeout function is enabled ( chapter 6.4 ). ? the overtemperature protection is enabled ( chapter 6.5 ). ? the undervoltage detection on v bat is enabled( chapter 6.2.1 ) ? the undervoltage detection on v cc is enabled ( chapter 6.2.2 ). ? the undervoltage detection on v io is enabled ( chapter 6.2.4 ). ? the inh output pin is ?high?. ? a valid wake-up pattern is not signalled in the spi bit wup ( chapter 5.7.1 ). ? only if the selective wake function is enabled ( swk_en = 1), then the hs can bu s will be continuously monitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is disabled ( chapter 5.7.3 ). conditions for entering the normal-operating mode: ? normal-operating mode can be entered via an spi mc command from any mode of operation. conditions for leaving th e normal-operating mode: ?if v io < v io_uv and t vio_uv_t has expired and t silence has expired, then this trig gers a mode change to sleep mode ?if v cc < v cc_uv and t vcc_uv_t has expired and t silence has expired, then this trig gers a mode change to sleep mode. ? an spi mc command triggers a mode change. figure 5 shows possible mode changes. figure 5 mode changes in normal-operating mode normal-operating mode v io undervoltage and t vio_uv_t expired and t silence expired sleep mode any mode any mode spi mc command spi mc command v cc undervoltage and t vcc_uv_t expired and t silence expired
data sheet 14 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.2 receive-only mode in receive-only mode the transmitte r is disabled and the receiver is enabled. the TLE9255W can receive data from the hs can bus, but cannot tr ansmit data to the hs can bus. ? the transmitter is disabled and the data available on the txd input is blocked. ? the rxd output pin indicates the data received by the normal-mode receiver. ? the bus biasing is on. ? the txd timeout function is disabled ( chapter 6.4 ). ? the overtemperature protection is disabled ( chapter 6.5 ). ? the undervoltage detection on v bat is enabled( chapter 6.2.1 ) ? the undervoltage detection on v cc is enabled ( chapter 6.2.2 ). ? the undervoltage detection on v io is enabled ( chapter 6.2.4 ). ? the inh output pin is ?high?. ? a valid wake-up pattern is not signalled in the spi bit wup ( chapter 5.7.1 ). ? only if the selective wake function is enabled ( swk_en = 1), then the hs ca n bus is continuously monitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is disabled ( chapter 5.7.3 ). conditions for entering the receive-only mode: ? receive-only mode can be entered via an sp i mc command from any mode of operation. conditions for leaving the received-only mode: ?if v io < v io_uv and t vio_uv_t has expired and t silence has expired, then this trigge rs a mode change to sleep mode. ?if v cc < v cc_uv and t vcc_uv_t has expired and t silence has expired, then this trig gers a mode change to sleep mode. ? an spi mc command triggers a mode change. figure 6 shows possible mode changes. figure 6 mode changes in receive-only mode receive-only mode any mode any mode spi mc command spi mc command sleep mode v cc undervoltage and t vcc_uv_t expired and t silence expired v io undervoltage and t vio_uv_t expired and t silence expired
data sheet 15 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.3 stand-by mode stand-by mode is a low power mode of the TLE9255W wi th both the transmitter and the receiver disabled. in stand-by mode the transceiver can neither send data to the hs can bus nor can it receive data from the hs can bus: ? the transmitter is disabled and the data available on the txd input is blocked. ? the rxd output pin indicates a wake-up event ( chapter 5.8 ). if no wake-up event is pending, then the default value of the rxd output pin is ?high?. ? after power on reset the bus biasing is off. chapter 5.6 describes the conditio ns for the bus biasing. ? the txd timeout function is disabled ( chapter 6.4 ). ? the overtemperature protection is disabled ( chapter 6.5 ). ? the undervoltage detection on v bat is enabled( chapter 6.2.1 ) ? the undervoltage detection on v cc is enabled ( chapter 6.2.2 ). ? the undervoltage detection on v io is enabled ( chapter 6.2.4 ). ? the inh output pin is ?high?. ? if the selective wake function is disabled ( swk_en = 0), then the hs can bus is continuously monitored for a valid wake-up pattern ( chapter 5.7.1 ). if the selective wake function is enabled, then a valid wake-up pattern is not signalled in the spi bit wup . ? only if the selective wake function is enabled ( swk_en = 1), then the hs ca n bus is continuously monitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is enabled ( chapter 5.7.3 ). ?if v io > v io_uv , then a mode change is possible.
data sheet 16 rev. 1.02 2018-02-02 TLE9255W modes of operation conditions for entering the stand-by mode: ? after power on reset: if v cc or v bat is within the function al range for at least t pon , then the TLE9255W enters stand-by mode. ? if a wake-up (wup, wuf, lwu) is detected in sl eep mode, then the TLE9255W enters stand-by mode. ? if the selective wake unit is active (selective wake sub-mode) and if the value of the error counter is 32 (see chapter 7.3 ), then the TLE9255W enters stand-by mode. ? stand-by mode can be entered via an spi mc command from any mode of operation. conditions for leavin g the stand-by mode: ?if v io < v io_uv and t vio_uv_t has expired and t silence has expired, then this trigge rs a mode change to sleep mode. ?if v cc < v cc_uv and t vcc_uv_t has expired and t silence has expired, then this trig gers a mode change to sleep mode. ? an spi mc command triggers a mode change. figure 7 shows possible mode changes. figure 7 mode changes in stand-by mode stand-by mode sleep mode any mode any mode power on reset sleep mode wake-up event or ecnt > 31 v bat or v cc is in the functional range for at least t pon spi mc command spi mc command v cc undervoltage and t vcc_uv_t expired and t silence expired v io undervoltage and t vio_uv_t expired and t silence expired
data sheet 17 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.4 sleep mode sleep mode is a low power mode with minimized quiesc ent current. if the TLE9255W detects a wake-up event in sleep mode, then it changes to stand- by mode. sleep mode has three sub-modes. figure 8 mode change in sleep mode figure 9 sub-modes in sleep mode sleep mode wake-up event or ecnt > 31 stand-by mode any mode any mode v io undervoltage and t vio_uv_t expired and t silence expired spi mc command v cc undervoltage and t vcc_uv_t expired and t silence expired spi mc command sleep wup sub-mode selective wake sub-mode (wuf detection in spi configured) selective sleep sub-mode (wuf detection in spi configured) sleep mode t silence expired wup detection stand-by mode wuf or lwu detection or ecnt > 31 spi mc command lwu detection any mode any mode wup or lwu detection spi mc command spi mc command spi mc command v cc undervoltage and t vcc_uv_t expired and t silence expired spi mc command (v io < v io_uv and v io_uv_t expired and t silence expired)
data sheet 18 rev. 1.02 2018-02-02 TLE9255W modes of operation figure 10 shows the internal behavior of the TLE9255W in case the microcontroller sends a change to sleep mode spi command. figure 10 internal behavior of the TLE9255W afte r receiving a change to sleep mode spi command change into the sleep mode by a spi command is wup pending enter selective wake sub-mode is wuf pending is local wake up pending enter sleep wup sub-mode enter stand-by mode is local wake up pending is selective wake enabled no yes yes yes no no no no
data sheet 19 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.4.1 sleep wup sub-mode sleep wup sub-mode is a low power mode of th e TLE9255W. sleep wup sub-mode reduces current consumption. the following conditions are valid for the sleep wup sub-mode: ? the transmitter is disabled and the data available on the txd input is blocked. ? the value of the rxd output pin depe nds on the power supply circuit of v io . ? permanent power supply of v io (inh pin is not used) the rxd output pin is ?high? ? the inh pin controls the power supply of v io the rxd output pin is ?low? ?if the t silence timer has expired, then the bus biasing is off. ? the txd timeout function is disabled ( chapter 6.4 ). ? the overtemperature protection is disabled ( chapter 6.5 ). ? the undervoltage detection on v bat ( chapter 6.2.1 ) is not signalled in the spi bit vbat_uv . ? the undervoltage detection on v cc is disabled( chapter 6.2.2 ). ? the undervoltage detection on v io ( chapter 6.2.4 ) is not signalled in the spi bits vio_ltuv and vio_stuv . ? the inh output pin is ?low?. the spi bit vbat_con in the register swk_ctrl_1 controls the behavior of the inh pin. ? the hs can bus is continuously monitored for a valid wake-up pattern ( chapter 5.7.1 ). ?the hs can bus is not mo nitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is enabled. conditions for entering the sleep wup sub-mode: ?if v io < v io_uv ( v io undervoltage) and t vio_uv_t has expired and t silence has expired, then the TLE9255W enters sleep wup sub-mode. ?if v cc < v cc_uv ( v cc undervoltage) and t vcc_uv_t has expired and t silence has expired, then the TLE9255W enters sleep wup sub-mode. the spi bit stts_en controls this state transition. ? the sleep wup sub-mode can be entered via an spi mc command from any mode of operation. conditions for leaving the sleep wup sub-mode: ? if a wake-up (wup, lwu) is detect ed in sleep wup sub-mode, then th e TLE9255W enters stand-by mode. ? an spi mc command triggers a mode change to any mode of operation. figure 11 mode change in sleep wup sub-mode sleep wup sub-mode stand-by mode any mode wup or lwu detection v io undervoltage and t vio_uv_t expired and t silence expired spi mc command any mode v cc undervoltage and t vcc_uv_t expired and t silence expired spi mc command
data sheet 20 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.4.2 selective wake sub-mode selective wake sub-mode is a low powe r mode of the TLE9255W. only if the selective wake function is enabled ( swk_en = 1), then the TLE9255W can en ter selective wa ke sub-mode. chapter 7 describes the partial networking functionality and the configuration. the foll owing conditions ar e valid for the selective wake sub- mode: ? the transmitter is disabled and the data available on the txd input is blocked. ? the default value of the rxd output pin depends on the power supply circuit of v io . ? permanent power supply of v io (inh pin is not used) the rxd output pin is ?high? ? the inh pin controls the power supply of v io the rxd output pin is ?low? ? the bus biasing is on. ? the txd timeout function is disabled ( chapter 6.4 ). ? the overtemperature protection is disabled ( chapter 6.5 ). ? the undervoltage detection on v bat is enabled ( chapter 6.2.1 ). ? the undervoltage detection on v cc is disabled( chapter 6.2.2 ). ? the undervoltage detection on v io is enabled ( chapter 6.2.4 ). ? the inh output pin is ?low?. the spi bit vbat_con in the register swk_ctrl_1 controls the behavior of the inh pin. ? a valid wake-up pattern is not signalled in the spi bit wup ( chapter 5.7.1 ). ? the hs can bus is continuously monitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is enabled.
data sheet 21 rev. 1.02 2018-02-02 TLE9255W modes of operation conditions for entering the selective wake sub-mode: ? the selective wake sub-mode can be entered via an spi mc command from any mode of operation. ? if the TLE9255W detects a wup in selective sleep su b-mode, then it enters selective wake sub-mode. conditions for leaving the selective wake sub-mode: ? if a wake-up (wuf, lwu) is detected in selectiv e wake sub-mode, then stand-by mode is entered. ? if the error counter > 31 ( chapter 7.3 ) in selective wake sub-mode, th en stand-by mode is entered. ?if t silence has expired, then selective sleep sub-mode is entered. ? an spi mc command will trigger a mode change to any mode of operation. figure 12 mode change in selective wake sub-mode selective wake sub-mode (wuf detection in spi configured) selective sleep sub-mode any mode any mode spi mc command t silence expired wuf or lwu detection or ecnt > 31 stand-by mode spi mc command selective sleep sub-mode wup detection
data sheet 22 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.4.3 selective sleep sub-mode selective sleep sub-mode is a low power mode with optimized quiescent current. the following conditions are valid for the selective wake sub-mode: ? the transmitter is disabled and the data available on the txd input is blocked. ? the default value of the rxd output pin depends on the power supply circuit of v io . ? permanent power supply of v io (inh pin is not used) the rxd output pin is ?high? ? the inh pin controls the power supply of v io the rxd output pin is ?low? ? the bus biasing is off. ? the txd timeout function is disabled ( chapter 6.4 ). ? the overtemperature protection is disabled ( chapter 6.5 ). ? the undervoltage detection on v bat ( chapter 6.2.1 ) is not signalled in the spi bit vbat_uv . ? the undervoltage detection on v cc is disabled( chapter 6.2.2 ). ? the undervoltage detection on v io ( chapter 6.2.4 ) is not signalled in the spi bits vio_ltuv and vio_stuv . ? the inh output pin is ?low?. the spi bit vbat_con in the register swk_ctrl_1 controls the behavior of the inh pin. ? the hs can bus is continuously monitored for a valid wake-up pattern ( chapter 5.7.1 ), but a valid wake-up pattern is not signalled in the spi bit wup ( chapter 5.7.1 ). ?the hs can bus is not mo nitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is enabled. conditions for entering the selective sleep sub-mode: ? if there is no communication on the hs can bus for longer than t silence in the selective wake sub-mode, then the TLE9255W enters th e selective sleep sub-mode. conditions for leaving the selective sleep sub-mode: ? if a wup is detected, then selective wake sub-mode is entered. ? if an lwu has been detected, then stand-by mode will be entered. ? an spi mc command triggers a mode change to any mode of operation. figure 13 mode change in selective sleep sub-mode selective sleep sub-mode (wuf detection in spi configured) selective wake sub-mode any mode selective wake sub-mode t silence expired wup detection lwu detection stand-by mode spi mc command
data sheet 23 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.5 power on reset power on reset is a transition state of the TLE9255W after power is applie d and the transceiver is not yet fully functional. ? the transmitter and receiver are disabled. ? the bus biasing is off. ? the txd timeout function is disabled. ? the overtemperature protection is disabled. ? the undervoltage detection on v bat is enabled ( chapter 6.2.1 ), but it is not signalled in the spi bit vbat_uv . ? the undervoltage detection on v cc is disabled. ? the undervoltage detection on v io is enabled ( chapter 6.2.4 ), but it is not signalled in the spi bits vio_ltuv and vio_stuv . ? the spi communication is blocked (mosi, sclk, csn), ? rxd and miso pins are high impedance. ?txd pin is blocked ?if v bat > v bat_pod or v cc > v cc_pod , then the inh output pin is switched on ? all spi registers are reset to default values. ? the hs can bus is not continuously mo nitored for a valid wake-up pattern ( chapter 5.7.1 ) ?the hs can bus is not mo nitored for a valid wuf ( chapter 5.7.2 ). ? local wake-up function is disabled. conditions for entering the power on reset: ?v bat TLE9255W enters stand-by mode figure 14 shows power up behavior and power down behavior: figure 14 power down and power up behavior spi bit por the por flag indicates that all registers are reset and the st ate machine is in the defa ult mode (stand-by mode) if all of the following condit ions are fulfilled, then the por flag is set: ?v bat is within the function al range for at least t pon or v cc is within the functional range for at least t pon , then the TLE9255W enters stand-by mode power on reset any mode v cc < v cc_pod and v bat < v bat_pod stand-by mode v bat or v cc is in the functional range for at least t pon
data sheet 24 rev. 1.02 2018-02-02 TLE9255W modes of operation ?v io is within the functional range (spi communication is possible) any of the following events resets the por flag: ?an spi clear command ? a transition to the normal-operating mode
data sheet 25 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.6 automatic bus voltage biasing the automatic bus voltage biasing improves emc performance of the entire network and increases the reliability of communication performance in networks us ing can partial networking. the automatic bus voltage biasing is enabled in all low power modes. the biasing unit operates independently from all other transceiver functions and on ly depending on the network activity ( t silence ). if t silence has expired, then there is no activity on the can bus. the t silence timer is restarted under the following conditions: ?if t silence has expired in sleep wup sub-mode and a wup is detected ?if t silence has not expired in sleep wup sub-mode and a risi ng or falling edge is detected and the pulse width (dominant or recess ive) is greater than t filter ? if a wup is detected in selective sleep sub-mode ?if t silence has expired in stand-by mode and a wup is detected ?if the t silence has not expired in stand-by mode and a rising ed ge or a falling edge is detected and the pulse width (dominant or recess ive) is greater than t filter ? if a rising or falling edge is detected in any othe r mode and the pulse width (d ominant or recessive) is greater than t filter if there is no activity on the bus for longer than t silence , then the internal resistor s bias the bus pins towards gnd. on detection of a valid wake-up pattern (wup), the internal biasing is enabled and terminates the biasing resistors towards 2.5 v within t > t rw_bias . figure 15 bus biasing and t silence
data sheet 26 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.7 wake-up event valid wake-up events are: ? a wake-up pattern (wup) in sleep wup sub-mode ? a wake-up frame (wuf) in selective wake sub-mode ? a local wake-up (lwu) in sleep wup sub-mode, sele ctive sleep sub-mode or selective wake sub-mode if a valid wake-up event is detected, then this triggers a mode change to stand-by mode. 5.7.1 wake-up pattern (wup) within the maximum wake-up time t wake , the wake-up pattern consists of the following sequence (see figure 16 ): ? a dominant signal with pulse width t > t filter ? a recessive signal with pulse width t > t filter ? a dominant signal with pulse width t > t filter figure 16 wake-up pattern figure 17 wup detection t v diff t > t filter v diff_lp_d v diff_lp_r t < t wake wake-up detected t > t filter t > t filter ini 1 2 3 wake up detected wait bus recessive > t filter bus dominant > t filter bus recessive > t filter bus dominant > t filter t wake expired entering sleep wup mode or selective sleep sub-mode t wake expired
data sheet 27 rev. 1.02 2018-02-02 TLE9255W modes of operation the wup bit in the register wake_stat indicates detection of a wake-up pa ttern on the hs can bus. if the transceiver is not in the se lective sleep sub-mode and if the transc eiver detects a valid wake-up pattern, then the wup bit is set. an spi clear command resets the bit. a wake-up is not executed under the following conditions: ? a mode change to normal-operating mode is performed during the wake-up pattern. ? the maximum wake-up time t wake expires before a valid wup is detected. ? the transceiver is powered down ( v cc < v cc_pod and v bat < v bat_pod ). 5.7.2 wake-up frame (wuf) if the selective wake unit is enabled ( swk_en =1), then the selective wake un it continuously monitors the hs can bus for a valid wake-up frame. if a valid wuf is detected, then the wuf bit in the register wake_stat is set to ?1?. an spi clear command resets the wuf bit. chapter 7 describes the selective wake feature.
data sheet 28 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.7.3 local wake-up (lwu) the wake input pin can detect a rising edge as well as a falling edge as a wake-up event (configurable in lwu_neg , lwu_pos ). the lwu bit in the register wake_stat indicates that a local wake-up is detected on the local wake-up pin. th e transceiver sets the lwu bit. an spi command resets the lwu bit. the lwu_dir bit in the register wake_stat indicates on which edge a local wake-up has been detected. the transceiver sets the lwu_dir flag and it is only valid, if a local wake-up has been detected. chapter 10.6.3 describes the local wake-up timing. figure 18 local wake-up negative edge figure 19 local wake-up positive edge t v bat t wake_filter v wake_th wake-up detected v on wake pin t v on wake pin v bat t wake_filter v wake_th wake-up detected
data sheet 29 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.8 rxd pin wake-up behavior the rxd output pin indicates a wake-up event to the mi crocontroller. on detectio n of a valid wake-up event the rxd output pin reacts with one of th e following behaviors, depending on the wake_tog bit in the spi register hw_ctrl : ? rxd output pin is set to ?low? ? rxd output pin starts to toggle if stand-by mode is re-entered by a mode change (microcontroller) the previous indication of a valid wake-up event is not signalled on the rxd pin. only if a new wa ke-up event has been detected, the rxd pin indicates the wake-up event. the clearing of a wup , wuf or lwu has no influence on the behavior of the rxd pin. 5.8.1 rxd permanent ?low? if a valid wake-up event is detected and if spi bit wake_tog = 0, then the rxd output pi n is set to ?low?. if a mode change occurs, then the rxd output pin behavior is defined by the new state. figure 20 rxd ?low? after wake-up event figure 21 rxd ?low? after wake-up event (permanently supplied v io ) wake-up event detected sleep mode stand-by mode mode rxd rxd remains permanently logical ?low t t mode_change t stand-by mode t mode_change 30% v io mode rxd rxd remains permanently logical ?low sleep mode wake-up event detected
data sheet 30 rev. 1.02 2018-02-02 TLE9255W modes of operation 5.8.2 rxd toggle if wake_tog is set to 1 and if a valid wa ke-up event is detected and if v io is within the functional range, then the rxd output pin starts to toggle from ?low? to ?high? and ?high? to ?low? with time period of t toggle . figure 22 and figure 23 show this behavior. if a mode change occurs, then the rxd output pin behavior is defined by the new state. figure 22 rxd toggling behavior after wake-up event figure 23 rxd toggling behavior after wake-up event (permanently supplied v io ) wake-up event detected stand-by mode mode rxd t t toggle 70% v io t toggle 30% v io t toggle t toggle sleep mode t mode_change sleep mode stand-by mode mode t rxd t t toggle 70% v io t toggle 30% v io t toggle t toggle wake-up event detected t mode_change
data sheet 31 rev. 1.02 2018-02-02 TLE9255W fail safe functions 6 fail safe functions 6.1 short circuit protection the canh and canl bus pins are proven to cope with a short circuit fault to gnd and to the supply voltages. a current limiting circuit protec ts the transceiver from damage. 6.2 undervoltage detection the TLE9255W has independent undervoltage detection on v bat , v cc and v io . undervoltage events at these pins may have impact on the functionality of the de vice and also may change the mode of operation. 6.2.1 undervoltage detection on v bat if the power supply v bat < v bat_uv for more than the glitch filter time t vbat_filter , then an undervoltage is detected. on detection of undervoltage the tle 9255w performs the following actions: ? disable local wake-up ? set the bit vbat_uv in the spi register trans_uv_stat to ?1?. after the completion of a power on reset or after a transition from slee p mode to stand-by mode the v bat supply stabilization period must be completed before an undervoltage no tification can be recorded in the vbat_uv bit. the undervoltage notification is only possible once the v bat supply has exceed ed the threshold v bat_uv , that is v bat > v bat_uv . figure 25 shows this scenario. only an spi command can reset the undervoltage bit vbat_uv (see chapter 8.2 ). the glitch filter is implemented in order to prevent an undervoltage detection due to short voltage transients on v bat . figure 24 shows the effect of glitch filter time in different undervoltage scenarios. figure 24 undervoltage detection v bat v io and v cc are within the functional range v bat t ?0" v bat_uv t vbat_filter status bit: vbat_uv t vbat_filter ?1"
data sheet 32 rev. 1.02 2018-02-02 TLE9255W fail safe functions figure 25 undervoltage detection v bat during v bat supply stabilization period after power up the application can set the vbat_con to ?0? in the spi register supply_ctrl in order to disable undervoltage detection. v io and v cc are within the functional range v bat t ?0" v bat_uv status bit: vbat_uv t vbat_filter ?1" notification disabled
data sheet 33 rev. 1.02 2018-02-02 TLE9255W fail safe functions 6.2.2 short-term underv oltage detection on v cc if the power supply v cc < v cc_uv for more than the glitch filter time t vcc_filter , then a short-term undervoltage on v cc is detected. the glitch filter prevents an underv oltage detection due to short voltage transients on v cc . on detection of short-term undervoltage th e TLE9255W performs the following actions: ? set short-term undervoltage bit vcc_stuv to ?1? in the spi register trans_uv_stat . only after the completion of a power on reset, the v cc supply stabilization period must be completed before an undervoltage notification can be recorded in the vcc_stuv bit. after power on reset the undervoltage notification is only possible once the v cc supply has exceeded the threshold v cc_uv , that is v cc > v cc_uv . figure 27 shows this scenario. ? disable the transmitter an spi command can reset the undervoltage bit vcc_stuv . if v cc > v cc_uv for more than the glitch filter time t vcc_filter and if the transmitter recovery time t vcc_recovery has expired, then the tr ansmitter is re-enabled. figure 26 v cc undervoltage detection figure 27 undervoltage detection v cc during v cc supply stabilization peri od after power on reset v io and v bat are within the functional range v cc t enabled v cc_uv t vcc_filter status bit vcc_stuv: t vcc_filter disabled ?0" ?1" transmitter: t vcc_filter enabled t vcc_recovery v io and v bat are within the functional range v cc t ?0" v cc_uv status bit: vcc_stuv t vcc_filter ?1" notification disabled
data sheet 34 rev. 1.02 2018-02-02 TLE9255W fail safe functions 6.2.3 long-term underv oltage detection on v cc if v cc < v cc_uv for more than the glitch filter time t vcc_filter , then the undervoltage detection timer is started. if t vcc_uv_t has expired, then a long-term unde rvoltage is detected and the bit vcc_ltuv is set to ?1?. besides, if the spi bit stts_en = 1 (default value) and if t silence has expired, then a state transition to sleep wup sub- mode is triggered. if v cc > v cc_uv for more than the glitch filter time t vcc_filter , then the timer t vcc_uv_t is stopped and reset. only an spi command can reset the undervoltage bit vcc_ltuv . the t vcc_uv_t can be configured in the spi register supply_ctrl . figure 28 v cc long-term undervoltage detection after power up figure 29 v cc long-term undervoltage detection during operation 6.2.4 short-term underv oltage detection on v io if the power supply v io < v io_uv for more than the glitch filter time t vio_filter , then short-term undervoltage on v io is detected. the glitch filter prevents an undervol tage detection due to shor t voltage transients on v io . on detection of short-term undervoltage th e TLE9255W performs the following actions: v cc t v cc_uv status bit: vcc_ltuv ?1" por mode (spi bit stts = 1) stand-by mode t vcc_uv_t ?0" v bat is in the functional range t vcc_filter por stand-by mode sleep wup sub-mode 1 1) state transition will be performed if the t silence timer has expired (no can bus communication) v io and v bat are within the functional range v cc t v cc_uv status bit vcc_ltuv: t vcc_filter ?0" ?1" t vcc_uv_t
data sheet 35 rev. 1.02 2018-02-02 TLE9255W fail safe functions ? set the short-term undervoltage bit vio_stuv to ?1? in the spi register trans_uv_stat . after the completion of a power on reset, the v io supply stabilization period must be completed before an undervoltage notification can be recorded in the vio_stuv bit. after power on reset the undervoltage notification is only be possible once the v io supply has exceeded the threshold v io_uv , that is v io > v io_uv . figure 31 shows this scenario. ?set the rxd pin to ?low? ? disable spi communication by switch ing the miso pin to high impedance ? TLE9255W ignores all signals on the input txd pin only an spi command can re set the undervoltage bit vio_stuv . if v io has recovered ( v io > v io_uv ) for more than the glitch filter time t vio_filter and if the t vio_recovery time has expired, then th e rxd pin returns to normal functionality depending on the mode of oper ation and the spi commun ication is restored. figure 30 v io short-term undervoltage detection any signal will be processed v cc or v bat are within the functional range v io t ?0" v io_uv t vio_filter status bit vio_stuv: t vio_filter rxd pin normal functional depending on mode of operation logical ?low ?1" rxd pin: spi communicaiton no spi communication (high impedance) miso: t vio_filter spi communicaiton rxd pin normal functional depending on mode of operation txd pin: any signal will be ignored any signal will be processed t vio_recovery
data sheet 36 rev. 1.02 2018-02-02 TLE9255W fail safe functions figure 31 undervoltage detection v io during v io supply stabilization period after power on reset 6.2.5 long-term undervoltage detection on v io if v io < v io_uv for more than the glitch filter time t vio_filter , then the undervoltage detection timer is started. if t vio_uv_t expires, then a long-term undervoltage is dete cted. on detection of long-term undervoltage the TLE9255W performs the following actions: ? set the bit vio_ltuv to ?1? ? perform a mode change to sleep wup sub-mode only after t silence has expired (no bus communication) if v io > v io_uv for more than the glitch filter time t vio_filter , then the timer t vio_uv_t is stopped and reset. only an spi command can reset the undervoltage bit vio_ltuv . the t vio_uv_t is configurable in the spi register supply_ctrl . figure 32 v io long-term undervoltage detection after power up v cc and v bat are within the functional range v io t ?0" v io_uv status bit: vio_uv t vio_filter ?1" notification disabled v io t v io_uv status bit: vio_uv ?1" por mode stand-by mode v bat or v cc is in the functional range t vio_uv_t ?0" sleep wup sub-mode 1 t vio_filter 1) state transition will be performed if the t silence timer has expired (no can bus communication)
data sheet 37 rev. 1.02 2018-02-02 TLE9255W fail safe functions figure 33 v io long-term undervoltage detection during operation 6.3 unconnected logic pins if the input pins are not connected and floating, the in tegrated pull-up and pull-down resistors at the digital input pins force the TLE9255W into fail safe behavior (see table 3 ). table 3 logical inputs when unconnected input signal default state comment txd ?high? pull-up current source to v io mosi ?low? pull-down current source to gnd sclk ?low? pull-down current source to gnd csn ?high? pull-up current source to v io v io t v io_uv status bit: vio_uv ?1" por mode stand-by mode v bat or v cc is in the functional range t vio_uv_t ?0" sleep wup sub-mode 1 t vio_filter 1) state transition will be performed if the t silence timer has expired (no can bus communication)
data sheet 38 rev. 1.02 2018-02-02 TLE9255W fail safe functions 6.4 txd time-out function if the logical signal on the txd pin is permanently ?low ?, then the txd time-out feature protects the can bus from blocked communication due to this errant logic si gnal on txd. a permanent ?low? signal on the txd pin can occur due to a locked-up microcontr oller or in a short circuit on the pr inted circuit board, for example. in normal-operating mode, a ?low? signal on the txd pin for the time t > t txd_to enables the txd time-out feature and the TLE9255W disables the transmitter (see figure 34 ) and sets the txd_to bit in the register trans_stat . the timer t txd_to is configurable in spi register txd_to_ctrl . the receiver is still active and the rxd output pin continues monitoring data on the bus. figure 34 txd time-out function figure 34 shows how the transmitter is deactivated and re -activated.to release the transmitter after a txd time-out event, the TLE9255W requir es a signal change on the txd input pin from ?low? to ?high?. txd t t canh canl rxd t txd time-out txd timeCout released t > t txd_to
data sheet 39 rev. 1.02 2018-02-02 TLE9255W fail safe functions 6.5 overtemperature protection integrated overtemperature detection protects the TLE9255W from thermal ov erstress of the transmitter. the overtemperature protection is active in normal-operating mode only. the temperature sensor provides the temperature threshold t jsd . if the junction temperatur e exceeds the upper threshold t jsd , then the TLE9255W disables the transmitter and sets the bit tsd , indicating that a critical temper ature situation is reached. after the device cools down the transmitter is re -enabled. only an spi command can reset the tsd bit. a hysteresis is implemented within the temperature sensor. figure 35 overtemperature protection 6.6 delay time for mode change the TLE9255W performs mode chan ges within the time window t mode_change . during mode changes ( t mode_change ) the rxd output pin is permanentl y set to ?high? and does not refl ect the status on the canh and canl input pins. after the mode change is comp leted, the TLE9255W releases the rxd output pin. txd t t canh canl rxd t t j t t jsd (shut down temperature) switch-on transmitter a t cool down
data sheet 40 rev. 1.02 2018-02-02 TLE9255W can partial networking 7 can partial networking partial networking allows to exclude nodes from th e can communication in a can network. if the TLE9255W is in the selective wake sub-mode, then a can fr ame can wake-up the TLE9255W . this feature is called selective wake and the can frame is called wake-up fr ame (wuf). the selective wake unit implements the selective wake feature. 7.1 wake-up frame evaluation for a wuf detection the TLE9255W evaluates, whether a received can frame is a valid wake-up frame. this wake-up frame evaluation consis ts of the following parts: ?can id evaluation ? frame data length code (dlc) and data field evaluation if both parts are evaluated successful ly and if the crc of the can frame is valid, then a valid wake-up frame is detected (see figure 36 ). the following chapter describe s the process in more detail. figure 36 wuf detection 7.1.1 wake-up frame id entifier evaluation if all relevant can id bits of a can frame match the co nfigured can id bits in the TLE9255W, then a valid wuf can id is received. the can id mask excludes can id bits from the evalua tion. the can id bits of a received can frame are compared bit by bit with the can id config ured in register swk_id0_ctrl to swk_id3_ctrl . if the received can id is eq ual to the configured can id, then the wake-up frame identifier evaluation is successful. the can id mask (registers swk_mask_id0_ctrl to swk_mask_id3_ctrl ) defines which bits the comparison considers. figure 37 shows an example of the can id ev aluation (11 bit can id). the green background color defines the can id bits wh ich are not considered in the comparison. crc field ack eof can frame wake-up detected
data sheet 41 rev. 1.02 2018-02-02 TLE9255W can partial networking figure 37 can id and can id mask the registers swk_id0_ctrl , swk_id1_ctrl , swk_id2_ctrl and swk_id3_ctrl configure the can id. the ide bit defines the can id format (11 bit or 29 bit identifier). the registers swk_mask_id0_ctrl , swk_mask_id1_ctrl , swk_mask_id2_ctrl and swk_mask_id3_ctrl configure the can-id mask. 7.1.2 dlc and data field evaluation if all of the following co nditions are fulfilled, then the dlc and data field evaluation is successful: ? the dlc of the received can frame is equal to the dlc configured in the dlc field of the register swk_dlc_ctrl ? at least one bit within the data field of the received can frame is ?1? and matches to a bit (?1?) of the configured data field. if one bit matches, th en the evaluation is stopped. the registers swk_data0_ctrl , swk_data1_ctrl , swk_data2_ctrl , swk_data3_ctrl , swk_data4_ctrl , swk_data5_ctrl , swk_data6_ctrl and swk_data7_ctrl configure the data field. figure 38 shows an example for the data field ev aluation. the dlc in this example is 1. figure 38 data field evaluation 1 0 0 1 0 1 1 1 0 0 1 configured can id can id mask 1 st valid wuf can id 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 2 nd valid wuf can id 1 0 0 1 0 1 1 0 0 1 1 example of an invalid wuf can id data byte 0 configured data mask received can data bytes 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 data matches. the evaluation process can be stopped these bits can be ignored time
data sheet 42 rev. 1.02 2018-02-02 TLE9255W can partial networking 7.2 activation of selective wake figure 39 shows the recommended way to activate th e selective wake function in the TLE9255W. figure 39 activation of selective wake function the selective wake unit will acquire can bus synchronization within 4 classical can frames. on the first successfully synchronized classical can frame the sync bit is set to 1. set swk wake data. e.g. id, id_mask, data power on reset swk unit is not enabled check syserr 1 0 enable selective wake (swk_en = 1) confirm swk configuration (cfg_val = 1) check wk_stat register change into the sleep mode by a spi command no wup, lwu or wuf pending any mode swk unit is enabled clear wk_stat register wup, lwu or wuf pending mc decides how to procceed mc still wants to change into sleep mode swk config error (cfg_val = 0) yes frame could not be detected by the selective wake unit. mc must make a diagnosis to find the reason (e.g. wrong baudrate). swk configuration must be checked by mc no set baudrate for the swk unit transceiver enters sleep mode
data sheet 43 rev. 1.02 2018-02-02 TLE9255W can partial networking 7.3 frame error counter the frame error counter indicates, whether received cl assical can frames are vali d. can fd frames are not evaluated and therefore can fd frame errors do not affect the frame er ror counter. if the selective wake unit detects a classical can frame error, th en the frame error counter is increase d by 1. if the selective wake unit detects a valid classical can frame, then the error coun ter is decreased by 1. th e following types of errors cause invalid classical can frames: ?bit stuffing error ?crc error ?crc delimiter error if the spi bit swk_en = 1, then the frame error counter is active in any mode of operation. the error counter value can be read via spi (register swk_ecnt_stat ). each time that the selective wake unit is enabled ( swk_en = 1) or if the t silence timer has expired, then the error counter is reset to zero. if the TLE9255W repeatedly receives invalid classical can frames in the selectiv e wake sub-mode, then the frame error counter ensures that a wake-up is performe d. if the TLE9255W is in the selective wake sub-mode and the error counter reaches the valu e 32, then a wake-up is performed. 7.4 selective wake configuration error after the microcontroller has confirmed the configuration ( cfg_val = 1), writing the following registers generates a selective wa ke configuration error: ? baudrate control register ( swk_ctrl_2 ) ? identifier control registers ( swk_id3_ctrl , swk_id2_ctrl , swk_id1_ctrl and swk_id0_ctrl ) ? mask identifier control registers ( swk_mask_id3_ctrl , swk_mask_id2_ctrl , swk_mask_id1_ctrl and swk_mask_id0_ctrl ) ? data length control register ( swk_dlc_ctrl ) ? data control registers ( swk_data7_ctrl , swk_data6_ctrl , swk_data5_ctrl , swk_data4_ctrl , swk_data3_ctrl , swk_data2_ctrl , swk_data1_ctrl and swk_data0_ctrl )
data sheet 44 rev. 1.02 2018-02-02 TLE9255W can partial networking the following figure shows a sele ctive wake configuration error. figure 40 selective wake configuration error 7.5 can flexible data rate (can fd) tolerant feature the can fd tolerant feature means that selective wake un it ignores can fd frames. th erefore it is not possible to configure a can fd frame for wake-up frame (wuf) detection. at the completion of a detected can fd frame, that is, the end of frame (eof) is detected, the selective wake unit is ready for detecting the next available classical can frame. if at least 6 recessive bits and at most 10 recessive bits are received, then eof detection is successful. the fdf bit of the control field of a can fd frame identifies the type of can frame: ? fdf bit = 1: can fd frame recognized, decoding stops ? fdf bit = 0: classical can frame recognized, pr ocessing of the frame continues in this way it is possible to send mixed can frame fo rmats without affecting the selective wake functionality by error counter increment and a misl eading wake-up. the can fd data ph ase baud rate must be configured in the spi field br_ratio of the register swk_ctrl_2 to enable detection of can fd frames. set swk wake data. e.g. id, id_mask, data power on reset swk unit is not enabled enable selective wake (swk_en = 1) confirm swk configuration (cfg_val = 1) any mode swk unit is enabled set baudrate for the swk unit write operation to a swk configuration register will cause a selective wake configuration error!
data sheet 45 rev. 1.02 2018-02-02 TLE9255W can partial networking 7.6 selective wake spi flags 7.6.1 syserr flag the syserr flag in the register swk_stat indicates an error condition in the selective wake unit of the TLE9255W. only if the spi bit swk_en = 1, then the syserr flag is set . the syserr flag does not prevent entering the sleep mode by an spi command. however, the syserr flag determines, whethe r the TLE9255W enters the selective wake sub-mode ( syserr = 0) or sleep wup mode ( syserr = 1). figure 41 shows this scenario. figure 41 impact of syserr flag if a mode chan ge spi command to sleep mode has been sent the syserr flag is set under any of the following conditions: ? selective wake configuration error is detected (see chapter 7.4 ). ? the frame error counter va lue is greater than 31. only if no configuration error ( cfg_val = 1) exists and if the error coun ter is less than 32, then the TLE9255W resets the syserr flag. 7.6.2 sync flag the sync flag in the register swk_stat indicates that a classical can frame is detected correctly by the selective wake unit. the sync flag works, if all of the foll owing conditions are fulfilled: ? selective wake is enabled ( swk_en bit = 1) ? after power on reset the co nfiguration is confirmed ( cfg_val bit = 1) at least once. change into the sleep mode by a spi command tranceiver perfom the following actions: - cfg_val will be cleared - switch to the stand by mode - inhibit will be switch on if configured. check syserr enter sleep wup sub-mode enter selective wake sub-mode wuf detected wuf flag will be set wup detected wup flag will be set 1 0
data sheet 46 rev. 1.02 2018-02-02 TLE9255W can partial networking if the selective wake unit detects an invalid classical ca n frame, then the sync flag is reset. the sync flag has no influence on the transition to the sleep mode by an spi command. after power up sync = 0. the sync flag is not valid in the selective sleep sub-mode. 7.6.3 canto flag the canto flag in the register swk_stat indicates that the TLE9255W has entered selective sleep mode (no bus communication) at least once. only if the spi bit swk_en = 1, then the canto flag can be set. if the TLE9255W is in the selective sleep mode and if the t silence timer expires, then the canto flag is set . only an spi command can reset the canto flag . 7.6.4 cansil flag the cansil flag in the register swk_stat indicates that there is no communication on the can bus (t silence timer has expired). figure 15 defines the restart conditions for the t silence timer. 7.6.5 swk_active flag the swk_active flag in the register swk_stat indicates that the TLE9255W is in selective wake sub-mode. if the TLE9255W enters the select ive wake sub-mode, then the swk_active flag is set. if the TLE9255W exits sleep mode, then it resets the swk_active flag. 7.6.6 cfg_val flag the microcontroller sets the cfg_val flag in the register swk_ctrl_1 to confirm the selective wake configuration. this confirmation must be performed each time before a mode change to sleep mode by an spi command (selective wake sub-mode) is sent. the TLE9255W resets the cfg_val bit under any of the following conditions: ? if a mode change from selective wake su b-mode to stand-by mode is performed. ? if a mode change from selective sleep su b-mode to stand-by mode is performed. ? if a selective wake configur ation error is detected ( chapter 7.4 ).
data sheet 47 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8 serial peripheral interface the communication between the microcontroller and th e transceiver is implemented via serial peripheral interface (spi). this communication is configured as a full duplex mult i slave data transfer. a valid spi command consists of 16 bits. only if v io >v io_uv and if v bat or v cc is within the functional range, then spi communication between the microcontroller and the transceiver ca n be established. the spi uses four interface signals for synchronization and data transfer: ? csn: spi chip select (active low) ?sclk: spi clock ? mosi: spi data input ? miso: spi data output figure 42 shows the spi data transfer. figure 42 spi data transfer the spi command transmission cycle be gins when the transceiver is sele cted by the csn pin (active low). when the signal of the csn input pin returns from ?l ow? to ?high?, the TLE9255W decodes the data that was shifted in on the mosi. the data of mo si and miso is shifted in and out (msb comes first) on every rising edge of sclk. the bit sampling is performe d on every falling edge of sclk. if the csn input pin is ?high?, then the miso pin has a high impedance. the spi of the tr ansceiver does not support TLE9255W daisy chaining. the miso pin signals invalid spi commands ( chapter 8.5 ) or spi failures ( chapter 8.4 ). if an invalid spi 15 15 14 13 12 11 10 9 8 7 6 5 0 14 csn high to low: miso is enabled (low impedance). status information transferred to output shift register csn low to high: data from shift register is transferred to output functions data will be shifted in actual status 4 3 2 1 actual data new data new status miso mosi csn sclk time time time min. csn high-time to be ensured 15 14 13 12 11 10 9 8 7 6 5 0 4 3 2 1 15 14 data will be shifted out bit sampling will be performed bit sampling will be performed err err
data sheet 48 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface command or an spi failure occurs, then the miso pin is ?high? after the csn pin is ?low? and before a clock starts. chapter 8.4 defines the conditions for an spi error. 8.1 spi command format an spi command consists of: ? mosi request format ? miso response format figure 43 shows the spi command format. figure 43 command format of the mosi and miso register mosi format frame the mosi format frame consists of ad dress bits (bits 14-8) and data bits (bits 7-0). the r/w bit (bit15) defines a write operation (r/w = 1) or a read (r/w = 0) operation to the addressed register. for read operations the data bits are not relevant. miso format frame the miso format frame consists of the status informatio n field (bits 15-8) and the data bits (bits 7-0). the data bits contain the data of the addressed register. the st atus information field contains compressed information about the status register ( chapter 8.3 ). 15 13 12 11 10 8 9 7 6 5 4 3 2 0 1 data bits mosi address bits r/w data bits miso status information field lsb msb 14
data sheet 49 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8.2 control and status register there are two types of registers: ? control registers: control the behavior of the tle 9255w, for example mode change an d selective wake configuration. ? status registers: status registers represent the status of the tl e9255w, for example wake events and failures. the TLE9255W controls the bits of the st atus register. however, the microcon troller must reset some of these bits. writing ?1? clears the register (w1c). in case of reading the register the address bits for the register must be set, the r/w bit must be set to 0 and the data bits are not relevant . writing a ?1? to the specific bits in the status register resets the st atus bits in the status register. figure 44 shows this scenario. figure 44 read and clear command data bits status register address bits r/w spi command 1 1 1 0 1 1 1 - 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 - 0 0 1 1 0 1 0 0 status register after spi command
data sheet 50 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8.3 status information field the status information field informs the microcontroller that status register bits have changed. the status information field is returned during ea ch spi write or read command in the miso format frame. each bit of the status information field represents an or operation of so me bits of a specific status register. if an spi access occurs while the status register is being updated due to an event, the content of the status information field may not reflect the latest state of the status registers. table 4 defines the content of the status information field. the err_stat is flagged on the miso pin. 8.4 spi failure the spi bit com_err signals an spi failure. any of the follo wing conditions defi ne the spi failure: ? register address does not exist ? number of received spi clocks is neither 0 nor 16 on spi failure spi commands are ignored. 8.5 invalid spi command any attempt to write undefined bit combinations to on e of the followin g spi registers is an invalid spi command. ? mode of the register mode_ctrl ? txd_to of the register txd_to_ctrl ? br_ratio of the register swk_ctrl_2 ? br of the register swk_ctrl_2 ? vio_uv_t of the register supply_ctrl ? vcc_uv_t of the register supply_ctrl an invalid spi command is ignored and the cmd_err bit is set and signalled on the miso pin. only the microcontroller can reset the cmd_err bit. table 4 status information field name bit position reflected bits reserved 0 - trans_uv_stat (transceiver undervoltage status) 1 vbat_uv or vcc_ltuv or vcc_stuv or vio_ltuv or vio_stuv temp_stat (temperature status) 2 tsd or reserved wake_stat (wake-up status) 3 lwu or wup or wuf txd_to (txd timeout) 4 txd_to cansil (can silence) 5 cansil por (power on reset) 6 por err_stat (error status) 7 cmd_err or com_err
data sheet 51 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8.6 csn timeout the csn timeout ( t csn_to ) prevents the spi communication from disturbance. after the csn pin of the TLE9255W is set to ?low? (start of the spi co mmunication and t csn_to ) the communication must be finished and the csn pin must be set to ?high? within t csn_to . if the t csn_to timeout occurs, then the TLE9255W sets the miso pin to high impedance. if the csn pin is set to ?high?, then the t csn_to is reset. figure 45 shows this scenario. figure 45 csn timeout 8.7 spi register the following figure gives an overview of the spi register. 15 14 13 t csn_to starts miso csn sclk time time time t csn_to occures high impedance 15 14 13 t csn_to starts
data sheet 52 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface figure 46 register overview 7654321015 148 data bit 158 d7 d6 d5 d4 d3 d2 d1 d0 mode_ctrl reserved reserved reserved reserved read/write 0000001 hw_ctrl stts_en lwu_neg lwu_pos reserved reserved reserved wake_tog vbat_con read/write 0000010 txd_to_ctrl reserved reserved reserved reserved reserved txd_to_2 txd_to_1 txd_to_0 read/write 0000011 supply_ctrl vio_uv_t_3 vio_uv_t_2 vio_uv_t_1 vio_uv_t_0 v cc_uv_t_3 vcc_uv_t_2 vcc_uv_t_1 vcc_uv_t_0 read/write 0000100 swk_ctrl_1 reserved reserved reserved res erved reserved reserved reserved cfg_val read/write 0000101 swk_ctrl_2 swk_en reserved br_ratio_1 br_ratio_0 reserved br_2 br_1 br_0 read/write 0000110 swk_id3_ctrl reserved reserved ide ide28/id10 ide27/id9 ide26/id8 ide 25/id7 ide24/id6 read/write 0000111 swk_id2_ctrl ide23/id5 ide22/id4 ide21/id3 ide 20/id2 ide19/id1 ide18/id0 ide 17 ide16 read/write 0001000 swk_id1_ctrl ide15 ide14 ide13 ide12 ide11 ide 10 ide9 ide8 read/write 0001001 swk_id0_ctrl ide7 ide6 ide5 ide4 ide3 ide 2 ide1 ide0 read/write 0001010 swk_mask_id3_ctrl reserved reserved reserved mask_id28 mask_id27 mask_id26 ma sk_id25 mask_id24 read/write 0001011 swk_mask_id2_ctrl mask_id23 mask_id22 mask_id21 mask_id20 mask_id1 9 mask_id18 mask_id17 m ask_id16 read/write 0001100 swk_mask_id1_ctrl mask_id15 mask_id14 mask_id13 mask_id12 mask _id11 mask_id10 mask_id9 mask_id8 read/write 0001101 swk_mask_id0_ctrl mask_id7 mask_id6 mask_id5 mask_id4 mask_id3 mask_id2 mask_id1 mask_id0 read/write 0001110 swk_dlc_ctrl reserved reserved reserved reserved dlc_3 dlc_2 dlc_1 dlc_0 read/write 0001111 swk_data7_ctrl data7_7 data7_6 data7_5 data7_4 data7_3 data7_2 data7_1 data7_0 read/write 0010000 swk_data6_ctrl data6_7 data6_6 data6_5 data6_4 data6_3 data6_2 data6_1 data6_0 read/write 0010001 swk_data5_ctrl data5_7 data5_6 data5_5 data5_4 data5_3 data5_2 data5_1 data5_0 read/write 0010010 swk_data4_ctrl data4_7 data4_6 data4_5 data4_4 data4_3 data4_2 data4_1 data4_0 read/write 0010011 swk_data3_ctrl data3_7 data3_6 data3_5 data3_4 data3_3 data3_2 data3_1 data3_0 read/write 0010100 swk_data2_ctrl data2_7 data2_6 data2_5 data2_4 data2_3 data2_2 data2_1 data2_0 read/write 0010101 swk_data1_ctrl data1_7 data1_6 data1_5 data1_4 data1_3 data1_2 data1_1 data1_0 read/write 0010110 swk_data0_ctrl data0_7 data0_6 data0_5 data0_4 data0_3 data0_2 data0_1 data0_0 read/write 0010111 trans_stat por reserved reserved reserved reserved txd_to tsd reserved read/clear 0011000 trans_uv_stat vbat_uv reserved vcc_ltuv vcc_stuv reserved reserved vio_ltuv vio_stuv read/clear 0011001 err_stat reserved reserved reserved reserved reserved reserved com_err cmd_err read/clear 0011010 wake_stat reserved reserved reserved reserved lwu_dir lwu wup wuf read/clear 0011011 swk_stat reserved reserved reserved syserr sync canto cansil swk_active read 0011100 swk_ecnt_stat reserved reserved ecnt_5 ecnt_4 ecnt_3 ecnt_2 ecnt_1 ecnt_0 read 0011101 register short name access mode address a14a8 c o n t r o l r e g i s t e r s mode s t a t u s r e g i s t e r s s e l e c t i v e w a k e r e g i s t e r s s e l e c t i v e w a k e s t a t u s r e g i s t e r s control registers status registers
data sheet 53 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8.7.1 mode control register mode_ctrl mode control (01 h ) reset value:0002 h 76543210 reserved mode rw rw field bits type description reserved 7:4 rw reserved mode 3:0 rw mode 1)2) 0001 b , sleep mode 0010 b , standby mode 0100 b , receive only mode 1000 b , normal operation mode 1) internal state transitions have higher priority than mode change spi commands 2) the mode bits are a reflection of the state of the transceiver which includes internal state transitions hw_ctrl hardware control (02 h ) reset value:00e1 h 76543210 stts_en lwu_neg lwu_pos reserved wake_tog vbat_con rw rw rw rw rw rw field bits type description stts_en 7rw state transition to sleep wup sub-mode if a v cc t vcc_uv_t and t silence has expired 0 b , state transition will not be performed 1 b , state transition will be performed lwu_neg 6rw local wake-up direction 0 b , local wake-up will not be performed on the negative edge 1 b , local wake-up will be performed on the negative edge lwu_pos 5rw local wake-up direction 0 b , local wake-up will not be performed on the positive edge 1 b , local wake-up will be performed on the positive edge reserved 4:2 rw reserved wake_tog 1rw toggle rxd pin if a wake-up event is detected 0 b , the rxd pin will be constant ?low? 1 b , the rxd pin will toggle between ?low? and ?high?
data sheet 54 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface vbat_con 0rw transceiver is connect ed with the battery 0 b , inh pin will not be switched off by entering the sleep mode, v bat_uv is disabled lwu is disabled 1 b , inh pin will be switched off by entering the sleep mode v bat_uv is enabled lwu is enabled field bits type description
data sheet 55 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface txd_to_ctrl txd timeout control (03 h ) reset value:0001 h 76543210 reserved txd_to rw rw field bits type description reserved 7:3 rw reserved txd_to 2:0 rw txd timeout (min - max) 001 b , 1 - 4 ms 010 b , 2 - 8 ms 011 b , 5 - 10 ms 100 b , disabled supply_ctrl supply control (04 h ) reset value:00cc h 76543210 vio_uv_t vcc_uv_t rw rw field bits type description vio_uv_t 7:4 rw vio undervoltage detection timer 1) 0001 b , 100 ms 0010 b , 200 ms 0011 b , 300 ms 0100 b , 400 ms 0101 b , 500 ms 0110 b , 600 ms 0111 b , 700 ms 1000 b , 800 ms 1001 b , 900 ms 1010 b , 1000 ms 1011 b , 1100 ms 1100 b , 1200 ms 1101 b , 1300 ms 1110 b , 1400 ms 1111 b , 1500 ms
data sheet 56 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface vcc_uv_t 3:0 rw vcc undervoltage detection timer 1) 0001 b , 100 ms 0010 b , 200 ms 0011 b , 300 ms 0100 b , 400 ms 0101 b , 500 ms 0110 b , 600 ms 0111 b , 700 ms 1000 b , 800 ms 1001 b , 900 ms 1010 b , 1000 ms 1011 b , 1100 ms 1100 b , 1200 ms 1101 b , 1300 ms 1110 b , 1400 ms 1111 b , 1500 ms 1) the derivation of the value can be +/- 40% field bits type description
data sheet 57 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8.7.2 selective wake control register swk_ctrl_1 selective wake control (05 h ) reset value:0000 h 76543210 reserved cfg_val rw rw field bits type description reserved 7:1 rw reserved cfg_val 0rw selective wake configuration valid 0 b , invalid 1 b , valid
data sheet 58 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_ctrl_2 baudrate control (06 h ) reset value:0004 h 76543210 swk_en reserved br_ratio reserved br rw rw rw rw rw field bits type description swk_en 7rw selective wake unit 0 b , disabled 1 b , enabled reserved 6rw reserved br_ratio 5:4 rw baudrate ratio from arbitration phase to can fd data phase 00 b , ratio <= 4 01 b , ratio <= 10 reserved 3rw reserved br 2:0 rw selective wake unit baudrate 010 b , 125 kbit/s 1) 011 b , 250 kbit/s 100 b , 500 kbit/s 101 b , 1 mbit/s 1) glitch filter time is 300 ns in case of ratio 4
data sheet 59 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_id3_ctrl identifier 3 control (07 h ) reset value:001f h 76543210 reserved ide id28_24 rw rw rw field bits type description reserved 7:6 rw reserved ide 5rw identifier type 0 b , normal identifier 1 b , extended identifier id28_24 4:0 rw wake-up frame identifier note: if a normal identifier is config ured (ide = 0) the bits id28 - id24 define the normal identifier bits id10 - id6 swk_id2_ctrl identifier 2 control (08 h ) reset value:00ff h 76543210 id23_16 rw field bits type description id23_16 7:0 rw wake-up frame identifier note: if a normal identifier is config ured (ide = 0) the bits id23 - id18 define the normal identifier bits id5 - id0 swk_id1_ctrl identifier 1 control (09 h ) reset value:00ff h 76543210 id15_8 rw field bits type description id15_8 7:0 rw wake-up frame identifier
data sheet 60 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_id0_ctrl identifier 0 control (0a h ) reset value:00ff h 76543210 id7_0 rw field bits type description id7_0 7:0 rw wake-up frame identifier swk_mask_id3_ctrl mask identifier 3 control (0b h ) reset value:0000 h 76543210 reserved mask_id28_24 rw rw field bits type description reserved 7:5 rw reserved mask_id28_24 4:0 rw mask identifier swk_mask_id2_ctrl mask identifier 2 control (0c h ) reset value:0000 h 76543210 mask_id23_16 rw field bits type description mask_id23_16 7:0 rw mask identifier swk_mask_id1_ctrl mask identifier 1 control (0d h ) reset value:0000 h 76543210 mask_id15_8 rw field bits type description mask_id15_8 7:0 rw mask identifier
data sheet 61 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_mask_id0_ctrl mask identifier 0 control (0e h ) reset value:0000 h 76543210 mask_id7_0 rw field bits type description mask_id7_0 7:0 rw mask identifier swk_dlc_ctrl data length code control (0f h ) reset value:0000 h 76543210 reserved dlc rw rw field bits type description reserved 7:4 rw reserved dlc 3:0 rw data length code 0000 b , 0 data bytes 0001 b , 1 data bytes 0010 b , 2 data bytes 0011 b , 3 data bytes 0100 b , 4 data bytes 0101 b , 5 data bytes 0110 b , 6 data bytes 0111 b , 7 data bytes 1000 b , 8 data bytes 1001 b , 8 data bytes 1010 b , 8 data bytes 1011 b , 8 data bytes 1100 b , 8 data bytes 1101 b , 8 data bytes 1110 b , 8 data bytes 1111 b , 8 data bytes
data sheet 62 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_data7_ctrl data 7 control (10 h ) reset value:0000 h 76543210 data7 rw field bits type description data7 7:0 rw data byte 7 swk_data6_ctrl data 6 control (11 h ) reset value:0000 h 76543210 data6 rw field bits type description data6 7:0 rw data byte 6 swk_data5_ctrl data 5 control (12 h ) reset value:0000 h 76543210 data5 rw field bits type description data5 7:0 rw data byte 5 swk_data4_ctrl data 4 control (13 h ) reset value:0000 h 76543210 data4 rw field bits type description data4 7:0 rw data byte 4
data sheet 63 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_data3_ctrl data 3 control (14 h ) reset value:0000 h 76543210 data3 rw field bits type description data3 7:0 rw data byte 3 swk_data2_ctrl data 2 control (15 h ) reset value:0000 h 76543210 data2 rw field bits type description data2 7:0 rw data byte 2 swk_data1_ctrl data 1 control (16 h ) reset value:0000 h 76543210 data1 rw field bits type description data1 7:0 rw data byte 1 swk_data0_ctrl data 0 control (17 h ) reset value:0000 h 76543210 data0 rw field bits type description data0 7:0 rw data byte 0
data sheet 64 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface 8.7.3 status register trans_stat transceiver status (18 h ) reset value:0000 h 76543210 por reserved txd_to tsd reserved w1c w1c w1c w1c w1c field bits type description por 7w1c power on reset 0 b , no por occurred 1 b , por occurred reserved 6:3 w1c reserved txd_to 2w1c txd timeout 0 b , no txd timeout detected 1 b , txd timeout detected tsd 1w1c can thermal shut down 0 b , no thermal shut down detected 1 b , thermal shut down detected reserved 0w1c reserved trans_uv_stat transceiver undervoltage status (19 h ) reset value:0000 h 76543210 vbat_uv reserved vcc_ltuv vcc_stuv reserved vio_ltuv vio_stuv w1c w1c w1c w1c w1c w1c w1c field bits type description vbat_uv 7w1c battery undervoltage detected 0 b , no battery undervoltage detected 1 b , battery undervoltage detected reserved 6w1c reserved vcc_ltuv 5w1c v cc long-term undervoltage detection 0 b , no v cc long-term undervoltage detected 1 b , v cc long-term undervoltage detected vcc_stuv 4w1c v cc short-term undervoltage detection 0 b , no v cc short-term undervoltage detected 1 b , v cc short-term undervoltage detected reserved 3:2 w1c reserved
data sheet 65 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface vio_ltuv 1w1c v io long-term undervoltage detection 0 b , no v io long-term undervoltage detected 1 b , v io long-term undervoltage detected vio_stuv 0w1c v io short-term undervoltage detection 0 b , no v io short-term undervoltage detected 1 b , v io short-term undervoltage detected err_stat error status (1a h ) reset value:0000 h 76543210 reserved com_err cmd_err w1c w1c w1c field bits type description reserved 7:2 w1c reserved com_err 1w1c spi failure detected ( chapter 8.4 ) 0 b , no spi failure detected 1 b , spi failure detected cmd_err 0w1c invalid spi command ( chapter 8.5 ) 0 b , no invalid spi command received 1 b , invalid spi command received wake_stat wake status (1b h ) reset value:0000 h 76543210 reserved lwu_dir lwu wup wuf w1c r w1c w1c w1c field bits type description reserved 7:4 w1c reserved lwu_dir 3r local wake-up direction 0 b , local wake-up has been performed by the falling edge 1 b , local wake-up has been performed by the rising edge lwu 2w1c local wake-up 0 b , no local wake-up performed 1 b , local wake-up performed wup 1w1c wake-up pattern 0 b , no wake-up pattern detected 1 b , wake-up pattern detected field bits type description
data sheet 66 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface wuf 0w1c wake-up frame 0 b , no wake-up frame detected 1 b , wake-up frame detected field bits type description
data sheet 67 rev. 1.02 2018-02-02 TLE9255W serial peripheral interface swk_stat selective wake status (1c h ) reset value:0002 h 76543210 reserved syserr sync canto cansil swk_active w1c r r w1c r r field bits type description reserved 7:5 w1c reserved syserr 4r system error 0 b , no system error detected 1 b , system error detected sync 3r synchronisation of the selective wake unit 0 b , swk unit is not synchronous to the can bit stream 1 b , swk unit is synchronous to the can bit stream canto 2w1c can timeout 0 b , transceiver has not entered the selective sleep sub-mode 1 b , transceiver has entered the selective sleep sub-mode at least once in sleep mode cansil 1r can silence 0 b , transceiver is not in the selective sleep mode 1 b , transceiver is in the sele ctive sleep mode (no can bus communication) swk_active 0r selective wake 0 b , transceiver is not in the selective wake mode 1 b , transceiver is in the selective wake mode swk_ecnt_stat error counter status (1d h ) reset value:0000 h 76543210 reserved ecnt rr field bits type description reserved 7:6 r reserved ecnt 5:0 r error counter value
data sheet 68 rev. 1.02 2018-02-02 TLE9255W general product characteristics 9 general product characteristics 9.1 absolute maximum ratings table 5 absolute maximum ratings 1) all voltages with respect to ground , positive current flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. voltages battery supply voltage v bat -0.3 ? 40 v ? p_9.1.1 transmitter supply voltage v cc -0.3 ? 6.0 v ? p_9.1.2 digital voltage reference v io -0.3 ? 6.0 v ? p_9.1.3 canh dc voltage versus gnd v canh -40 ? 40 v ? p_9.1.4 canl dc voltage versus gnd v canl -40 ? 40 v ? p_9.1.5 differential voltage between canh and canl v can_diff -40 ? 40 v ? p_9.1.6 voltage at pin wake v wake -27 ? 40 v ? p_9.1.7 voltage at pin inh v inh -0.3 ? v bat +0 .3 v? p_9.1.8 voltage at pin digital input pins: csn, sclk, mosi, txd v max_in -0.3 ? v io + 0.3 v? p_9.1.9 voltage at pin digital output pins: miso, rxd v max_out -0.3 ? v io + 0.3 v? p_9.1.10 currents maximum output current on inh i inh_max -1.0 ? ? ma ? p_9.1.11 maximum output current on digital output pins: miso, rxd i out_max -20 ? 20 ma ? p_9.1.12 temperatures junction temperature t j -40 ? 150 c ? p_9.1.13 storage temperature t stg -55 ? 150 c ? p_9.1.14
data sheet 69 rev. 1.02 2018-02-02 TLE9255W general product characteristics notes 1. stresses above the ones listed he re may cause permanent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. integrated protection functions are designed to preven t ic destruction under fault conditions described in the data sheet. fault conditions are cons idered as ?outside? normal operatin g range. protection functions are not designed for continuous repetitive operation. esd resistivity esd immunity at canh, canl, wake and v bat versus to gnd v esd_hbm_can -10 ? 10 kv hbm 2) p_9.1.15 esd immunity at all other pins v esd_hbm -4 ? 4 kv hbm 2) p_9.1.16 esd immunity at corner pins v esd_cdm_cp -750 ? 750 v cdm 3) p_9.1.17 esd immunity at any pin v esd_cdm_op -500 ? 500 v cdm 3) p_9.1.18 1) not subject to production test, specified by design. 2) esd susceptibility, human body model ?hbm? according to ansi/esda/jedec js001 (1.5k ? , 100 pf.) 3) esd susceptibility, charged device model ?cdm? according to eia/jesd22-c101 or esda stm 5.3.1. table 5 absolute maximum ratings 1) (cont?d) all voltages with respect to ground , positive current flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 70 rev. 1.02 2018-02-02 TLE9255W general product characteristics 9.2 functional range note: within the functional or operating range, the ic operates as described in th e circuit description. the electrical characteristics are specif ied within the conditions given in the electrical characteristics table. table 6 functional range parameter symbol values unit note or test condition number min. typ. max. supply voltages transceiver battery supply voltage v bat 5.5 ? 40 v ? p_9.2.1 transmitter supply voltage v cc 4.75 ? 5.25 v ? p_9.2.2 digital voltage reference v io 3.0 ? 5.5 v ? p_9.2.3 thermal parameters junction temperature t j -40 ? 150 c ? p_9.2.4
data sheet 71 rev. 1.02 2018-02-02 TLE9255W general product characteristics 9.3 thermal resistance note: this thermal data was generated in accordance with jedec jesd51 standards. for more information please visit www.jedec.org . table 7 thermal resistance 1) 1) not subject to production test, specified by design parameter symbol values unit note or test condition number min. typ. max. thermal resistance junction to ambient r thja_dso14 ? 130 ? k/w 2) 2) specified r thja value is according to jedec jesd51-2,-7 at natu ral convection on fr4 2s2p board; the product (chip + package) was simulated on a 76.2 114.3 1.5 mm board with 2 inner copp er layers (2 70 mm cu, 2 35 mm cu). p_9.3.1 thermal shutdown junction temperature thermal shut-down temperature t jsd 170 180 190 c ? p_9.3.3 thermal shutdown hysteresis ? t 51020k? p_9.3.4
data sheet 72 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10 electrical characteristics 10.1 general timing parameter 10.2 power supply interface 10.2.1 current consumption table 8 general timing parameter parameter symbol values unit note or test condition number min. typ. max. power up delay time t pon ??1ms? p_10.1.1 delay time for mode change t mode_change ??20s? p_10.1.2 can bus silence timeout t silence 0.6 ? 1.2 s ? p_10.1.3 table 9 current consumption 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. normal-operating mode v bat supply current i bat_nm ?0.81.3mainh=not connected; p_10.2.1 v cc supply current dominant bus signal i cc_nm_d ? 35 45 ma ? p_10.2.2 v cc supply current recessive bus signal i cc_nm_r ? 0.9 4.0 ma ? p_10.2.3 v io supply current i io_nm ? 0.2 0.5 ma ? p_10.2.4 receive-only mode v bat and v cc supply current i bat_cc_rom = i bat + i cc i bat_cc_rom ?0.91.3mainh=not connected; p_10.2.5 v cc supply current i cc_rom ? 0.8 1.3 ma v bat = not connected; p_10.2.6 v io supply current i io_rom ? 2 20 a ? p_10.2.7
data sheet 73 rev. 1.02 2018-02-02 TLE9255W electrical characteristics stand-by mode v bat and v cc supply current i bat_cc_stb = i bat + i cc i bat_cc_stb ? 260 320 a t j = 85, inh = not connected, wake pin = gnd, spi bit swk_en = ?0?, no can bus communication; p_10.2.8 v bat and v cc supply current i bat_cc_stb = i bat + i cc i bat_cc_stb ? 300 365 a inh = not connected, wake pin = gnd, spi bit swk_en = ?0?, no can bus communication; p_10.2.21 v cc supply current i cc_stb ? 260 320 a t j = 85, v bat = not connected, wake pin = gnd, spi bit swk_en = ?0?, no can bus communication; p_10.2.9 v cc supply current i cc_stb ? 300 365 a v bat = not connected, wake pin = gnd, spi bit swk_en = ?0?, no can bus communication; p_10.2.38 v io supply current i io_stb ? 2.0 5.0 a ? p_10.2.10 sleep wup sub-mode selective-sleep sub-mode v bat supply current i bat_slp ? 18.0 30.0 a v cc = v io =0v, bus biasing = gnd, inh = not connected, 5.5 v < v bat <18v, -40c < t j < 150c; p_10.2.11 table 9 current consumption (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 74 rev. 1.02 2018-02-02 TLE9255W electrical characteristics v bat supply current i bat_slp ? 12.0 20.0 a v cc = v io =0v, bus biasing = gnd, inh = not connected, 5.5 v < v bat <18v, -40c < t j < 125c; p_10.2.35 v cc supply current i cc_slp ? 0.3 5.0 a csn, txd= v io , mosi, sclk = gnd, v bat = 12 v; p_10.2.12 v io supply current i io_slp ? 2.0 5.0 a csn, txd= v io , mosi, sclk = gnd; p_10.2.13 table 9 current consumption (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 75 rev. 1.02 2018-02-02 TLE9255W electrical characteristics selective-wake mode v bat supply current i bat_sel_wk ? 590 705 a v cc = v io =0v, inh = not connected, 500 kbit/s with 100% bus load, classical can frame: id = 0x4c7 dlc = 3 data = 0xc7, 0x8e, 0x68; p_10.2.14 v bat supply current i bat_sel_wk ? 550 650 a v cc = v io =0v, t j = 85c, inh = not connected, 500 kbit/s with 100% bus load, classical can frame: id = 0x4c7 dlc = 3 data = 0xc7, 0x8e, 0x68; p_10.2.39 v cc supply current i cc_sel_wk ? 0.4 5.0 a csn, txd= v io , mosi, sclk = gnd, v bat = 12 v; p_10.2.16 v io supply current i io_sel_wk ? 2.0 5.0 a csn, txd= v io , mosi, sclk = gnd; p_10.2.17 table 9 current consumption (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 76 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.2.2 undervoltage detection table 10 undervoltage detection 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. undervoltage detection v bat undervoltage detection threshold v bat_uv 4.2 5.0 5.5 v 1) 1) the design of the tle9255 w guarantees that the v bat powerdown threshold is below the v bat undervoltage threshold p_10.2.18 power down threshold v bat_pod 34.04.4v 1) , falling edge, v cc = 0 v; p_10.2.20 undervoltage glitch filter t vbat_filter 1 ? 400 s (see figure 24 ) p_10.2.22 undervoltage detection v cc undervoltage detection threshold v cc_uv 4.5 4.65 4.75 v ? p_10.2.23 power down threshold v cc_pod 2.5 3 4.0 v falling edge, v bat = 0 v; p_10.2.25 undervoltage glitch filter t vcc_filter 1 ? 10 s (see figure 26 ) p_10.2.27 transmitter recovery time t vcc_recovery 20 s (see figure 26 ) p_10.2.36 response time v cc for long-term undervoltage detection t vcc_uv_t 0.6 x v cc_uv_t ?1.4 x v cc_uv_ t adjustable by spi bit vcc_uv_t (see figure 28 and figure 29 ) p_10.2.28 undervoltage detection v io undervoltage detection threshold v io_uv 2.4 2.6 3.0 v ? p_10.2.29 undervoltage glitch filter t vio_filter 1 ? 10 s (see figure 30 ) p_10.2.31 transmitter recovery time t vio_recovery 20 s (see figure 30 ) p_10.2.37 response time v io for long-term undervoltage detection t vio_uv_t 0.6 x v io_uv_t ?1.4 x v io_uv_t adjustable by spi field vio_uv_t (see figure 32 and figure 33 ) p_10.2.32
data sheet 77 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.2.3 inh output 10.3 can controller interface table 11 inh output 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. analog output inh output voltage inh enabled v inh v bat - 0.8 ??v i inh =-0.2ma, normal-operating mode receive-only mode stand-by mode; p_10.2.33 absolute leakage current i inh_leak ?5.0 ? ? a v inh =0v, sleep mode; p_10.2.34 table 12 can controller interface 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; t bit(min) = 500 ns; t bit(flash) = 200 ns; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. receiver output rxd ?high? level output current i rxd_h ? -1.8 -1.0 ma v rxd = v io -0.4 v, v diff <0.5v; p_10.3.1 ?low? level output current i rxd_l 1.0 1.8 ? ma v rxd =0.4v, v diff >0.9v; p_10.3.2 rxd toggling time after wake-up event t toggle 6 - 14 ms see chapter 5.8.2 p_10.3.6 transmitter input txd ?high? level input voltage threshold v txd_h ?0.5 x v io 0.7 x v io v recessive state; p_10.3.7 ?low? level input voltage threshold v txd_l 0.3 x v io 0.4 x v io -vdominant state; p_10.3.8 ?high? level input current i txd_h -2.0 ? 2.0 a v txd = v io ; p_10.3.10 ?low? level input current i txd_l -220 ? -20.0 a v txd =0v; p_10.3.11
data sheet 78 rev. 1.02 2018-02-02 TLE9255W electrical characteristics txd permanent dominant timeout t txd_to 1?4msdefault value is 001 b in txd_to_ctrl adjustable by spi register txd_to_ctrl p_10.3.12 input capacitance c txd ??10pf 1) p_10.3.13 1) not subject to production test, specified by design. table 12 can controller interface (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; t bit(min) = 500 ns; t bit(flash) = 200 ns; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 79 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.4 transmitter and receiver 10.4.1 transmitter table 13 transmitter 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. bus transmitter canh, canl recessive output voltage v canl/h 2.0 2.5 3.0 v normal-operating mode, receive-only mode, selective wake sub- mode; p_10.4.1 canh, canl recessive output voltage difference v diff_r_nm = v canh - v canl -500 - 50 mv v txd = v io , no load; p_10.4.2 canh dominant output voltage normal-operating mode v canh 2.75 ? 4.5 v v txd =0v, 50 ? < r l <65 ? ; p_10.4.3 canl dominant output voltage normal-operating mode v canl 0.5 ? 2.25 v v txd =0v, 50 ? < r l <65 ? ; p_10.4.4 canh dominant output voltage difference: v diff_d = v canh - v canl normal-operating mode v diff_d 1.5 2.0 3.0 v v txd =0v, 50 ? < r l <65 ? ; p_10.4.5 canh dominant output voltage difference extended bus load v diff_d = v canh - v canl normal-operating mode v diff_d_ext_bl 1.4 ? 3.3 v v txd =0v, r l =45 ? < r l <70 ? p_10.4.6 canh, canl dominant output voltage difference high extended bus load normal-operating mode v diff = v canh - v canl v diff_d_hext_bl 1.5 ? 5.0 v v txd =0v, r l = 2240 ? 1) ; p_10.4.7
data sheet 80 rev. 1.02 2018-02-02 TLE9255W electrical characteristics canh, canl recessive output voltage sleep wup sub-mode, selective sleep sub-mode v canl_h -0.1 ? 0.1 v no load; p_10.4.10 canh, canl recessive output voltage difference sleep wup sub-mode, selective sleep sub-mode v diff_slp -0.2 ? 0.2 v no load; p_10.4.11 driver symmetry v sym = v canh + v canl v sym 0.9 x v cc 1.0 x v cc 1.1 x v cc v split termination, r l = 60 ohm, c = 4.7 nf, 1)2) p_10.4.12 canh short ci rcuit current i canhsc 115 - -115 ma -3 =< v can =< 18 v, t< txd_to , v txd =0v; p_10.4.13 canl short circuit current i canlsc -115 - 115 ma -3 =< v can =< 18 v, t< txd_to , v txd =0v; p_10.4.14 leakage current canh i canh_ik -5 ? 5 a v cc = v io = v bat =0v 3) , 0v< v canh <5 v; v canh = v canl ; p_10.4.16 leakage current canl i canl_ik -5 ? 5 a v cc = v io = v bat =0v 3) , 0v< v canl <5 v; v canh = v canl ; p_10.4.17 1) not subject to production test, specified by design 2) v sym shall be observed during dominant and recessive state an d also during the transition from dominant to recessive and vice versa, while txd is stimulated by a square wave signal with a freque ncy of 62,5 khz (125 kbit/s), 125 khz (250 kbit/s), 250 khz (500 kbit/s), 500 khz (1 mbit /s), 1 mhz (2 mbit/s), 2,5 mhz (5 mbit/s) 3) additional requirement v io = v cc connected via 47 k ? to gnd table 13 transmitter (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 81 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.4.2 receiver table 14 receiver 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. bus receiver common mode range v cmr -12 ? 12 v ? p_10.4.18 differential range dominant normal-operating mode receive-only mode selective wake sub-mode v diff_d_range 0.9 ? 8.0 v v cmr bus biasing on, 1) ; p_10.4.21 differential range recessive normal-operating mode, receive-only mode selective wake sub-mode v diff_r_range -3.0 ? 0.5 v v cmr bus biasing on, 1) ; p_10.4.23 single ended internal resistance r can_h, r can_l 63750k ? -2v v can_h 7 v, -2v v can_l 7 v, recessive state; p_10.4.25 input resistance deviation between canh and canl ? r i -3.0 ? 3.0 % v can_l = v can_h = 5 v, v cc = 5 v, recessive state; p_10.4.26 differential internal resistance r diff 12 75 100 k ? -2v v can_h 7 v, -2v v can_l 7 v, recessive state; p_10.4.27 input capacitance canh, canl versus gnd c in ?- 40pf 1) 1) not subject to production test, specified by design. p_10.4.28 differential input capacitance c indiff ?- 20pf 1) p_10.4.29
data sheet 82 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.4.3 dynamic transceiver parameter table 15 propagation delay 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. propagation delay characteristic propagation delay, txd to rxd t loop 80 160 255 ns c l = 100 pf, c rxd =15pf; (see figure 48 ) p_10.4.30 propagation delay, increased load, txd to rxd t loop_150 80 ? 330 ns c l = 100 pf, c rxd =15pf, r l = 150 ? ; (see figure 48 ) p_10.4.31 propagation delay, txd to bus (?low? to dominant) t d(l),t 30 85 140 ns c l = 100 pf, c rxd =15pf; (see figure 48 ) p_10.4.32 propagation delay, txd to bus (?high? to recessive) t d(h),t 30 90 140 ns c l = 100 pf, c rxd =15pf; (see figure 48 ) p_10.4.33 propagation delay, bus to rxd (dominant to ?low?) t d(l),r 30 75 140 ns c rxd =15pf; (see figure 48 ) p_10.4.34 propagation delay, bus to rxd (recessive to ?high?) t d(h),r 30 105 140 ns c rxd =15pf; (see figure 48 ) p_10.4.35
data sheet 83 rev. 1.02 2018-02-02 TLE9255W electrical characteristics table 16 can fd 4.75 v < v cc <5.25v; 3.0v< v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. can fd characteristics received recessive bit width at 2 mbit/s t bit(rxd)_2m 400 500 550 ns c l = 100 pf, c rxd =15pf, t bit = 500 ns,; (see figure 49 ); p_10.4.36 received recessive bit width at 5 mbit/s t bit(rxd)_5m 120 200 220 ns c l = 100 pf, c rxd =15pf, t bit = 200 ns; (see figure 49 ); p_10.4.37 transmitted recessive bit width at 2 mbit/s t bit(bus)_2m 435 500 530 ns c l = 100 pf, c rxd =15pf, t bit = 500 ns; (see figure 49 ); p_10.4.38 transmitted recessive bit width at 5 mbit/s t bit(bus)_5m 155 200 210 ns c l = 100 pf, c rxd =15pf, t bit = 200 ns; (see figure 49 ); p_10.4.39 receiver timing symmetry at 2mbit/s ? t rec_2m = t bit(rxd)_2m - t bit(bus)_2m ? t rec_2m -65 ? 40 ns c l = 100 pf, c rxd =15pf, t bit = 500 ns, (see figure 49 ); p_10.4.40 receiver timing symmetry at 5mbit/s ? t rec_5m = t bit(rxd)_5m - t bit(bus)_5m ? t rec_5m -45 ? 15 ns c l = 100 pf, c rxd =15pf, t bit = 200 ns, (see figure 49 ); p_10.4.41
data sheet 84 rev. 1.02 2018-02-02 TLE9255W electrical characteristics figure 47 test circuit for dynamic characteristics figure 48 timing diagrams for dynamic characteristics 100 nf 100 nf r l c l TLE9255W v cc canh canl gnd scn txd rxd v io mosi miso sclk wake inh v bat spi control 100 nf r inh c rxd v diff txd t t rxd 0.9 v t loop(h,l) t d(l),t t d(l),r 0.5 v t loop(l,h) t d(h),t t d(h),r 0.3 x v io 0.3 x v io 0.7 x v io 0.7 x v io t
data sheet 85 rev. 1.02 2018-02-02 TLE9255W electrical characteristics figure 49 recessive bit time for five domi nant bits followed by one recessive bit v diff txd t t rxd 0.9 v 5 x t bit 0.5 v t loop(h,l) t t bit t bit(bus) t loop(l,h) t bit(rxd) 0.3 x v io 0.7 x v io 0.7 x v io 0.3 x v io 0.3 x v io v diff = v canh - v canl
data sheet 86 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.5 selective wake parameter 10.5.1 general timings table 17 electrical characteristics: can fd 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. network propagation delay t net_prop_125 -400 ? 5450 ns baudrate = 125 kbit/sec; p_10.5.1 network propagation delay t net_prop_250 -200 ? 2675 ns baudrate = 250 kbit/sec; p_10.5.2 network propagation delay t net_prop_500 -100 ? 1350 ns baudrate = 500 kbit/sec; p_10.5.3 network propagation delay t net_prop_1000 -50 ? 550 ns baudrate = 1 mbit/sec; p_10.5.4
data sheet 87 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.5.2 can fd tolerance table 18 electrical characteristics: can fd 4.75 v < v cc <5.25v; 3.0v< v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. dominant signal which must be ignored and interpreted as a glitch t fd_glitch_4 0 ? 0.05 x t arbitratio n ratio 4, up to 2mbit/s; p_10.5.5 dominant signal which must be detected as a data bit after the fdf bit and before eof bit t fd_dom_4 t arbitratio n x 0.175 ?? ratio 4, up to 2mbit/s; p_10.5.7
data sheet 88 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.6 wake-up 10.6.1 general timings figure 50 inh wake-up delay time figure 51 bias reaction time table 19 general timings 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. inh wake-up delay time t wu_inh ? ? 30.0 s v bat = 14.0v, r inh = 100k ? ; see figure 50 p_10.6.1 bias reaction time t rw_bias ? ? 100 s v canl/h = 0.5 v; see figure 51 p_10.6.2 t inh pin 70% of v bat wake-up detected caused by wup, lwu or wuf t wu_inh v bat bias off bias on bus biasing t rw_bias wake-up detected caused by wup
data sheet 89 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.6.2 wup detection characteristics table 20 wup detection 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. differential range dominant low power modes v diff_d_slp_ra nge 1.05 ? 8.0 v v cmr , bus biasing off 1) ; p_10.6.3 differential range recessive low power modes v diff_r_slp_ra nge -3.0 ? 0.45 v v cmr , bus biasing off 1) ; 1) not subject to production test, specified by design. p_10.6.5 can activity filter time t filter 0.5 ? 1.8 s ? p_10.6.8 bus wake-up timeout t wake 0.8 ? 10.0 ms ? p_10.6.9
data sheet 90 rev. 1.02 2018-02-02 TLE9255W electrical characteristics 10.6.3 local wake-up 10.7 spi table 21 local wake-up 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. local wake-up detection threshold v wake_th 0.35 x v bat 0.5 x v bat 0.65 x v bat v5.5< v bat < 32v p_10.6.10 local wake-up detection threshold v wake_th 0.25 x v bat 0.5 x v bat 0.75 x v bat v32< v bat < 40v p_10.6.15 ?high? level input current i wake_h -20 - - a p_10.6.12 ?low? level input current i wake_l --20a p_10.6.13 wake pulse filter time t wake_filter 10 - 50 s figure 18 and figure 19 p_10.6.14 table 22 spi 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. spi clock frequency spi clock frequency f spi 0.01 ? 4.0 mhz ? p_10.7.1 logic input mosi, sclk ?high? level input voltage threshold v h -0.5 x v io 0.7 x v io v? p_10.7.2 ?low? level input voltage threshold v l 0.3 x v io 0.4 x v io -v? p_10.7.3 ?high? level input current i h 20 ? 220 a v mosi = v io , v sclk = v io , pull-down; p_10.7.5 ?low? level input current i l -2.0 ? 2.0 a v mosi =0v, v sclk = 0v; p_10.7.6 input capacitance c in ??10pf 1) p_10.7.7
data sheet 91 rev. 1.02 2018-02-02 TLE9255W electrical characteristics logic input csn ?high? level input voltage threshold v h -0.5 x v io 0.7 x v io v? p_10.7.21 ?low? level input voltage threshold v l 0.3 x v io 0.4 x v io -v? p_10.7.31 ?high? level input current i h -2.0 ? 2.0 a v csn = v io , pull-down; p_10.7.33 ?low? level input current i l -200 ? -20 a v csn =0v; p_10.7.34 input capacitance c in ??10pf 1) p_10.7.35 logic output: miso ?high? level output current i miso_h ?- -1.0ma v miso = v io -0.4v; p_10.7.8 ?low? level output current i miso_l 1- ?ma v miso =0.4v; p_10.7.9 rise time t miso_r ? - 80.0 ns 30% - 70% of v io , c miso = 100 pf; p_10.7.10 fall time t miso_f ? - 80.0 ns 70% - 30% of v io , c miso = 100 pf; p_10.7.11 difference of rise and fall time | t miso_r - t miso_f | ? - 10.0 ns c miso = 100 pf; p_10.7.12 ?tri-state? leakage current i miso_tri -10.0 ? 10.0 a 0 < v miso < v io ; p_10.7.13 ?tri-state? input capacitance c in_miso ??10pf 1) p_10.7.14 spi data timing 1) clock ?high? period t sclk_h 125 ? ? ns ? p_10.7.15 clock ?low? period t sclk_l 125 ? ? ns ? p_10.7.16 clock ?low? before csn ?low? t bef 125 ? ? ns ? p_10.7.17 csn setup time t lead_nm 1 ? ? s normal-operating mode, stand-by mode, receive- only mode; p_10.7.18 csn setup time t lead_sp 6.0 ? ? s selective wake sub-mode, selective sleep sub-mode, sleep wup mode; p_10.7.19 sclk setup time t lag 250 ? ? ns ? p_10.7.20 mosi setup time t mosi_su 25 ? ? ns ? p_10.7.22 table 22 spi (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max.
data sheet 92 rev. 1.02 2018-02-02 TLE9255W electrical characteristics figure 52 spi timings mosi hold time t mosi_ho 50 ? ? ns ? p_10.7.23 csn ?high? time t csn_h 3.0 ? ? s ? p_10.7.24 maximum signal rise time on spi inputs: mosi, sclk and csn t r_max ??50ns? p_10.7.25 maximum signal fall time on spi inputs: mosi, sclk and csn t f_max ??50ns? p_10.7.26 miso enable time t miso_en ? ? 120 ns ? p_10.7.27 miso enable time in sleep mode t miso_en_slp ??5.5s? p_10.7.36 miso disable time t miso_dis ??50ns? p_10.7.28 miso valid time t miso_val ? ? 100 ns ? p_10.7.29 csn timeout t csn_to 2.1 ? 4 ms ? p_10.7.30 1) not subject to production test, specified by design. table 22 spi (cont?d) 4.75 v < v cc < 5.25 v; 3.0 v < v io < 5.5 v; 5.5v < v bat < 40v; r l =60 ? ; -40 c < t j < 150 c; all voltages with respect to ground, positive curr ent flowing into pin (unless otherwise specified) parameter symbol values unit note or test condition number min. typ. max. csn 70% v io 30% v io sclk 70% v io 30% v io t bef t lead_nm or t lead_sl mosi 70% v io 30% v io not defined miso 70% v io 30% v io msb (data out) t miso_val msb (data in) t mosi_su t mosi_ho t spi_clk_h t spi_clk_l lsb (data out) lsb (data in) t csn_h t lag t miso_dis error t miso_en or t miso_en_slp
data sheet 93 rev. 1.02 2018-02-02 TLE9255W application information 11 application information 11.1 esd robustness acco rding to iec 61000-4-2 tests for esd robustness according to iec61000-4-2 ?gun test? (150 pf, 330 ? ) have been performed. the results and test conditions are available in a separate test report. table 23 esd robustness according to iec61000-4-2 performed test result unit remarks electrostatic discharge voltage at pin v bat , canh, canl and wake 1) versus gnd 1) 10 nf capacitor and 3.3 k ? resistor required (see figure 53 ). +10 kv 2) positive pulse 2) esd susceptibility ?esd gun? according to gift / ict pa per: ?emc evaluation of can transceivers, iec ts 62228?, section 4.3. (din en 61000-4-2) tested by external test facility (ibee zwickau, emc test report). electrostatic discharge voltage at pin v bat , canh, canl and wake 1) versus gnd -10 kv 2) negative pulse
data sheet 94 rev. 1.02 2018-02-02 TLE9255W application information 11.2 application example figure 53 application circuit example ecu design v bat TLE9255W v cc canh canl gnd scn txd rxd microcontroller e.g. aurix tc29x v cc out out in tle4476d gnd iq1 100 nf 100 nf 22 uf en q2 v io 22 uf 100 nf optional: common mode choke canh canl 120 ohm 120 ohm canh canl mosi miso sclk out out in wake inh v bat TLE9255W v cc canh canl gnd scn txd rxd 13 12 1 4 2 3 microcontroller e.g. aurix tc29x v cc gnd out out in tle4476d gnd iq1 100 nf 100 nf 22 uf en q2 v io 22 uf 100 nf 5 optional: common mode choke 11 mosi miso sclk out out in wake inh v bat 6 7 8 9 10 14 13 12 1 4 2 35 11 6 7 8 10 14 3.3k ohm 1k ohm 10 nf 10 nf 9 3.3k ohm 1k ohm 10 nf gnd
data sheet 95 rev. 1.02 2018-02-02 TLE9255W application information 11.3 voltage adaption to the microcontroller supply to adapt the digital input and output levels of the TLE9255W to the i/o levels of the micr ocontroller, connect the power supply pin v io to the microcontroller voltage supply (see figure 53 ). note: in case the digital supply voltage v io is not required in the application, connect the digital supply voltage v io to the transmitter supply v cc . 11.4 further application information ? please contact us for information regarding the pin fmea. ? for further information you may visit: www.infineon.com/automotive-transceiver
data sheet 96 rev. 1.02 2018-02-02 TLE9255W package outlines 12 package outlines figure 54 pg-dso-14 ?.08 ?.2 does not include plastic or metal protrusion of 0.15 max. per side index marking -0.06 1.27 +0.1 0.41 c 0.1 -0.2 8.75 1 14 7 1) a m 0.2 8 a 0.1 min. (1.5) c 14x 6 1.75 max. 4 1) -0.2 0.33 ?.25 0.64 0.2 +0.05 -0.01 x 45? max. 8? 1)
data sheet 97 rev. 1.02 2018-02-02 TLE9255W package outlines figure 55 pg-tson-14 green product (rohs compliant) to meet the world-wide customer requirements for en vironmentally friendly products and to be compliant with government regulations the device is available as a green product. green products are rohs-compliant (i.e pb-free finish on leads and suitable for pb -free soldering according to ipc/jedec j-std-020). for further info rmation on alternative pa ckages, please visit our website: http://www.infineon.com/packages . dimensions in mm
data sheet 98 rev. 1.02 2018-02-02 TLE9255W terminology dlc data length code lwu local wake up spi serial peripheral interface wuf wake-up frame wup wake-up pattern
data sheet 99 rev. 1.02 2018-02-02 TLE9255W revision history 13 revision history revision date changes 1.00 2016-09-15 data sheet rev. 1.0 created 1.01 2017-02-27 ? swk_active bit description changed in register swk_stat ? internal state transitions have higher priority than mode change spi commands ? t fd_glitch_10 and t fd_dom_10 removed ( chapter 10.5.2 ) 1.02 2018-02-02 ? esd immunity at canh, canl, wake and v bat versus to gnd set from +-8 kv to +-10 kv ? esd immunity at all other pins set from +-2kv to +-4 kv ? esd robustness according to iec 61000-4-2 changed form +-8 kv to +-10 kv ? tightening of limits for v bat and v cc supply current at receive-only mode (p_10.2.5) ? tightening of limits for v io supply current at normal -operating mode (p_10.2.4) ? tightening of limits for v cc supply current dominant bus signal at normal- operating mode (p_10.2.2) ? tightening of limits for v bat supply current at normal -operating mode (p_10.2.1) ? tightening of limits for v io supply current at rece ive-only mode (p_10.2.7) ? pin configuration for tson package added ( figure 2 ) ? test condition for the parameter abso lute current on can_l (p_10.04.14) compliant to iso 11898-2 (2016). ? test condition for the parameter abso lute current on can_h (p_10.04.13) compliant to iso 11898-2 (2016) ? test condition for the parameter driv er symmetry (p_10.04.12) compliant to iso 11898-2 (2016). ? test condition for the parameter input resistance deviation between canh and canl(p_10.04.26) compliant to iso 11898-2 (2016).
trademarks all referenced product or service names and trademarks are the proper ty of their respective owners. edition 2018-02-02 published by infineon technologies ag 81726 munich, germany ? 2018 infineon technologies ag. all rights reserved. do you have a question about any aspect of this document? email: erratum@infineon.com document reference z8f53542536 important notice the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("beschaffenheitsgarantie"). with respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. in addition, any information given in this document is subject to customer's comp liance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of infineon technologies in customer's applications. the data contained in this document is exclusively intended for technically trained staff. it is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements products may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. except as otherwise explicitly approved by infineon technologies in a written document signed by authorized representatives of infineon technologies, infineon technologies? products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.


▲Up To Search▲   

 
Price & Availability of TLE9255W

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X