Part Number Hot Search : 
1N4002RL HEF40 GP2S22 1616A STK084G PWR160 T312023 1G4B1
Product Description
Full Text Search
 

To Download TS4657IQT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  march 2009 rev 1 1/26 26 ts4657 single supply stereo digital audio line driver with 2.2 vrms capless outputs features single 3.0 to 5.5 v supply for dac and line driver audio line output: 2.2 vrms for all v cc range 16- to 24-bit audio data format stereo dac, 32 to 48 khz sample rate i2s, right- or left-justified compatible digital audio interface 95 db snr a-weighted at 48 khz, v cc =5 v 7.4 ma current consumption at v cc =3.0v, full operation internal negative power supply to ensure ground-referenced, capless outputs no external capacitor needed for the negative power supply generation integrated structure to suppress pop and click noise available in thin qfn20 4 mm x 4 mm package applications digital set-top boxes dvd players digital tvs notebooks portable audio equipment sound cards description the ts4657 is a stereo dac that integrates a high-performance audio line driver capable of generating a 2.2 vrms output level from a single 3.0 to 5.5 v supply. one single supply is sufficient for the digital and analog parts of the circuit, thus eliminating the need for external regulators. the ts4657 is a low-power consumption device. it features only 22 mw power dissipation at a 3.0 v power supply in full operation. a 16-bit multi-bit sigma delta dac is used, operating at 256xfs with oversampling digital interpolation filters. the digital audio data can be 16-to 24-bit long and sample rates from 32 to 48 khz are supported. the output stage signal is ground-referenced by using an internal self-generated negative power supply, and as such external bulky output coupling capacitors are not necessary. the ts4657 is packaged in a small 4 x 4 mm qfn20 package, ideal for portable applications. pin connections (top view) gndd nc nc lrclk sdat bclk mclk format2 format1 stdby gnda gnda vrega vcca voutl voutr vccd vregd gnda gndd 1 5 20 16 15 11 10 6 gndd nc nc lrclk sdat bclk mclk format2 format1 stdby stdby gnda gnda vrega vcca voutl voutr vccd vregd gnda gndd 1 5 1 1 5 5 20 16 20 20 16 15 11 15 15 11 11 10 6 10 10 6 6 www.st.com
contents ts4657 2/26 contents 1 block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 dac and output stage performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3.1 terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4.1 dac digital filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5 electrical measurement curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 master clock and data clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 digital audio input format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 power-management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 recommended power-up and power-down sequences . . . . . . . . . . . . . . 21 4.3.1 power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 qfn20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ts4657 block diagram and pin description 3/26 1 block diagram and pin description figure 1. block diagram table 1. pin description pin name pin i/o function gndd 1 supply digital ground, connected to gnd nc 2 non-connected pin this pin must remain non-connected. lrclk 3 digital input channel select clock input sdat 4 digital input serial audio data input bclk 5 digital input bit clock input mclk 6 digital input master clock input format2 7 digital input selection of the digital data audio format. format1 8 digital input selection of the digital data audio format. stdby 9 digital input input for standby pin. stdby =vil: the ts4657 is in shutdown mode. gnda 10 supply analog ground, connect to gnd. voutr 11 analog output right channel analog output voutl 12 analog output left channel analog output vcca 13 supply main analog power supply, connected to vccd vrega 14 supply decoupling pin for the analog part gnda 15 supply analog ground, connected to gnd gnda 16 supply analog ground, connect to gnd gndd 17 supply digital ground, connected to gnd vregd 18 supply decoupling pin for the digital part vccd 19 supply main digital power supply. connect to vcca nc 20 non-connected pin this pin must remain non-connected. control interface bclk lrclk sdat digital filters dac dac digital audio interface vcca vrega gnda mclk voutr voutl format2 vregd gndd stdby power management unit format1 vccd control interface bclk lrclk sdat digital filters dac dac digital audio interface vcca vrega gnda mclk voutr voutl format2 vregd gndd stdby power management unit format1 vccd
block diagram and pin description ts4657 4/26 figure 2. typical application schematics figure 3. typical test schematics j8 smb j7 smb 1 2 3 jp1 1 2 3 jp2 1 2 3 jp3 vccd vcca j4 j3 j2 j1 c3 1uf c4 1uf r1 100k r2 100k r3 100k r4 100k c1 10uf/6v3 digital input user control 1 j5 1 j6 r5 820 r7 820 r6 10k r8 10k c6 2nf2 c7 2nf2 vccd vcca 3v to 5v5 gnd vcc format2 format1 /stdby out l out r lrclk sdat bclk mclk nc 20 nc 2 mclk 6 bclk 5 lrclk 3 sdat 4 format1 8 format2 7 gndd 1 vccd 19 /stdby 9 gnda 10 voutr 11 voutl 12 vcca 13 vrega 14 gnda 15 gnda 16 gndd 17 vregd 18 digital audio interface control interface digital filters and dacs epad ic1 ts4657 c5 1uf c2 1uf vccd optional j8 smb j7 smb 1 2 3 jp1 1 2 3 jp2 1 2 3 jp3 vccd vcca j4 j3 j2 j1 c3 1uf c4 1uf r1 100k r2 100k r3 100k r4 100k c1 10uf/6v3 digital input 1 j5 1 j6 vccd vcca gnd vcc format2 format1 /stdby out l out r lrclk sdat bclk mclk nc 20 nc 2 mclk 6 bclk 5 lrclk 3 sdat 4 format1 8 format2 7 gndd 1 vccd 19 /stdby 9 gnda 10 voutr 11 voutl 12 vcca 13 vrega 14 gnda 15 gnda 16 gndd 17 vregd 18 digital audio interface control interface digital filters and dacs epad ic1 ts4657 c5 1uf c2 1uf vccd
ts4657 absolute maximum ratings 5/26 2 absolute maximum ratings table 2. key parameters and th eir absolute maximum ratings symbol parameter value unit v cc supply voltage (1) 5.5 v v i digital input voltage mclk, bclk, lrclk, sdat, format1, format2, stdby gnd to v cc v t oper operating free air temperature range -40 to + 85 c t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient 100 c/w esd human body model 2 kv esd machine model 200 v latch-up immunity class a lead temperature (soldering, 10 secs) 260 c 1. all voltage values are measured with respect to ground.
electrical characteristics ts4657 6/26 3 electrical characteristics 3.1 power characteristics 3.2 package thermal characteristics table 3. vcc = 3.3 v t = 25 c (unless otherwise specified) symbol parameter min. typ. max. unit v cc power supply 3.0 5.5 v i cc total supply current. full operation, r l =10k , vstdby 2.0 v v cc =3.0v v cc =5.0v 7.4 8 9.5 9.8 ma i ccstby standby current consumption. v cc = 3 v to v cc =5.5v vstdby = 0 v vstdby = 0.8 v 25 50 1000 2000 na table 4. operating conditions symbol parameter min. typ. max. unit r thja thermal resistance junction to ambient for qfn20 (1) 1. with heat sink surface = 125 mm 2 . 40 c/w
ts4657 electrical characteristics 7/26 3.3 dac and output stage performances table 5. v cc = 3.0 v to vcc = 5.5 v, rload = 10 k cload = 100 pf, t = 25 c (unless otherwise specified) symbol parameter min. typ. max. unit operating conditions - audio data input format 16 24 bits fs sampling frequency 32 48 khz r l load resistor 5 10 k c l load capacitance 100 150 pf digital input characteristics vil low-level input voltage 0.8 v vih high-level input voltage 2 v dynamic parameters voutrms full-scale output voltage swing v in at 0 dbfs; r l r l min; c l =100 pf 2.1 2.2 vrms table 6. v cc = 3.3 v, rload = 10 k cload = 100 pf, t = 25 c (unless otherwise specified) symbol parameter min. typ. max. unit dynamic parameters dr dynamic range. a-weighted 16-bit data; v in at -60 dbfs, f s =48khz, f in = 1 khz 88 93 db snr signal-to-noise ratio, f s =48khz, f in = 1 khz, referred to output v in at -6 dbfs; a-weighted, 18-bit data input v in at -6 dbfs; unweighted, 18-bit data input v in at 0 dbfs; a-weighted, 16-bit data input 89 87 87 94.5 92.5 93 db thd+n total harmonic distortion and noise. fin = 1 khz v in at -20 dbfs, 18-bit data input v in at -6 dbfs, 18-bit data input v in at 0 dbfs, 16-bit data input 74 72 82 81 db psrr power supply rejection ratio, vripple = 200 mvpp f= 217 hz f= 1 khz 20 hz < f < 20 khz 80 71 46 db lriso channel separation. 1 khz, v in at 0 dbfs 100 db v oo output offset voltage -20 20 mv gain channel balance -0.2 0.01 0.2 db t wu wake-up time 4.5 ms
electrical characteristics ts4657 8/26 3.3.1 terminology snr: signal-to-noise ratio is expressed in db. the theoretical formula is: where v noise is the integrated noise from 20 hz to 20 khz and vh 1 is the fundamental of the signal. for unweighted measurements, the snr is given by: where v noise is the noise spectral density and u(f) is the unweighted filter transfer function (20 hz, 20 khz). for a-weighted measurements: where v noise is the noise spectral density and a(f) is the a-weighted filter transfer function. table 7. v cc =5v, rload=10k , cload = 100 pf, t = 25 c (unless otherwise specified) symbol parameter min. typ. max. unit dr dynamic range; a-weighted 16-bit data; measured at -60 dbfs, f s =48khz, f in = 1 khz 88 93 db snr signal-to-noise ratio, f s =48khz, f in = 1 khz, referred to output v in at -6 dbfs; a-weighted, 18-bit data input v in at -6 dbfs; unweighted, 18-bit data input v in at 0 dbfs; a-weighted, 16-bit data input 89 95 93 93 db thd+n total harmonic distortion and noise. fin = 1 khz v in at -20 dbfs v in at -6 dbfs v in at 0 dbfs 74 72 82.5 81.5 db psrr power supply rejection ratio, vripple = 200 mvpp f= 217 hz f= 1 khz 20 hz < f < 20 khz 80 73 48 db lriso channel separation. 1 khz, vin at 0 dbfs 100 db v oo output offset voltage -20 20 mv gain channel balance -0.2 0.01 0.2 db t wu wake-up time (1) 34.56ms 1. see timing diagram in application information. snr db 10 vh 1 2 v noise 2 ------------------- ?? ?? ?? log = snr db 10 vh 1 2 uf () v noise f () () 2 f d 20hz 20khz ---------------------------------------------------------------------- log = snr db a 10 vh 1 2 af () v noise f () () 2 f d 20hz 20khz ----------------------------------------------------------------------- log =
ts4657 electrical characteristics 9/26 thd+n: total harmonic distortion and noise-to sign al-ratio is expressed in db. it is given by: where vh i is the rms value of the harmonic components. sinad: signal and noise distortion is expressed in db. the equation is given by: dr: dynamic range is expressed in db, with the following equation: 3.4 digital filter characteristics thd n + db 10 vh i 2 i2 = k v noise 2 + v outrms 2 ------------------------------------------------ log = sinad db 10 v outrms 2 vh i 2 i2 = k v noise 2 + ------------------------------------------------ log = dr db 10 vh i 2 i1 = k v noise 2 ---------------------- log = table 8. v cc = 3.3 v t= 25 c (unless otherwise specified) symbol parameter min. typ. max. unit - passband edge (-3 db) 0.48fs - passband ripple f < 0.45 fs +/- 0.1 db - stopband attenuation f > 0.55 fs -50 db
electrical characteristics ts4657 10/26 3.4.1 dac digita l filter response figure 4. dac digital filter frequency response from 32 to 48 khz figure 5. dac digital filter transition band from 32 to 48 khz figure 6. dac digital filter ripple from 32 to 48 khz
ts4657 electrical characteristics 11/26 3.5 electrical measurement curves figure 7. crosstalk vs. frequency figure 8. crosstalk vs. frequency fs=32khz fs=44.1khz fs=48khz fs=44.1khz fs=32khz r l = 10k v cc = 5v v in = 0dbfs t amb = 25 c fs=48khz fs=32khz fs=44.1khz fs=48khz fs=44.1khz fs=32khz r l = 10k v cc = 3v v in = 0dbfs t amb = 25 c fs=48khz figure 9. frequency response figure 10. frequency response fs=44.1khz fs=32khz r l = 10k v cc = 5v v in = 0dbfs t amb = 25 c fs=48khz fs=44.1khz fs=32khz r l = 10k v cc = 3v v in = 0dbfs t amb = 25 c fs=48khz figure 11. current consumption vs. power supply voltage figure 12. current consumption vs. standby voltage fs=32khz serial bus = on (i2s) r l = 100k f in = 1khz v in = 0dbfs t amb = 25 c fs=48khz serial bus = off fs = 32khz f in = 1khz v in = 0dbfs r l = 100k t amb = 25 c fs = 48khz f in = 1khz v in = 0dbfs
electrical characteristics ts4657 12/26 figure 13. output swing vs. power supply voltage figure 14. power dissipation vs. frequency r l = 5k , 10k or 100k fs = 32khz, 44.1khz or 48khz f in = 1khz v in = 0dbfs t amb = 25 c v cc = 5v v cc = 3v3 r l = 10k f in = 1khz v in = 0dbfs t amb = 25 c v cc = 3v figure 15. power supply rejection ratio vs. frequency figure 16. power supply rejection ratio vs. frequency 100 1000 10000 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 20k 20 100 1000 10000 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 20k 20 figure 17. power supply rejection ratio vs. frequency figure 18. signal to noise ratio vs. input level 100 1000 10000 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 20k 20 a-weighted v cc = 3v r l = 5k fs = 32khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted
ts4657 electrical characteristics 13/26 figure 19. signal to noise ratio vs. input level figure 20. signal to noise ratio vs. input level a-weighted v cc = 3v r l = 5k fs = 32khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 3v r l = 5k fs = 48khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted figure 21. signal to noise ratio vs. input level figure 22. signal to noise ratio vs. input level a-weighted v cc = 3v r l = 5k fs = 48khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 5v r l = 5k fs = 32khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted figure 23. signal to noise ratio vs. input level figure 24. signal to noise ratio vs. input level a-weighted v cc = 5v r l = 5k fs = 32khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 5v r l = 5k fs = 48khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted
electrical characteristics ts4657 14/26 figure 25. signal to noise ratio vs. input level figure 26. signal to noise ratio vs. input level a-weighted v cc = 5v r l = 5k fs = 48khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 3v r l = 10k fs = 32khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted figure 27. signal to noise ratio vs. input level figure 28. signal to noise ratio vs. input level a-weighted v cc = 3v r l = 10k fs = 32khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 3v r l = 10k fs = 48khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted figure 29. signal to noise ratio vs. input level figure 30. signal to noise ratio vs. input level a-weighted v cc = 3v r l = 10k fs = 48khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 5v r l = 10k fs = 32khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted
ts4657 electrical characteristics 15/26 figure 31. signal to noise ratio vs. input level figure 32. signal to noise ratio vs. input level a-weighted v cc = 5v r l = 10k fs = 32khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted a-weighted v cc = 5v r l = 10k fs = 48khz input data = 16bits f in = 1khz lpf = 20khz t amb = 25 c unweighted figure 33. signal to noise ratio vs. input level figure 34. total harmonic distortion and noise vs. frequency a-weighted v cc = 5v r l = 10k fs = 48khz input data = 18bits f in = 1khz lpf = 20khz t amb = 25 c unweighted v cc = 3v r l = 10k fs = 32khz input data = 16bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20 figure 35. total harmonic distortion and noise vs. frequency figure 36. total harmonic distortion and noise vs. frequency v cc = 3v r l = 10k fs = 32khz input data = 18bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20 v cc = 3v r l = 10k fs = 48khz input data = 16bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20
electrical characteristics ts4657 16/26 figure 37. total harmonic distortion and noise vs. frequency figure 38. total harmonic distortion and noise vs. frequency v cc = 5v r l = 10k fs = 32khz input data = 16bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20 figure 39. total harmonic distortion and noise vs. frequency figure 40. total harmonic distortion and noise vs. frequency v cc = 5v r l = 10k fs = 32khz input data = 18bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20 v cc = 5v r l = 10k fs = 48khz input data = 16bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20 figure 41. total harmonic distortion and noise vs. frequency figure 42. total harmonic distortion and noise vs. input level v cc = 5v r l = 10k fs = 48khz input data = 18bits v in = -6dbfs unweighted lpf = 20khz t amb = 25 c 20k 20 v cc = 3v r l = 10k fs = 32khz input data = 16bits f in = 1khz unweighted lpf = 20khz t amb = 25 c
ts4657 electrical characteristics 17/26 figure 43. total harmonic distortion and noise vs. input level figure 44. total harmonic distortion and noise vs. input level v cc = 3v r l = 10k fs = 32khz input data = 18bits f in = 1khz unweighted lpf = 20khz t amb = 25 c v cc = 3v r l = 10k fs = 48khz input data = 16bits f in = 1khz unweighted lpf = 20khz t amb = 25 c figure 45. total harmonic distortion and noise vs. input level figure 46. total harmonic distortion and noise vs. input level v cc = 3v r l = 10k fs = 48khz input data = 18bits f in = 1khz unweighted lpf = 20khz t amb = 25 c v cc = 5v r l = 10k fs = 32khz input data = 16bits f in = 1khz unweighted lpf = 20khz t amb = 25 c figure 47. total harmonic distortion and noise vs. input level figure 48. total harmonic distortion and noise vs. input level v cc = 5v r l = 10k fs = 32khz input data = 18bits f in = 1khz unweighted lpf = 20khz t amb = 25 c v cc = 5v r l = 10k fs = 48khz input data = 16bits f in = 1khz unweighted lpf = 20khz t amb = 25 c
electrical characteristics ts4657 18/26 figure 49. total harmonic distortion and noise vs. input level v cc = 5v r l = 10k fs = 48khz input data = 18bits f in = 1khz unweighted lpf = 20khz t amb = 25 c
ts4657 application information 19/26 4 application information 4.1 serial audio interface 4.1.1 master clock and data clocks three external clock signals are applied to the ts4657. the mclk is the external master clock applied by the audio data processor. the lrclk is the channel frequency, also called left/right clock, at which the digital words for each channel are input to the device. the lrclk clock is the sample rate of the audio data. the ratio mclk/lrclk must be an integer as shown in ta b l e 9 . the bclk is the bit clock and represents the clock at which the audio data is serially shifted into the audio port. bclk is linked to lrclk. the minimum required bclk frequency is twice the audio sample rate times the number of bits in each audio word. refer to ta bl e 1 0 for the bclk/lrclk ratio. mclk, lrclk and bclk must be synchronous clock signals. 4.1.2 digital audio input format the ts4657 receives serial digital audio data through a 3-wire interface. sdat is the serial audio data input. the data is entered msb first and is a two?s complement. the data can be i 2 s, right or left justified. the data format is chosen with the control pins format1 and format2 as detailed in ta b l e 1 0 . figure 50 on page 20 summarizes the implementation of the audio data format. table 9. audio data sampling rates lrclk (khz) mclk (mhz) 256x 32 8.192 44.1 11.2896 48 12.288 table 10. digital audio data formats supported by the ts4657 format2 format1 data format bclk/lrclk ratio min max 00 right-justified, 16-bit data data valid on rising edge of bclk 32 256 01 right-justified, 24-bit data data valid on rising edge of bclk 48 256 10 left-justified, 16-bit up to 24-bit data data valid on rising edge of bclk 2 x number of bits of data 256 11 i2s, 16-bit up to 24-bit data data valid on rising edge of bclk 2 x number of bits of data 256
application information ts4657 20/26 figure 50. audio interface formats managed by the ts4657 4.2 power-management unit the ts4657 utilizes a power-m anagement unit to supply its internal structures. a self-generated negative supply enables the drivers to be powered from positive and negative supplies, therefore increasing the amplitude of the output signal. this internal negative supply switches at a higher frequency than traditional architectures, derived from the master clock mclk. this structure uses an original design that enables one to suppress the flying or floating capacitors. therefore, only four small ceramic x5r 10v 1-f decoupling capacitors are necessary for vcca/vccd and vrega/vregd. furthermore, the self-generated negative supply allows the amplifier outputs to be centered around zero, thus the bulky output coupling capacitors can be removed. lrclk sdat bclk left right 0 1 15 14 msb lsb 16 1 14 msb lsb 16-bit word right data 015 16-bit right justified data format: pin format1 = vil, format2 = vil lrclk sdat bclk left right 0 1 n-1 n-2 msb lsb n-bit word left data 1 n-2 msb lsb n-bit word right data 0n-1 up to 24-bit left-justified data fo rmat: pin format1 = vil, format2 = vih -bit word left data lrclk sdat bclk left right 0 1 n-1 n-2 msb lsb 32-bit word left data 1 n-2 msb lsb 32-bit word right data 0 n-1 up to 24-bit i2s data format: pin format1 = vih, format2 = vih lrclk sdat bclk left right 0 1 n-1 n-2 msb lsb n-bit word left data 1 n-2 msb lsb n-bit word right data 0n-1 24-bit right-justified data forma t: pin format1 = vih, format2 = vil
ts4657 application information 21/26 4.3 recommended power-up and power-down sequences 4.3.1 power-up it is recommended to power-up the ts4657 prior to applying logical data in order to ensure correct esd protection biasing. when the stdby pin is in a low state (vil,) the circuit is in standby; when the pin is in a high state (vih), the circuit is enabled. an in ternal pull-down resistor will force the stdby pin to ground if no signal is applied to this pin. the standby signal can be delayed from the power-up phase but simultaneous stimuli are possible, as shown in figure 51 . figure 51. standby signal delayed from power-up phase the wake-up time (twu) of the ts4657 is defined as the time between the settlement of the digital input signals stdby, mclk, bclk, lrclk, sdat and 80% of the voutr/voutl amplitude. the twu of the circuit is typically 4.5 ms. if all digital input signals are settled and an on/off sequence is applied quickly on the stdby pin, the internal capacitors remain charged and the twu is around 1 ms. 4.3.2 power-down as described in section 4.2 , the mclk is internally used to supply some blocks. it is therefore recommended not to switch off the mclk during normal operation. to properly power-down the device, mclk, bclk and lrclk should be switched off after the stdby signal. the power-down time is very short and can be considered as zero. vcca vccd stdby mclk bclk lrclk t=0s min twu 80% sdat voutr voutl t=0s min t=0s min
package information ts4657 22/26 5 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com. ecopack ? is an st trademark.
ts4657 package information 23/26 5.1 qfn20 p ackage information figure 52. qfn20 package mechanical drawing table 11. qfn20 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.80 0.90 1.00 0.031 0.035 0.040 a1 0.02 0.05 0.0008 0.002 a2 0.65 1.00 0.026 0.040 a3 0.25 0.010 b 0.18 0.23 0.30 0.007 0.009 0.012 d 3.85 4.00 4.15 0.152 0.157 0.163 d2 1.95 2.10 2.25 0.077 0.083 0.089 e 3.85 4.00 4.15 0.152 0.157 0.163 e2 1.95 2.10 2.25 0.077 0.083 0.089 e 0.45 0.50 0.55 0.018 0.020 0.022 l 0.35 0.55 0.75 0.014 0.022 0.030 ddd 0.08 0.003
ordering information ts4657 24/26 6 ordering information table 12. order codes order code temperature range package packing marking TS4657IQT -40c, +85c qfn20 tape & reel k657
ts4657 revision history 25/26 7 revision history table 13. document revision history date revision changes 02-mar-2009 1 initial release.
ts4657 26/26 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2009 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TS4657IQT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X