Part Number Hot Search : 
SG6741A 74101 M3568M MT8804 SLD323XT BZX55B43 SM448X ASI10630
Product Description
Full Text Search
 

To Download APT100GT120JRDQ4 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  symbol parameter ratings unit v ces collector-emitter voltage 1200 volts v ge gate-emitter voltage 20 i c1 continuous collector current @ t c = 25c 123 amps i c2 continuous collector current @ t c = 100c 67 i cm pulsed collector current 1 200 ssoa switching safe operating area @ t j = 150c 200a @ 1200v p d total power dissipation 570 watts t j , t stg operating and storage junction temperature range -55 to 150 c t l max. lead temp. for soldering: 0.063? from case for 10 sec. 300 maximum ratings all ratings: t c = 25c unless otherwise speci ed. symbol characteristic / test conditions min typ max unit v (br)ces collector-emitter breakdown voltage (v ge = 0v, i c = 5ma) 1200 - - volts v ge(th) gate threshold voltage (v ce = v ge , i c = 4ma, t j = 25c) 4.5 5.5 6.5 v ce(on) collector emitter on voltage (v ge = 15v, i c = 100a, t j = 25c) 2.7 3.2 3.7 collector emitter on voltage (v ge = 15v, i c = 100a, t j = 125c) - 4.0 - i ces collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 - - 200 a collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 - - tbd i ges gate-emitter leakage current (v ge = 20v) - - 600 na r g(int) integrated gate resistor -5- static electrical characteristics caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed . microsemi website - http://www.microsemi.com 052-6290 rev b 11-2007 APT100GT120JRDQ4 1200v, 100a, v ce(on) = 3.2v typical thunderbolt igbt ? the thunderbolt igbt ? is a new generation of high voltage power igbts. using non-punch-through technology, the thunderbolt igbt ? offers superior rugged- ness and ultrafast switching speed. unless stated otherwise, microsemi discrete igbts contain a single igbt die. this device is made with two parallel igbt die. it is intended for switch-mode operation. it is not suitable for linear mode operation. s o t - 2 2 7 isotop ? file # e145592 "ul recognized" g e e c features ? low forward voltage drop ? low tail current ? integrated gate resistor low emi, high reliability ? rohs compliant ? rbsoa and scsoa rated ? high frequency switching to 50khz ? ultra low leakage current
052-6290 rev b 11-2007 dynamic characteristic APT100GT120JRDQ4 symbol characteristic test conditions min typ max unit c ies input capacitance v ge = 0v, v ce = 25v f = 1mhz - 6700 - pf c oes output capacitance - 6530 - c res reverse transfer capacitance - 4380 - v gep gate-to-emitter plateau voltage gate charge v ge = 15v v ce = 600v i c = 100a - 10.0 - v q g total gate charge - 685 - nc q ge gate-emitter charge -75 - q gc gate-collector charge - 400 - ssoa switching safe operating area t j = 150c, r g = 1.0 7 , v ge = 15v, l = 100 h, v ce = 1200v 150 a t d(on) turn-on delay time inductive switching (25c) v cc = 800v v ge = 15v i c = 100a r g = 4.7 t j = +25c -50 - ns t r current rise time - 100 - t d(off) turn-off delay time - 630 - t f current fall time -36 - e on1 turn-on switching energy 4 - tbd - j e on2 turn-on switching energy 5 - 17600 - e off turn-off switching energy 6 - 7240 - t d(on) turn-on delay time inductive switching (125c) v cc = 800v v ge = 15v i c = 100a r g = 4.7 t j = 125c -50 - ns t r current rise time - 100 - t d(off) turn-off delay time - 710 - t f current fall time -37 - e on1 turn-on switching energy 4 - tbd - j e on2 turn-on switching energy 5 - 22380 - e off turn-off switching energy 6 - 10950 - symbol characteristic / test conditions min typ max unit r jc junction to case (igbt) - - 0.22 c/w r jc junction to case (diode) - - 0.56 w t package weight - 29.2 - g v isolation rms voltage (50-60hz sinusoidal waveform from terminals to mounting base for 1 min.) 2500 - - volts 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages. 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to z a the igbt turn-on loss. tested in inductive switching test circuit shown in gure 21, but with a silicon carbide diode. 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switchin g loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance not including gate driver impedance. thermal and mechanical characteristics microsemi reserves the right to change, without notice, the speci cations and information contained herein.
052-6290 rev b 11-2007 typical performance curves APT100GT120JRDQ4 0 2 4 6 8 10 12 14 16 0 100 200 300 400 500 600 700 0 50 100 150 200 250 0 5 10 15 20 25 30 0 25 50 75 100 125 150 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 25 50 75 100 125 150 0 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 0 25 50 75 100 125 150 10 12 14 8 6 4 2 0 250 s pulse test<0.5 % duty cycle t j = 25c. 250 s pulse test <0.5 % duty cycle v ge = 15v. 250 s pulse test <0.5 % duty cycle i c = 50a i c = 100a i c = 200a i c = 50a i c = 100a i c = 200a 13v 9v 12v 8v 7v 15v i c = 100a t j = 25c v ce = 960v v ce = 600v v ce = 240v t j = 25c t j = -55c v ge = 15v t j = 150c v ce , collector-to-emitter voltage (v) figure 1, output characteristics (t j = 25c) i c , collector current (a) t j = 25c t j = 125c v ce , collector-to-emitter voltage (v) figure 2, output characteristics (t j = 25c) i c , collector current (a) 11v 10v t j = 125c v ge , gate-to-emitter voltage (v) figure 3, transfer characteristics i c , collector current (a) v ge , gate-to-emitter voltage (v) figure 5, on state voltage vs gate-to-emitter voltage v ce , collector-to-emitter voltage (v) gate charge (nc) figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 6, on state voltage vs junction temperature v ce , collector-to-emitter voltage (v) t c , case temperature (c) figure 8, dc collector current vs case temperature i c , dc collector current (a) 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 -.50 -.25 0 25 50 75 100 125 150 t j , junction temperature figure 7, threshold voltage vs junction temperature v gs(th) , threshold voltage (normalized) 0 20 40 60 80 100 120 25 50 75 100 125 150
052-6290 rev b 11-2007 typical performance curves APT100GT120JRDQ4 0 10000 20000 30000 40000 50000 60000 70000 80000 0 25 50 75 100 125 0 20000 40000 60000 80000 100000 120000 140000 160000 0 4 8 12 16 20 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 40 80 120 160 200 0 10000 20000 30000 40000 50000 60000 70000 80000 0 40 80 120 160 200 0 20 40 60 80 100 120 0 40 80 120 160 200 0 50 100 150 200 250 300 350 0 40 80 120 160 200 0 100 200 300 400 500 600 700 800 900 0 40 80 120 160 200 0 10 20 30 40 50 60 70 80 0 40 80 120 160 200 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 4.7 l = 100 h v ce = 800v v ge = +15v r g = 4.7 v ce = 800v t j = 25c , or 125c r g = 4.7 l = 100 h v ge = 15v v ce = 800v v ge = +15v r g = 4.7 v ce = 800v v ge = +15v r g = 4.7 r g = 4.7 , l = 100 h, v ce = 800v t j = 125c t j = 25c t j = 125c t j = 25c r g = 4.7 , l = 100 h, v ce = 800v t j = 25 or 125c,v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v e on2, 200a e off, 200a e on2, 100a e off, 100a e on2, 50a e off, 50a v ce = 800v v ge = +15v t j = 125c e on2, 200a e off, 200a e on2, 100a e off, 100a e on2, 50a e off, 50a i ce , collector-to-emitter current (a) figure 9, turn-on delay time vs collector current t d(on) , turn-on delay time (ns) i ce , collector-to-emitter current (a) figure 10, turn-off delay time vs collector current t d(off) , turn-off delay time (ns) i ce , collector-to-emitter current (a) figure 11, current rise time vs collector current t r , rise time (ns) i ce , collector-to-emitter current (a) figure 12, current fall time vs collector current t r , fall time (ns) i ce , collector-to-emitter current (a) figure 13, turn-on energy loss vs collector current e on2 , turn on energy loss ( j) i ce , collector-to-emitter current (a) figure 14, turn-off energy loss vs collector current e off , turn off energy loss ( j) r g , gate resistance (ohms) figure 15, switching energy losses vs gate resistance switching energy losses ( j) t j , junction temperature (c) figure 16, switching energy losses vs junction temperature switching energy losses ( j)
0 0.05 0. 1 0.15 0. 2 0.25 10 -4 10 -3 10 -2 10 -1 0.1 1 10 0 50 100 150 200 250 0 200 400 600 800 1000 1200 1400 10 100 1000 10000 0 100 200 300 400 500 600 700 800 900 typical performance curves APT100GT120JRDQ4 052-6290 rev b 11-2007 figure 19b, transient thermal impedance model dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext 0 10 20 30 40 0 10 20 30 40 50 60 70 80 90 100 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 % v ce = 800v r g = 4.7 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c oes c res c ies peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 75c 100c v ce , collector-to-emitter voltage (volts) figure 17, capacitance vs collector-to-emitter voltage c, capacitance (pf) v ce , collector-to-emitter voltage figure 18, minimum switching safe operating area i c , collector current (a) .045 .0135 .039 .034 .0618 17.42
052-6290 rev b 11-2007 APT100GT120JRDQ4 i c a d.u.t. v ce v cc apt100dq120 figure 21, inductive switching test circuit figure 22, turn-on switching waveforms and de nitions t j = 125c collector current collector voltage gate voltage 5% 10% t d(on) 90% 10% t r 5% switching energy figure 23, turn-off switching waveforms and de nitions t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% a -46.0ns 780.4v b 422ns 34.13v ? 468ns ? 746.3v a -226ns 97.34v b 928ns 0.000v ? 1.15 s ? 97.34v
typical performance curves APT100GT120JRDQ4 052-6290 rev b 11-2007 static electrical characteristics dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci? ed. ultrafast soft recovery anti-parallel diode symbol characteristic / test conditions APT100GT120JRDQ4 unit i f(av) maximum average forward current (t c = 88c, duty cycle = 0.5) 60 amps i f(rms) rms forward current (square wave, 50% duty) 73 i fsm non-repetitive forward surge current (t j = 45c, 8.3 ms) 540 symbol characteristic / test conditions min type max unit v f forward voltage i f = 75a 2.8 volts i f = 150a 3.48 i f = 75a, t j = 125c 2.17 symbol characteristic test conditions min typ max unit t rr reverse recovery time i f = 1a, di f /dt = -100a/ s , v r = 30v, t j = 25 c - 60 - ns t rr reverse recovery time i f = 60a, di f /dt = -200a/ s v r = 800v, t c = 25 c - 265 - q rr reverse recovery charge - 560 - nc i rrm maximum reverse recovery current - 5 - amps t rr reverse recovery time i f = 60a, di f /dt = -200a/ s v r = 800v, t c = 125 c - 350 -ns q rr reverse recovery charge - 2890 - nc i rrm maximum reverse recovery current - 13 - amps t rr reverse recovery time i f = 60a, di f /dt = -1000a/ s v r = 800v, t c = 125 c - 150 - ns q rr reverse recovery charge - 4720 -nc i rrm maximum reverse recovery current - 40 - amps 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration z jc , thermal impedance (c/w) 0.60 0.50 0.40 0.30 0.20 0.10 0 0.5 single pulse 0.1 0.3 0.7 0.05 figure 24b, transient thermal impedance model peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 0.148 0.238 0.174 0.006 0.0910 0.524 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext
052-6290 rev b 11-2007 typical perfromance curves a pt100gt120jrdq4 400 350 300 250 200 150 100 50 0 50 45 40 35 30 25 20 15 10 5 0 duty cycle = 0.5 t j = 175 c 90 80 70 60 50 40 30 20 10 0 t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average forward current vs. casetempe rature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage 200 180 160 140 120 100 80 60 40 20 0 7000 6000 5000 4000 3000 2000 1000 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of ch ange -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery current vs. current rate of c hange q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 125 c v r = 800v t j = 125 c v r = 800v t j = 125 c v r = 800v t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 1 2 3 4 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 30a 60a 120a 120a 30a 60a t rr q rr q rr t rr i rrm 1.2 1.0 0.8 0.6 0.4 0.2 0.0 350 300 250 200 150 100 50 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 120a 60a 30a
microsemi?s products are covered by one or more of u.s. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,5 03,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 and foreign patents. us and foreign patents pending. all rights res erved. apt100gt120jrdq2 052-6290 rev b 11-2007 sot-227 (isotop ? ) package outline 31.5 (1.240) 31.7 (1.248) dimensions in millimeters and (inches ) 7.8 (.307) 8.2 (.322) 30.1 (1.185) 30.3 (1.193) 38.0 (1.496) 38.2 (1.504) 14.9 (.587) 15.1 (.594) 11.8 (.463) 12.2 (.480) 8.9 (.350) 9.6 (.378) hex nut m4 (4 places) 0.75 (.030) 0.85 (.033) 12.6 (.496) 12.8 (.504) 25.2 (0.992) 25.4 (1.000) 1.95 (.077) 2.14 (.084) * emitter/anode collector/cathode gate * r = 4.0 (.157) (2 places) 4.0 (.157) 4.2 (.165) (2 places) w=4.1 (.161) w=4.3 (.169) h=4.8 (.187) h=4.9 (.193) (4 places) 3.3 (.129) 3.6 (.143) * emitter/anode emitter/anode terminals are shorted internally. current handling capability is equal for either emitter/anode terminal. apt10035lll 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform figure 32, diode test circuit figure 33, diode reverse recovery waveform and de nitions


▲Up To Search▲   

 
Price & Availability of APT100GT120JRDQ4

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X