![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IRG4BC10SDPBF 12/23/03 www.irf.com 1 insulated gate bipolar transistor with ultrafast soft recovery diode features e g n-channel c = standard speed copack igbt ? extremely low voltage drop 1.1vtyp. @ 2a ? s-series: minimizes power dissipation at up to 3 khz pwm frequency in inverter drives, up to 4 khz in brushless dc drives. ? very tight vce(on) distribution ? igbt co-packaged with hexfred tm ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations ? industry standard to-220ab package benefits ? generation 4 igbts offer highest efficiencies available ? igbts optimized for specific application conditions ? hexfred diodes optimized for performance with igbts . minimized recovery characteristics require less/no snubbing ? lower losses than mosfet's conduction and diode losses t o -22 0 ab parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 14 i c @ t c = 100c continuous collector current 8.0 i cm pulsed collector current 18 a i lm clamped inductive load current 18 i f @ t c = 100c diode continuous forward current 4.0 i fm diode maximum forward current 18 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 38 p d @ t c = 100c maximum power dissipation 15 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 3.3 r jc junction-to-case - diode ??? ??? 7.0 c/w r cs case-to-sink, flat, greased surface ??? 0.50 ??? r ja junction-to-ambient, typical socket mount ??? ??? 80 wt weight ??? 2.0(0.07) ??? g (oz) thermal resistance pd -94904 ? lead-free IRG4BC10SDPBF 2 www.irf.com switching characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 ? ? v v ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ? 0.64 ? v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ? 1.58 1.7 i c = 8.0a v ge = 15v ? 2.05 ? v i c = 14.0a see fig. 2, 5 ? 1.68 ? i c = 8.0a, t j = 150c v ge(th) gate threshold voltage 3.0 ? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ? -9.5 ? mv/c v ce = v ge , i c = 250a g fe forward transconductance 3.65 5.48 ? s v ce = 100v, i c =8.0a i ces zero gate voltage collector current ? ? 250 a v ge = 0v, v ce = 600v ? ? 1000 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ? 1.5 1.8 v i c =4.0a see fig. 13 ? 1.4 1.7 i c =4.0a, t j = 150c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) details of note through are on the last page q g total gate charge (turn-on) ? 15 22 i c = 8.0a qge gate - emitter charge (turn-on) ? 2.42 3.6 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ? 6.53 9.8 v ge = 15v t d(on) turn-on delay time ? 76 ? t j = 25c t r rise time ? 32 ? ns i c = 8.0a, v cc = 480v t d(off) turn-off delay time ? 815 1200 v ge = 15v, r g = 100 ? t f fall time ? 720 1080 energy losses include "tail" and e on turn-on switching loss ? 0.31 ? diode reverse recovery. e off turn-off switching loss ? 3.28 ? mj see fig. 9, 10, 18 e ts total switching loss ? 3.60 10.9 e ts total switching loss ? 1.46 2.6 mj i c = 5.0a t d(on) turn-on delay time ? 70 ? t j = 150c, see fig. 10,11, 18 t r rise time ? 36 ? ns i c = 8.0a, v cc = 480v t d(off) turn-off delay time ? 890 ? v ge = 15v, r g = 100 ? t f fall time ? 890 ? energy losses include "tail" and e ts total switching loss ? 3.83 ? mj diode reverse recovery. l e internal emitter inductance ? 7.5 ? nh measured 5mm from package c ies input capacitance ? 280 ? v ge = 0v c oes output capacitance ? 30 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 4.0 ? ? = 1.0mhz t rr diode reverse recovery time ? 28 42 ns t j = 25c see fig. ?3857 t j = 125c 14 i f =4.0a i rr diode peak reverse recovery current ? 2.9 5.2 a t j = 25c see fig. ? 3.7 6.7 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ? 40 60 nc t j = 25c see fig. ? 70 105 t j = 125c 16 di/dt = 200a/s di (rec)m /dt diode peak rate of fall of recovery ? 280 ? a/s t j = 25c see fig. during t b ? 235 ? t j = 125c 17 parameter min. typ. max. units conditions IRG4BC10SDPBF www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 1 10 100 0.5 1.0 1.5 2.0 2.5 3.0 v , collector-to-emitter voltage (v) i , collector current (a) ce c v = 15v 80s pulse width ge t = 25 c j t = 150 c j 1 10 100 6 8 10 12 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5s pulse width cc t = 25 c j t = 150 c j 5s pulse width 0.1 1 10 100 0.0 2.0 4.0 6.0 8.0 10.0 f, frequency (khz) load current (a) 60% of rated voltage i ideal diodes square wave: for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j power dissipation = w 9.2 IRG4BC10SDPBF 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) -60 -40 -20 0 20 40 60 80 100 120 140 160 1.00 1.50 2.00 2.50 3.00 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 16 c i = a 8 c i = a 4 c 25 50 75 100 125 150 0 4 8 12 16 t , case temperature ( c) maximum dc collector current(a) c IRG4BC10SDPBF www.irf.com 5 0 20 40 60 80 100 3.30 3.35 3.40 3.45 3.50 3.55 3.60 r , gate resistance (ohm) total switching losses (mj) g v = 480v v = 15v t = 25 c i = 8a cc ge j c fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature r g , gate resistance ( ?) 0 5 10 15 20 0 5 10 15 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 8a cc c 1 10 100 0 100 200 300 400 500 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c ies c oes c res -60 -40 -20 0 20 40 60 80 100 120 140 160 0.1 1 10 100 t , junction temperature ( c ) total switching losses (mj) j r = ohm v = 15v v = 480v g ge cc i = a 16 c i = a 8 c i = a 4 c ? IRG4BC10SDPBF 6 www.irf.com 1 10 100 1 10 100 1000 v = 20v t = 125 c ge j o safe operating area v , collector-to-emitter voltage (v) i , collector current (a) ce c fig. 11 - typical switching losses vs. collector current fig. 12 - turn-off soa 0 4 8 12 16 20 0 3 6 9 12 15 i , collector current (a) total switching losses (mj) c r = 100 t = 150 c v = 480v v = 15v g j cc ge ? 0.1 1 10 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 fm forward voltage drop - v (v) t = 150c t = 125c t = 25c j j j ! !! "! IRG4BC10SDPBF www.irf.com 7 fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt, fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt 20 25 30 35 40 45 50 100 1000 f di /dt - (a/s) i = 8.0a i = 4.0a f f v = 200v t = 125c t = 25c r j j 0 2 4 6 8 10 12 14 100 1000 f i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j di /dt - (a/s) f f 0 40 80 120 160 200 100 1000 f di /dt - (a/s) i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f 100 1000 100 1000 f di /dt - (a/s) a i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f IRG4BC10SDPBF 8 www.irf.com same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery waveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge IRG4BC10SDPBF www.irf.com 9 vg gate signal device under tes t current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit figure 18e. macro waveforms for figure 18a's test circuit IRG4BC10SDPBF 10 www.irf.com notes: repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20) v cc =80%(v ces ), v ge =20v, l=10h, r g = 100w (figure 19) pulse width duty factor . pulse width single shot. lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.16 0) 3.55 (.14 0) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600 ) 14.84 (.584 ) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copack 1- gate 2- collector 3- emitter 4- collector example: in the assembly line "c" t his is an irf 1010 lot code 1789 as s e mb le d on ww 19, 1997 part number assembly lot code dat e code ye ar 7 = 1997 line c week 19 logo rectifier int er nat ional note: "p" in assembly line position indicates "lead-free" data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/03 |
Price & Availability of IRG4BC10SDPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |