![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.latticesemi.com 4-1 ds1011_01.6 february 2009 data sheet ds1011 ?2009 lattice semiconductor corp. all lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www .latticesemi.com/legal. all other brand or product names are trademarks or registered trademarks of their respective holders. the speci?ations and information h erein are subject to change without notice. features power-down mode i cc < 10? programmable threshold monitors simultaneously monitors up to six power supplies programmable analog trip points (1% step size; 192 steps) programmable glitch ?ter power-off detection (75mv) embedded programmable timers four independent timers 32? to 2 second intervals for timing sequences embedded pld for logical control rugged 16-macrocell cpld architecture 81 product terms / 28 inputs implements state machines and combinatorial functions digital i/o two dedicated digital inputs five programmable digital i/o pins two high-voltage fet drivers power supply ramp up/down control independently con?urable for fet control or digital output wide supply range (2.64v to 3.96v) in-system programmable through jtag industrial temperature range: -40? to +85? 32-pin qfns (q uad f lat-pack, n o lead, s aw- singulated) package, lead-free option 1 description lattice s power manager ii ISPPAC-POWR607 is a gen- eral-purpose power-supply monitor, reset generator and watchdog timer, incorporating both in-system program- mable logic and analog functions implemented in non- volatile e 2 cmos technology. the ISPPAC-POWR607 device provides six independent analog input channels to monitor power supply voltages. two general-purpose digital inputs are also provided for miscellaneous control functions. the ISPPAC-POWR607 provides up to seven open-drain digital outputs that can be used for controlling dc-dc 1. use 32-pin qfns package for all new designs. refer to pcn #13a-08 for 32-pin qfn package discontinuance. converters, low-drop-out regulators (ldos) and opto- couplers, as well as for supervisory and general-pur- pose logic interface functions. two of these outputs (hvout1-hvout2) can be con?ured as high-voltage mosfet drivers. in high-voltage mode these outputs provide 9v for driving the gates of n-channel mosfets used as high-side power switches to control power sup- ply ramp up and ramp down rate. the remaining ?e digital, open drain outputs can optionally be con?ured as digital inputs to sense more input signals as needed, such as manual reset, etc. the diagram above shows how a ISPPAC-POWR607 is used in a typical application. it controls power to the microprocessor system, generates the cpu reset and monitors critical power supply voltages, generating interrupts whenever faults are detected. it also provides a watchdog timer function to detect cpu operating and bus timeout errors. the ISPPAC-POWR607 incorporates a 16-macrocell cpld. figure 4-1 shows the analog input comparators application block diagram v oltage s u per v isor ISPPAC-POWR607 reset generator w atchdog timer po w er do w n dc-dc #1 dc-dc #2 dc-dc #n mosfet dri v ers (2) inp u t po w er s u pply on/off po w er up/do w n control power supply bus cpu / uprocessor interr u pt po w er fail cpu_reset_in w dt trigger interr u pt ? w dt man u al reset in ISPPAC-POWR607 in-system programmable power supply supervisor, reset generator and watchdog timer www.datasheet.co.kr datasheet pdf - http://www..net/
lattice semiconductor ISPPAC-POWR607 data sheet 4-2 and digital inputs used as inputs to the cpld array. the digital output pins providing the external control signals are driven by the cpld. four independently programmable timers also interface with the cpld and can create delays and time-outs ranging from 32? to 2 seconds. the cpld is programmed using logibuilder , an easy-to-learn language integrated into the pac-designer software. control sequences are written to monitor the status of any of the analog input channel comparators or the digital inputs. figure 4-1. ISPPAC-POWR607 block diagram pin descriptions number name pin type voltage range description 11, 12 gnd ground ground ground 1 30 hvout1 open drain output 2 0v to 10v open-drain output 1 fet gate driver 0v to 9v high-voltage fet gate driver 1 31 hvout2 open drain output 2 0v to 10v open-drain output 2 fet gate driver 0v to 9v high-voltage fet gate driver 2 27 in_out3 digital input 9 0v to 5.5v pld input 3 open drain output 2 open drain output 3 26 in_out4 digital input 9 0v to 5.5v pld input 4 open drain output 2 open drain output 4 23 in_out5 digital input 9 0v to 5.5v pld input 5 open drain output 2 open drain output 5 22 in_out6 digital input 9 0v to 5.5v pld input 6 open drain output 2 open drain output 6 20 in_out7 digital input 9 0v to 5.5v pld input 7 open drain output 2 open drain output 7 29 in1_pwrdn digital input 0v to 5.5v 3 pld logic input 1. 4, 5 when not used, this pin should be pulled down with a 10k resistor. v mo n 1 v mo n 2 v mo n 3 v mo n 4 v mo n 5 v mo n 6 i n 1_p w rd n i n 2 v cc h v out1 h v out2 i n _out3 i n _out4 i n _out5 i n _out6 i n _out7 tms tck tdi tdo v ccj g n d pld 16 macrocells 2 8 inp u ts jtag interface 6 analog v oltage monitor inp u ts po w er do w n logic 4 timers ISPPAC-POWR607 www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-3 28 in2 digital input 0v to 5.5v 3 pld logic input 2. when not used, this pin should be tied to gnd. 15 tck digital input 0v to 5.5v jtag test clock input 18 tdi digital input 0v to 5.5v jtag test data in - internal pull-up 14 tdo digital output 0v to 5.5v jtag test data out 19 tms digital input 0v to 5.5v jtag test mode select - internal pull-up 4, 21 vcc power 2.64v to 3.96v power supply 6 13 vccj power 2.25v to 3.6v vcc for jtag logic interface pins 7 2 vmon1 analog input -0.3v to 5.9v 8 voltage monitor input 1 3 vmon2 analog input -0.3v to 5.9v 8 voltage monitor input 2 5 vmon3 analog input -0.3v to 5.9v 8 voltage monitor input 3 6 vmon4 analog input -0.3v to 5.9v 8 voltage monitor input 4 7 vmon5 analog input -0.3v to 5.9v 8 voltage monitor input 5 10 vmon6 analog input -0.3v to 5.9v 8 voltage monitor input 6 1, 8, 9, 16, 17, 24, 25, 32 nc no connection not applicable no internal connection die pad nc no connection not applicable no internal connection 1. gnd pins must be connected together on the circuit board. 2. open-drain outputs require an external pull-up resistor to a supply. 3. in1_pwrdn and in2 are inputs to the pld. the thresholds for these pins are referenced by the voltage on vcc. 4. the power-down function is e 2 cmos programmable and when enabled is input level sensitive (enter power-down mode = low; exit power- down mode = high). 5. source of the power-down initiation can be assigned to either the in1_pwrdn pin or to an internally generated pld output signal called pld_pwrdn. when generated internally by the pld, the in1_pwrdn pin is only used to exit power-down mode (in1_pwrdn pin = high). 6. vcc pins must be connected together on the circuit board. 7. in power-down mode, vccj is internally pulled to gnd to turn off the jtag i/o pins. it is important, therefore, that the vcc j pin be open whenever power-down mode is initiated. if connected to a power supply during power-down mode, vccj will draw approximately 2.2m a. 8. the vmon inputs can be biased independently from vcc. unused vmon inputs should be tied to gnd. 9. thresholds of in_out3...in_out7 in the input mode are referenced by the voltage on vcc. pin descriptions (cont.) number name pin type voltage range description www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-4 absolute maximum ratings absolute maximum ratings are shown in the table below. stresses beyond those listed may cause permanent dam- age to the device. functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions of this speci?ation is not implied. recommended operating conditions analog speci?ations symbol parameter conditions min. max. units v cc core supply -0.5 4.5 v v ccj jtag logic supply -0.5 6 v v in digital input voltage (all digital i/o pins) -0.5 6 v v mon v mon input voltage -0.5 6 v v tri voltage applied to tri-stated pins hvout[1:2] -0.5 11 v in_out[3:7] -0.5 6 v t s storage temperature -65 150 o c t a ambient temperature -65 125 o c i sinkmax maximum sink current on any output 23 ma symbol parameter conditions min. max. units v cc core supply voltage at pin 2.64 3.96 v v ccj jtag logic supply voltage at pin 2.25 3.6 v v in input voltage at digital input pins -0.3 5.5 v v mon input voltage at v mon pins -0.3 5.9 v v out open-drain output voltage in_out[3:7] pins -0.3 5.5 v hvout[1:2] pins in open- drain mode -0.3 10.4 v t aprog ambient temperature during programming (note 1) -40 85 o c t a ambient temperature power applied 1 -40 85 o c 1. the die pad on the bottom of the qfn/qfns package does not need to be electrically or thermally connected to ground. symbol parameter conditions min. typ. max. units i cc 1 supply current 3.5 5 ma i ccj 2 supply current 1ma i cc_pwrdn 3 power-down mode supply current icc + pin leakage currents 2 10 ? 1. includes currents on both v cc pins. 2. in power-down mode, vccj is internally pulled to gnd to turn off the jtag i/o pins. it is important, therefore, that the vccj pin be open whenever power-down mode is initiated. if connected to a power supply during power-down mode, vccj will draw approximately 2.2m a. 3. leakage measured in power-down mode with applied pin voltages as follows: vcc = 3.96v; in1_pwrdn , gnd = 0v; in2, vmonx and in_outx = 5.5v; hvoutx con?ured as fet drivers (hvoutx con?ured as open drain outputs have minor leakage path to ground and are not counted in total); vccj, tdi, tdo, tms and tck = open. www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-5 voltage monitors high voltage fet drivers power-on reset (internal) symbol parameter conditions min. typ. max. units r in input resistance 55 65 75 k c in input capacitance 8 pf v mon range programmable trip-point range 0.075 5.811 v v z sense near-ground sense threshold 70 75 80 mv v mon accuracy absolute accuracy of any trip-point 1 ?.5 1.5 % hyst hysteresis of any trip-point (relative to setting) 1% 1. guaranteed by characterization across v cc range, operating temperature, process. symbol parameter conditions min. typ. max. units v pp gate driver output voltage 8.1 9 9.9 v i outsrc gate driver source current (high state) controlled ramp setting 15 ? i outsink gate driver sink current (low state) fet turn off mode 1.0 2.5 ma symbol parameter conditions min. typ. max. units t rst delay from v th to start-up state 100 ? t start duration of start-up state 300 ? t bro minimum duration brown out required to enter reset state 15 s t por delay from brown out to reset state 7 s v tl threshold below which por is low 1 2.2 v v th threshold above which por is high 1 2.5 v v t threshold above which por is valid 1 0.8 v 1. corresponds to vcc supply voltage. www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-6 figure 4-2. internal power-on reset v cc v t v tl v th por (internal) v mo n s ready (internal) t start pldclk (internal) reset state analog cali b ration t rst t bro start up state t por www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-7 ac/transient characteristics over recommended operating conditions figure 4-3. power-down mode timing symbol parameter conditions min. typ. max. units voltage monitors t pd12 propagation delay input to output glitch ?ter off 12 ? t pd48 propagation delay input to output glitch ?ter on 48 ? oscillators f pldclk pldclk frequency 240 250 260 khz timers timeout range range of programmable timers (128 steps) 0.032 1966 ms resolution spacing between available adjacent timer intervals 13 % accuracy timer accuracy -6.67 -12.5 % power-down mode t pwrdn time to enter power-down mode device previously on 100 ? t pwrdn_hold minimum required time in power- down mode before power-up can occur 100 ? t pwrup time to exit power-down mode 300 ? t pwrdn_up total time to enter and then exit power-down mode 500 ? i n 1_p w rd n (lo w = po w er-do w n) v cc icc t p w rd n t p w rup t p w rd n _up i cc_p w rd n i cc (nominal) t p w rd n _hold www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-8 digital speci?ations over recommended operating conditions symbol parameter conditions min. typ. max. units i il ,i ih input leakage, no pull-up/pull-down +/-10 ? i oh-hvout output leakage current hvout[1:2] in open drain mode and pulled up to 10v 35 60 ? i pu input pull-up current (tms, tdi) 70 ? v il voltage input, logic low 1 tdi, tms, tck, in[1:2], in_out[3:7] 2 , v ccj = 3.3v supply 0.8 v tdi, tms, tck, v ccj = 2.5v supply 0.7 v ih voltage input, logic high 1 tdi, tms, tck, in[1:2], in_out[3:7] 2 , v ccj = 3.3v supply 2.0 v tdi, tms, tck, v ccj = 2.5v supply 1.7 v ol hvout[1:2] (open drain mode), i sink = 10ma 0.8 v in_out[3:7] 3 i sink = 20ma 0.8 tdo i sink = 4ma 0.4 v oh tdo i src = 4ma v cc - 0.4 v i sinktotal 4 all digital outputs 67 ma 1. in_out[3:7], in[1:2] referenced to v cc ; tdo, tdi, tms, and tck referenced to v ccj . 2. when con?ured as inputs. 3. when con?ured as open drain outputs. 4. sum of maximum current sink from all digital outputs combined. reliable operation is not guaranteed if this value is exceeded . www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-9 timing for jtag operations figure 4-4. erase (user erase or erase all) timing diagram figure 4-5. programming timing diagram symbol parameter conditions min. typ. max. units t ispen program enable delay time 10 ? t ispdis program disable delay time 30 ? t hvdis high voltage discharge time, program 30 s t hvdis high voltage discharge time, erase 200 ? t cen falling edge of tck to tdo active 10 ns t cdis falling edge of tck to tdo disable 10 ns t su1 setup time 5 ns t h hold time 10 ns t ckh tck clock pulse width, high 20 ns t ckl tck clock pulse width, low 20 ns f max maximum tck clock frequency 25 mhz t co falling edge of tck to valid output 10 ns t pwv verify pulse width 30 ? t pwp programming pulse width 20 ms vih vil vih vil update-ir run-test/idle (erase) select-dr scan clock to shift-ir state and shift in the discharge instruction, then clock to the run-test/idle state run-test/idle (discharge) specified by the data sheet tms tck state t h t h t h t h t h t h t su1 t su1 t su1 t su1 t su1 t su1 t su2 t ckh t ckh t ckh t ckh t ckh t gkl t gkl tms tck state vih vil vih vi l update-ir run-test/idle (program) select-dr scan clock to shift-ir state and shift in the next instruction, which will stop the discharge process update-ir t su1 t su1 t su1 t su1 t su1 t h t h t h t h t h t ckl t pwp t ckh t ckh t ckh t ckh t ckl www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-10 figure 4-6. verify timing diagram figure 4-7. discharge timing diagram theory of operation analog monitor inputs the ISPPAC-POWR607 provides six independently programmable voltage monitor input circuits as shown in figure 4-8. one programmable trip-point comparator is connected to each analog monitoring input. each compara- tor reference has 192 programmable trip points over the range of 0.667v to 5.811v. additionally, a 75mv ?ero- detect threshold is selectable which allows the voltage monitors to determine if a monitored signal has dropped to ground level. this feature is especially useful for determining if a power supply s output has decayed to a substan- tially inactive condition after it has been switched off. figure 4-8. ISPPAC-POWR607 voltage monitors figure 4-8 shows the functional block diagram of one of the six voltage monitor inputs - ? (where x = 1...6). each voltage monitor can be divided into two sections: analog input, and filtering. the voltage input is monitored by a programmable trip-point comparator. table 4-1 and table 4-2 show all trip points and ranges to which any comparator s threshold can be set. tms tck state vih vil vih vil update-ir run-test/idle (program) select-dr scan clock to shift-ir state and shift in the next instruction update-ir t h t h t h t h t h t ckh t ckh t ckh t ckl t pwv t ckh t ckl t su1 t su1 t su1 t su1 t su1 tms tck state vih vil vih vil update-ir run-test/idle (erase or program) select-dr scan clock to shift-ir state and shift in the verify instruction, then clock to the run-test/idle state run-test/idle (verify) specified by the data sheet actual t h t h t h t h t h t h t su1 t ckh t hvdis (actual) t ckh t ckh t ckh t ckl t pwp t pwv t ckh t ckl t pwv t su1 t su1 t su1 t su1 t su1 ISPPAC-POWR607 logic signal analog inp u t v mo n x trip point glitch filter pld array www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-11 each comparator outputs a high signal to the pld array if the voltage at its positive terminal (vmonx pin) is greater than its programmed trip point setting, otherwise it outputs a low signal. a hysteresis of approximately 1% of the setpoint is provided by the comparators to reduce false triggering as a result of input noise. the hysteresis provided by the voltage monitor is a function of the input divider setting. table 4-3 lists the typical hysteresis versus voltage monitor trip-point. programmable over-voltage and under-voltage thresholds figure 4-9 (a) shows the power supply ramp-up and ramp-down voltage waveforms. because of hysteresis, the comparator outputs change state at different thresholds depending on the direction of excursion of the monitored power supply. figure 4-9. (a) power supply voltage ramp-up and ramp-down waveform and the resulting comparator output, (b) corresponding to upper and lower trip points during power supply ramp-up the comparator output changes from logic 0 to 1 when the power supply voltage crosses the upper trip point (utp). during ramp down the comparator output changes from logic state 1 to 0 when the power supply voltage crosses the lower trip point (ltp). to monitor for over voltage fault conditions, the utp should be used. to monitor under-voltage fault conditions, the ltp should be used. tables 1 and 2 show both the under-voltage and over-voltage trip points, which are automatically selected in soft- ware depending on whether the user is monitoring for an over-voltage condition or an under-voltage condition. utp ltp monitored po w er s u pply v otlage comparator logic o u tp u t (a) ( b ) www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-12 table 4-1. trip point table used for over-voltage detection (in volts) table 4-2. trip point table used for under-voltage detection (in volts) ref/ monfedcba987654 1f 0.798 0.950 1.131 1.347 1.596 1.904 2.268 2.693 3.192 3.803 4.878 5.811 1e 0.790 0.941 1.120 1.333 1.580 1.885 2.245 2.666 3.159 3.764 4.829 5.751 1d 0.782 0.931 1.109 1.319 1.564 1.866 2.222 2.638 3.126 3.725 4.779 5.692 1c 0.774 0.921 1.097 1.306 1.547 1.847 2.198 2.611 3.095 3.686 4.729 5.632 1b 0.766 0.911 1.086 1.292 1.531 1.827 2.175 2.584 3.062 3.647 4.679 5.573 1a 0.757 0.902 1.074 1.278 1.515 1.808 2.152 2.556 3.029 3.609 4.629 5.514 19 0.749 0.892 1.063 1.264 1.498 1.788 2.129 2.529 2.997 3.570 4.580 5.454 18 0.741 0.882 1.051 1.250 1.482 1.769 2.106 2.501 2.964 3.531 4.530 5.395 17 0.733 0.872 1.039 1.237 1.466 1.749 2.083 2.473 2.931 3.492 4.480 5.336 16 0.725 0.864 1.028 1.223 1.449 1.730 2.060 2.446 2.899 3.453 4.430 5.277 15 0.716 0.854 1.016 1.209 1.433 1.710 2.037 2.418 2.866 3.414 4.380 5.217 14 0.708 0.844 1.005 1.195 1.417 1.691 2.014 2.391 2.834 3.375 4.331 5.158 13 0.700 0.835 0.993 1.181 1.400 1.671 1.990 2.364 2.801 3.337 4.281 5.099 12 0.692 0.825 0.981 1.168 1.384 1.652 1.967 2.336 2.769 3.298 4.231 5.040 11 0.684 0.815 0.970 1.154 1.369 1.632 1.944 2.309 2.736 3.259 4.181 4.980 10 0.676 0.805 0.958 1.140 1.352 1.614 1.921 2.281 2.703 3.220 4.131 4.921 low v 75 mv ref/ monfedcba987654 1f 0.790 0.941 1.120 1.333 1.580 1.885 2.245 2.666 3.159 3.764 4.829 5.751 1e 0.782 0.931 1.109 1.319 1.564 1.866 2.222 2.638 3.126 3.725 4.779 5.692 1d 0.774 0.921 1.097 1.306 1.547 1.847 2.198 2.611 3.095 3.686 4.729 5.632 1c 0.766 0.911 1.086 1.292 1.531 1.827 2.175 2.584 3.062 3.647 4.679 5.573 1b 0.757 0.902 1.074 1.278 1.515 1.808 2.152 2.556 3.029 3.609 4.629 5.514 1a 0.749 0.892 1.063 1.264 1.498 1.788 2.129 2.529 2.997 3.570 4.580 5.454 19 0.741 0.882 1.051 1.250 1.482 1.769 2.106 2.501 2.964 3.531 4.530 5.395 18 0.733 0.872 1.039 1.237 1.466 1.749 2.083 2.473 2.931 3.492 4.480 5.336 17 0.725 0.864 1.028 1.223 1.449 1.730 2.060 2.446 2.899 3.453 4.430 5.277 16 0.716 0.854 1.016 1.209 1.433 1.710 2.037 2.418 2.866 3.414 4.380 5.217 15 0.708 0.844 1.005 1.195 1.417 1.691 2.014 2.391 2.834 3.375 4.331 5.158 14 0.700 0.835 0.993 1.181 1.400 1.671 1.990 2.364 2.801 3.337 4.281 5.099 13 0.692 0.825 0.981 1.168 1.384 1.652 1.967 2.336 2.769 3.298 4.231 5.040 12 0.684 0.815 0.970 1.154 1.369 1.632 1.944 2.309 2.736 3.259 4.181 4.980 11 0.676 0.805 0.958 1.140 1.352 1.614 1.921 2.281 2.703 3.220 4.131 4.921 10 0.667 0.796 0.947 1.126 1.336 1.594 1.897 2.254 2.671 3.181 4.082 4.861 low v 75 mv www.datasheet.co.kr datasheet pdf - http://www..net/ lattice semiconductor ISPPAC-POWR607 data sheet 4-13 table 4-3. comparator hysteresis vs. trip-point the second section in the ISPPAC-POWR607 |