Part Number Hot Search : 
E001352 107M00 FFB222 DS142 AC1586 SPT5420 SI4133 UPD17
Product Description
Full Text Search
 

To Download MAX2700ECM-TD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max2700/max2701 are highly integrated direct downconversion (zero-if) receivers designed for wide- band wireless local loop (wll) systems operating in the 1.8ghz to 2.5ghz band. the max2700/max2701s zero-if architecture eliminates the need for if down- conversion stages and the use of an if saw filter. this reduces the overall receiver cost by reducing the com- ponent count and required board space. the max2700/max2701 have three main blocks: low- noise amplifier (lna), quadrature downconverter, and baseband variable gain amplifiers (vgas). the lna is a single-ended amplifier with selectable gain and shut- down options. it provides a high input third-order inter- cept point (ip3), which reduces cross-modulation and gain compression due to high-level rf interference. the quadrature downconverter section consists of two highly linear double-balanced mixers driven by an external local oscillator (lo) with a selectable lo dou- bler. the double-balanced mixers are optimized to pro- vide high input ip3 and minimum added noise. the mixers?high input second-order intercept point (iip2) helps minimize receiver desensitization due to high- level am-modulated interferers. the two baseband vgas in each channel provide 80db of total maximum gain and greater than 60db of gain control. the first agc amplifier is optimized for low noise, low power dissipation, and high linearity over the entire gain range to ensure high gain compression per- formance. an external lowpass filter between baseband vgas provides the required channel selectivity at the adjacent channel. an integrated gain offset correction loop circuit provides <0.3db amplitude mismatch between the i and q channels. the max2700/max2701 operate from a single +2.7v to +3.3v power supply, drawing only 165ma of supply current and 20? in shutdown mode. both devices are available in small 48-pin tqfp packages with exposed paddle (ep) for optimum high-frequency performance. ________________________applications wireless local loop wideband direct-sequence spread-spectrum systems two-way mmds wideband 2.4ghz ism radios digital microwave radios features input frequency range 1.8ghz to 2.1ghz (max2700) 2.1ghz to 2.5ghz (max2701) cascaded performance at 1960 mhz 3.5db noise figure -7.5dbm input ip3 at maximum gain lna with selectable gain and shutdown option high linearity direct i/q downconverter wideband lo quadrature generator 3db baseband channel bandwidth of at least 56mhz variable gain baseband amplifiers with >60db control range baseband gain offset correction loop +2.7v to +3.3v single-supply operation small 48-pin tqfp-ep package max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ________________________________________________________________ maxim integrated products 1 iin2- dci2+ dci2- iout2 gnd rfin- rfin+ v cc qout2 dcq2- dcq2+ qin2- cext- cext+ v cc x2_en gnd lnain gnd gnd gain_set shdn agc v cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 gnd lnaout gnd mix_q v cc qin1+ qin1- dcq1+ dcq1- qout1 mixtnk qin2+ v cc lo gnd mix_i gnd iin1+ iin1- dci1+ dci1- iout1 v cc iin2+ tqfp-ep max2700 max2701 top view pin configuration 19-1667; rev 0; 4/00 for free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. for small orders, phone 1-800-835-8769. ordering information part temp. range pin-package max2700 ecm -40 c to 85 c 48 tqfp-ep max2701 ecm -40 c to 85 c 48 tqfp-ep
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 2 _______________________________________________________________________________________ absolute maximum ratings dc electrical characteristics (max2700/max2701 ev kit (figure 3), v cc = +2.7v to +3.3v, shdn = gain_set = v cc , x2_en = gnd, v agc = 1.25v, cext+ con- nected to cext-; no rf input signals applied; rfin, lnain, lo inputs are terminated with 50 ? , lnaout connected to v cc through a 10nh inductor; mix_i, mix_q, qin1+, qin1-, qout1, iin1+, iin1-, iout1, qin2+, qin2-, qout2, iin2+, iin2-, iout2 pins are unconnected; t a = -40 c to +85 c, unless otherwise noted. typical values are at v cc = +3.0v, t a = +25 c.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v cc to gnd ..............................................................-0.3v to +6v rf signals p rfin , p lnain , p lo .....................................................+15dbm baseband signals iin1+ to iin1-, iin2+ to iin2-, qin1+ to qin1-, qin2+ to qin2- ......................................2v input voltages agc, gain_set, shdn , x2_en , cext_, rfin_, lo, lnain, iin_ _, qin_ _ , dci_ _ , dcq_ _ to gnd ..........-0.3v to (v cc + 0.3v) input current agc ..50ma all digital inputs ..10ma continuous power dissipation (t a = +70 c) 48-pin tqfp-ep (derate 27mw/ c above +70 c) .....2000mw operating temperature range ...........................-40 c to +85 c storage temperature range .............................-65 c to +150 c junction temperature ......................................................+150 c lead temperature (soldering, 10s) .................................+300 c parameters conditions min typ max units supply supply voltage 2.7 3.3 v max2700 165 215 lna enabled max2701 167 220 max2700 155 200 t a = +25 c lna disabled max2701 156 205 max2700 230 lna enabled max2701 235 max2700 210 operating supply current t a = -40 c to +85 c lna disabled max2701 215 ma shutdown supply current shdn = gnd, v agc = 0.5v 20 100 a control inputs/outputs input logic voltage high 2v input logic voltage low 0.6 v shdn , x2_en , gain_set -1 0.5 agc, +0.5 < v agc < +2.0v -22 12 input bias current agc, v agc = 0.5v, shdn = gnd -2 2 a mix_i, mix_q 1.2 iout1, qout1 1.1 dc output voltage iout2, qout2 1.25 v
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers _______________________________________________________________________________________ 3 ac electrical characteristics (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) parameters conditions min typ max units lna stage max2700 1800 2100 operating frequency range (note 1) max2701 2100 2500 mhz gain_set = v cc 13.5 17.1 19.5 max2700, f lnain = 1960mhz gain_set = gnd -7.5 -1.9 2 gain_set = v cc 13 20 t a = -40 c to 85 c gain_set = gnd -8 2.5 gain_set = v cc 13 16.5 18.5 max2701, f lnain = 2400mhz gain_set = gnd -6 -1.8 0.5 gain_set = v cc 12.5 19 power gain (note 2) t a = -40 c to 85 c gain_set = gnd -6.5 1.0 db gain_set = v cc 2.0 max2700, f lnain = 1960mhz gain_set = gnd 15.8 gain_set = v cc 2.3 noise figure max2701, f lnain = 2400mhz gain_set = gnd 16.7 db gain_set = v cc +2.7 max2700, f lnain = 1960mhz gain_set = gnd +5.1 gain_set = v cc +3.8 input third-order intercept (note 3) max2701, f lnain = 2400mhz gain_set = gnd +4.3 dbm reverse isolation 1800mhz to 2500mhz, gain_set = v cc or gnd 28 db lnain to lo, f lnain = 1800mhz to 2500mhz 30 isolation lnaout to rfin, f lnain = 1800 mhz to 2500 mhz 44 db m ax2700 gain _s et = v c c 1.1 gain_set = gnd 1.8 m ax2701 gain _s et = v c c 1.3 at lna input, with external matching circuit at lnain gain_set = gnd 2.1 m ax2700 gain _s et = v c c 1.7 gain_set = gnd 1.6 m ax2701 gain _s et = v c c 1.2 vswr at lna output, with external matching circuit at lnaout gain_set = gnd 1.4 ? mixer stage ( d i ffer enti al rf i np ut to m i xer i/q outp uts w i th exter nal b al un and m atchi ng ci r cui t to 50 ? ) max2700 1800 2100 frequency range (notes 1, 2) max2701 2100 2500 mhz max2700, f rfin = 1960 mhz 16 19.3 21.5 voltage gain max2701, f rfin = 2400 mhz 14.5 18.1 20 db max2700, f rfin = 1960mhz 11.0 dsb noise figure max2701, f rfin = 2400mhz 12.8 db
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 4 _______________________________________________________________________________________ parameters conditions min typ max units max2700, f lo = 980mhz +6.3 input third-order intercept (note 4) max2701, f lo = 1200mhz +6.5 dbm max2700 +28.3 input second-order intercept (note 5) max2701 +38 dbm max2700 1.5 vswr w i th 50 ? exter nal m atchi ng at rfin + / rfin - max2701 1.2 f rfin = 1800mhz to 2100mhz 35 max2700 f rfin 20mhz 28 f rfin = 2100mhz to 2500mhz 22 isolation (rfin to mix_i/q) max2701 f rfin 20mhz 12 db max2700, f rfin = 1800mhz to 2100mhz 38 isolation (rfin to lo) max2701, f rfin = 2100mhz to 2500mhz 45 db f lo = 900mhz to 1050mhz, x2_en = gnd 49 f lo = 900mhz to 1050mhz, x2_en = gnd, isolation at 2 x f lo 43 max2700 f lo = 1800mhz to 2100mhz, x2_en = v cc 33 db f lo = 1050mhz to 1250mhz, x2_en = gnd 60 f lo = 1050mhz to 1250mhz, x2_en = gnd, isolation at 2 x f lo 44 isolation (lo to rfin) max2701 f lo = 2100mhz to 2500mhz, x2_en = v cc 70 mixer spurious suppression 2 x lo - rf (note 6) 60 dbc -1db bandwidth (note 2) 37 69 baseband bandwidth mix_i/q -3db bandwidth 170 mhz baseband frequency = 125khz 0.1 0.7 gain mismatch ? g v (i-q) (between mixer i and q channels) up to -1db baseband width (note 2) 0 0.7 db ac electrical characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.)
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers _______________________________________________________________________________________ 5 parameters conditions min typ max units group delay t gd , rfin to mix_i/q, frequency up to -1db baseband width 1.8 ns differential group delay (note 2) ? t gd (between mixer i and q channels) 1 ns output impedance z out , mix_i, mix_q, frequency up to -1db baseband width 1.4 ? mixer output level (note 2) mix_i, mix_q, baseband output at -1db compression point 1.4 2.1 vp-p lo doubler, lo buffer, quadrature generator max2700 900 1050 x2_en = gnd max2701 1050 1250 max2700 1800 2100 lo frequency range (notes 1, 2) x2_en = v cc max2701 2100 2500 mhz lo input power (note 7) x2_en = v cc or gnd -16 -13 -10 dbm f lo = 900mhz to 1050mhz, x2_en = gnd 2.0 max2700 f lo = 1800mhz to 2100mhz, x2_en = v cc 1.8 f lo = 1050mhz to 1250mhz, x2_en = gnd 1.7 lo vswr max2701 f lo = 2100mhz to 2500mhz, x2_en = v cc 2.0 ? quadrature error ?? ? , mix_i to mix_q 1.5 4.5 degrees baseband stage 1 (iin1 to iout1, qin1 to qout1 ) -1db bandwidth (note 2) 14 26 channel bandwidth -3db bandwidth 56 mhz input impedance iin1+, iin1-, qin1+, qin1-, single-ended 1.9 k ? input impedance mismatch between iin1+ and qin1+ 4 ? v agc = 0.5v -1.5 2.2 6 voltage gain (g v ) v agc = 2.0v 37 40 42 db voltage gain mismatch mismatch between iin1 to iout1 and qin1 to qout1, 0.5v < v agc < 2 v 0.2 db vga1 gain slope guaranteed monotonic over 0.5v max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 6 _______________________________________________________________________________________ ac electrical characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) parameters conditions min typ max units iin1+ to iout1, up to -1db frequency 1.6 group delay qin1+ to qout1, up to -1db frequency 1.6 ns g r oup d el ay m i sm atch ( n ote 2) between i and q channel from 100khz up to -1db 0.3 1.3 ns output impedance iout1, qout1, up to -1db bandwidth 7 ? output impedance mismatch between iout1 and qout1, up to -1db bandwidth 1 ? output voltage (note 2) at -1db compression point, iout1, qout1 0.7 1.1 vp-p baseband stage 2 (iin2+ to iout2, qin2+ to qout2) -1db bandwidth (note 2) 19 34 channel bandwidth -3db bandwidth 63 mhz input impedance iin2+, iin2-, qin2+, qin2-, single-ended 2.1 k ? input impedance mismatch between iin2+ and qin2+ 1.5 ? v agc = 0.5v -0.6 4.4 9.5 voltage gain (g v ) v agc = 2.0v 37 39 42 db gain correction disabled 0.9 voltage gain mismatch (note 2) m i sm atch b etw een iin 2 to iou t2 and qin 2 to qou t2, 0.5v < v agc < 2v gain correction enabled (2db initial mismatch) 0.3 db vga2 gain slope guaranteed monotonic over 0.5v < v agc <2v, v agc =1.25v 30 db/v v agc = 2.0v 14 noise figure z s = 1.1k ? v agc = 0.5v 47 db phase shift (note 2) for 10db of gain 0.2 1.4 degrees group delay iin2+ to iout2, qin 2+ to qou t2, up to -1db frequency 1.7 ns group delay mismatch (note 2) between i and q channel from 100khz up to -1db frequency 0.2 2.0 ns output impedance iout2 , qout2, up to -1db bandwidth 4.0 ? output impedance mismatch between iout2 and qout2, up to -1 db bandwidth 4.0 ? output voltage (note 2) at -1db compression point, iout2 , qout2 1.2 1.9 vp-p
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers _______________________________________________________________________________________ 7 note 1: this is the recommended operating frequency range. the parts have been characterized over the specified frequency range. operation outside this range is possible but not guaranteed. note 2: guaranteed by design and characterization. note 3: lna is matched at input and output to 50 ? ; f 1 = 1960mhz, f 2 = 1965mhz for max2700; f 1 = 2400mhz, f 2 = 2405mhz for max2701; p in = -30dbm per tone. note 4: mixer iip3 test. for max2700, rfin is matched to 50 ? at 1960mhz. at rfin, apply f 1 = 1964.2mhz, f 2 = 1968.2mhz, p in = -25dbm per tone, and measure im3 product power level at 200khz. for max2701, rfin is matched to 50 ? at 2400mhz. at rfin, apply f 1 = 2404.2mhz, f 2 = 2408.2mhz, p in = -25dbm per tone, and measure im3 product power level at 200khz. note 5: mixer iip2 test. for max2700, rfin is matched to 50 ? at 1960mhz. at rfin, apply f 1 = 1964.2mhz, f 2 = 1968.2mhz, p in = -25dbm per tone, and measure im2 product power level at 4mhz. for max2701, rfin is matched to 50 ? at 2400mhz. at rfin, apply f 1 = 2404.2mhz, f 2 = 2408.2mhz, p in = -25dbm per tone, and measure im2 product power level at 4mhz. note 6: mixer spurious attenuation response. mixer is matched to 50 ? at 1800mhz and f lo = 900mhz (lo doubler enabled). f rfin = 1801mhz, p rfin = -85dbm, f spur = 3601.5mhz, p spur = -60dbm. measure if at 1mhz and spurious at 1.5mhz at the output. for better than 38dbc spurious attenuation response, output spurious level should be at least 10db lower than the if signal level. in the (2 x lo) - (1 x rf) spurious product notation, lo denotes the frequency of the final lo driving the i/q mixers inputs. note 7: mixer gain specifications are production tested over lo power range. note 8: a filter output impedance of 1.1k ? can directly drive the vga inputs since there is minimal mismatch loss between source and vga input impedance. note 9: electrolytic bypass cap to v cc not connected. ac electrical characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) parameters conditions min typ max units power supply mixer 57 vga1 35 power-supply ripple rejection v c c = 3.0v + 100m v p p fr eq uency = 100 to 300kh z, v ou t = 0.3vp - p , ( n ote 9) vga2 28 dbc
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 8 _______________________________________________________________________________________ typical operating characteristics (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) 180 170 160 150 140 2.5 2.9 2.7 3.1 3.3 3.5 i cc vs. v cc vs. temperature max2700-01 v cc (v) i cc (ma) t a = +25? t a = -45? t a = +85? 10 12 16 14 18 20 1700 1900 1800 2000 2100 lna gain vs. frequency vs. temperature max2700-02 frequency (mhz) gain (db) t a = -45 c t a = +25 c t a = +85 c high-gain mode -25 -30 -35 -40 1700 1900 1800 2000 2100 lna reverse isolation vs. frequency vs. gain mode max2700-04 frequency (mhz) s 12 (db) high-gain mode low-gain mode 1.4 1.8 1.6 2.2 2.0 2.6 2.4 1700 1800 1850 1750 1900 1950 2000 lna noise figure vs. frequency vs. temperature max2700-05 frequency (mhz) nf (db) t a = +85 c t a = +25 c t a = -45 c high-gain mode -10 -8 -6 -4 -2 0 2 4 1700 1800 1900 2000 2100 lna gain vs. frequency vs. temperature max2700-03 frequency (mhz) gain (db) t a = -45 c t a = +25 c t a = +85 c low-gain mode max2700
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers _______________________________________________________________________________________ 9 10 12 14 16 18 20 22 24 1.7 1.8 1.9 2.0 2.1 mixer voltage gain vs. frequency vs. temperature max2700-09 frequency (ghz) voltage gain (db) t a = -45 c t a = +85 c t a = +25 c doubler enabled 13 14 16 15 17 18 lna noise figure vs. frequency vs. temperature max2700-06 frequency (mhz) nf (db) 1700 1900 1800 2000 t a = +85 c t a = +25 c t a = -45 c low-gain mode 10 12 14 16 18 20 22 24 1.7 1.8 1.9 2.0 2.1 mixer voltage gain vs. frequency vs. temperature max2700-10 frequency (ghz) voltage gain (db) t a = -45 c t a = +85 c t a = +25 c doubler disabled 10 12 14 16 18 20 22 24 1.7 1.8 1.9 2.0 2.1 mixer voltage gain vs. frequency vs. lo power max2700-11 frequency (ghz) voltage gain (db) lo = -16dbm to -10dbm doubler disabled typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) 0 2 1 4 3 5 6 -45 15 35 -25 -5 55 75 lna iip3 vs. temperature max2700-07 temperature ( c) iip3 (dbm) high-gain mode low-gain mode 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 2.50 2.75 3.00 3.25 3.50 lna iip3 vs. v cc max2700-08 v cc (v) iip3 (dbm) 0.5 high-gain mode low-gain mode max2700
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 10 ______________________________________________________________________________________ 2.00 1.75 1.50 1.25 1.00 1.7 1.9 1.8 2.0 2.1 error vs. lo frequency max2700-15 frequency (ghz) error (degrees) doubler enabled doubler disabled -40 -45 -50 -55 -60 0.85 0.95 0.90 1.00 1.05 lo-rfin isolation vs. lo frequency (including balun) max2700-16 frequency (ghz) lo-rfin isolation (db) doubler disabled doubler enabled 5 15 10 25 20 30 35 2.60 3.10 2.85 3.35 mixer iip2 vs. v cc vs. temperature max2700-14 v cc (v) iip2 (dbm) t a = -45 c t a = +85 c t a = +25 c doubler enabled 0 1 2 3 4 5 6 7 8 2.60 2.85 3.10 3.35 mixer iip3 vs. v cc vs. temperature max2700-13 v cc (v) iip3 (dbm) t a = -45 c t a = +85 c t a = +25 c doubler enabled -40 -50 -60 -70 -80 0.85 0.95 0.90 1.00 1.05 lo-lnain isolation vs. lo frequency max2700-17 frequency (ghz) lo-lnain isolation (db) doubler disabled doubler enabled 7 8 9 10 11 12 13 14 15 1800 1900 1850 1950 2000 2050 2100 dsb mixer noise figure vs. frequency vs. temperature max2700-12 frequency (mhz) nf (db) t a = +85 c t a = -45 c t a = +25 c typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2700
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 11 0 20 40 60 80 100 120 140 160 0.50 1.00 0.75 1.25 1.50 1.75 2.00 mixer baseband bandwidth vs. r l max2700-18 r l (k ? ) bandwidth (mhz) 3db bandwidth 1db bandwidth 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.5 2.7 2.9 3.1 3.3 3.5 mixer's output 1db compression point vs. v cc vs. r l max2700-19 v cc (v) mixer output (vp-p) r l = 0.56k ? r l = 1.05k ?, 2.00k ? 190 180 170 160 150 2.5 2.9 2.7 3.1 3.3 3.5 i cc vs. v cc vs. temperature max2701-20 v cc (v) i cc (ma) t a = +85 c t a = +25 c t a = -45 c 10 13 12 11 14 15 16 17 18 19 20 2100 2200 2300 2400 2500 lna gain vs. frequency vs. temperature max2701-21 frequency (mhz) gain (db) t a = -45 c t a = +25 c t a = +85 c high-gain mode -5 -2 -3 -4 -1 0 1 2 3 4 5 2100 2200 2300 2400 2500 lna gain vs. frequency vs. temperature max2701-22 frequency (mhz) gain (db) t a = +85 c t a = +25 c t a = -45 c low-gain mode typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2701 max2700
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 12 ______________________________________________________________________________________ 0 2 1 4 3 5 6 -45 15 35 -25 -5 55 75 lna iip3 vs. temperature max2701-26 temperature ( c) iip3 (dbm) high-gain mode low-gain mode -1 1 0 3 2 5 4 6 lna iip3 vs. v cc max2701-27 v cc (v) iip3 (dbm) 2.50 2.75 3.00 3.25 3.50 high-gain mode low-gain mode 10 12 16 14 18 20 lna noise figure vs. frequency vs. temperature max2701-25 frequency (mhz) nf (db) 2100 2300 2200 2400 2500 t a = +85 c t a = +25 c t a = -45 c low-gain mode 3.5 3.0 2.5 2.0 1.5 2100 2300 2200 2400 2500 lna noise figure vs. frequency vs. temperature max2701-24 frequency (mhz) nf (db) t a = -45 c t a = +25 c t a = +85 c high-gain mode 15 17 16 19 18 21 20 22 mixer voltage gain vs. frequency vs. temperature max2701-28 frequency (ghz) voltage gain (db) 2.1 2.2 2.3 2.4 2.5 t a = -45 c t a = +25 c t a = +85 c doubler enabled -34 -32 -28 -30 -26 -24 lna reverse isolation vs. frequency max2701-23 frequency (mhz) s 12 (db) 2100 2300 2200 2400 2500 high-gain mode low-gain mode typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2701
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 13 -1 3 1 7 5 9 11 2.60 3.10 2.85 3.35 mixer iip3 vs. v cc vs. temperature max2701-32 v cc (v) iip3 (dbm) t a = +85 c t a = +25 c t a = -45 c doubler enabled 0 20 10 40 30 50 60 2.60 3.10 2.85 3.35 mixer iip2 vs. v cc vs. temperature max2701-33 v cc (v) iip2 (dbm) t a = -45 c t a = +85 c t a = +25 c doubler enabled 7 8 9 10 11 12 13 14 15 2100 2200 2300 2400 2500 dsb mixer noise figure vs. frequency vs. temperature max2701-31 frequency (mhz) nf (db) t a = +25 c t a = -45 c t a = +85 c 10 12 14 16 18 20 22 24 2.1 2.2 2.3 2.4 2.5 mixer voltage gain vs. frequency vs. lo power max2701-30 frequency (ghz) voltage gain (db) p lo = -16dbm to -10dbm doubler enabled 2.0 1.5 1.0 0.5 0 2.1 2.3 2.2 2.4 2.5 error vs. lo frequency max2701-34 frequency (ghz) error (degrees) doubler enabled doubler disabled 15 17 16 19 18 21 20 22 mixer voltage gain vs. frequency vs. temperature max2701-29 frequency (ghz) voltage gain (db) 2.1 2.2 2.3 2.4 2.5 t a = -45 c t a = +25 c t a = +85 c doubler disabled typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2701
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 14 ______________________________________________________________________________________ 0 40 20 100 80 60 160 140 120 180 0.50 1.00 0.75 1.25 1.50 1.75 2.00 mixer baseband bandwidth vs. r l max2701-37 r l (k ? ) bandwidth (mhz) 3db bandwidth 1db bandwidth -40 -50 -60 -70 -80 1.150 1.200 1.175 1.225 1.250 lo-lnain isolation vs. lo frequency max2701-36 frequency (ghz) lo-lnain isolation (db) doubler enabled doubler disabled 1.0 1.6 1.4 1.2 1.8 2.0 2.2 2.4 2.6 2.8 3.0 2.5 2.9 2.7 3.1 3.3 3.5 mixer output 1db compression point vs. v cc vs. r l max2701-38 v cc (v) mixer output (vp-p) r l = 1.05k ? r l = 2.00k ? r l = 0.56k ? -40 -50 -60 -70 -80 1.05 1.15 1.10 1.20 1.25 lo-rf isolation vs. lo frequency (including balun) max2701-35 frequency (ghz) lo-rfin isolation (db) doubler disabled doubler enabled typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2701
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 15 2.00 1.75 1.50 1.25 1.00 0.50 1.25 0.75 1.00 1.50 1.75 2.00 vga1 vga output 1db compression point vs. agc voltage vs. rl max2700/1-42 agc (v) v01 (peak to peak) r l = 0.6k ? r l = 2.0k ? r l = 1.1k ? r l = 1.6k ? 20 30 50 40 60 70 0.6 1.0 0.8 1.2 1.4 1.6 1.8 2.0 vga1 bandwidth vs. r l max2700/1-43 r l (k ? ) vga1 bandwidth (mhz) 3db bandwidth 1db bandwidth 5 15 10 25 20 30 35 0.50 1.00 1.25 0.75 1.50 1.75 2.00 vga1 noise figure vs. agc voltage vs. temperature max2700/1-41 agc (v) nf (db) t a = -45 c t a = +85 c t a = +25 c -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 0.50 1.00 0.75 1.25 1.50 1.75 2.00 i/q voltage gain mismatch vs. temperature max2700/1-40 agc (v) i/q voltage gain (db) t a = +25 c t a = +85 c t a = -45 c 0 10 30 20 40 50 0.50 1.00 0.75 1.25 1.50 1.75 2.00 vga2 voltage gain vs. agc voltage vs. temperature max2700/1-44 agc (v) voltage gain (db) t a = -45 c t a = +85 c t a = +25 c 0 10 30 20 40 0.50 1.00 0.75 1.25 1.50 1.75 2.00 agc voltage gain vs. agc voltage vs. temperature max2700/1-39 agc (v) voltage gain (db) t a = +25 c t a = -45 c t a = +85 c typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2700/max2701
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 16 ______________________________________________________________________________________ 20 40 60 80 100 vga2 bandwidth vs. r s max2700/1-48 r s (k ? ) vga2 bandwidth (mhz) 0.6 1.2 1.4 0.8 1.0 1.6 1.8 2.0 3db bandwidth 1db bandwidth -60 -50 -55 -40 -45 -35 -30 100 500 300 700 900 1100 vga2 q to i crosstalk vs. r l max2700/1-49 r l ( ? ) q to i crosstalk (db) 1.8 1.9 2.1 2.0 2.2 2.3 0.75 1.25 1.00 1.50 1.75 2.00 vga2 vga output 1db compression point vs. agc voltage vs. r l max2700/1-47 agc (v) v 01 (peak-to-peak v) r l = 1.025k ? r l = 0.1k ? r l = 0.56k ? r l = 0.25k ? 0 0.4 1.2 0.8 1.6 2.0 0.50 1.00 0.75 1.25 1.50 1.75 2.00 vga2 i/q voltage gain mismatch with gain correction max2700/1-46 agc (v) i/q mismatch (db) 2db input mismatch gain correction enabled 0 100 300 200 400 500 combined vga1 and vga2 turn-on time vs. dc offset capacitance* max2700/1-50 dc offset capacitance (nf) turn-on time ( s) 050 25 75 100 3 2 1 0 -1 0.50 1.25 0.75 1.00 1.50 1.75 2.00 vga2 i/q voltage gain mismatch vs. temperature max2700/1-45 agc (v) i/q voltage gain (db) t a = -45 c t a = +85 c t a = +25 c 0db input mismatch gain correction disabled typical operating characteristics (continued) (max2700/max2701 ev kit (figure 3), v cc = +3.0v, t a = +25 c, shdn = gain_set = v cc , x2_en = gnd, cext+ connected to cext-, p lo = -13dbm, f lo = 980mhz (max2700) and 1200mhz (max2701), p lnain = -30dbm, p rfin = -25dbm, lnain and rfin (single-ended input to balun) driven from 50 ? source, lnaout terminated into load; mix_i, mix_q ac-coupled to 2k ? load; iin1+, qin1+, iin2+, qin2+ driven from 1.1k ? ac-coupled source; iout1, qout1 ac-coupled to 2k ? ; iout2, qout2 ac-coupled to 100 ? ; input to vgas, 20mvp-p at 1mhz tone, set v agc = 1.25v, unless otherwise noted.) max2700/max2701 *c19, c23, c30, c36 in the ev kit schematic in figure 3 represent dc offset capacitors. time from shdn = gnd to shdn = v cc , until dc quiescent point settles within 10% of static dc quiescent point.
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 17 pin name function 1 cext- inverting input port of vga2 i/q gain imbalance correction circuitry. connect an external capacitor between cext- and cext+ to activate the circuit. short cext- to cext+ to disable. 2 cext+ noninverting input port of vga2 i/q gain imbalance correction circuitry. connect an external capacitor between cext+ and cext- to activate the circuit. short cext- to cext+ to disable. 3, 12, 17, 29, 38, 48 v cc supply voltage. bypass v cc to gnd with capacitors as close to pin as possible. 4 x2_en logic-level enable for doubler circuitry. drive logic low to turn on the doubler (f lo = f rfin/2 ). drive logic high to bypass the doubler (f lo = f rfin ). 5, 7, 8, 13, 15, 32, 44, 46 gnd ground. connect to ground plane with minimal inductance. 6 lnain lna input. connect to gnd to turn the lna off. off-chip 50 ? match required. 9 gain_set lna gain select input. drive logic high to select the high-gain mode. drive logic low to select low-gain mode. 10 shdn shutdown control input. drive logic low to enable shutdown mode. 11 agc automatic gain-control input for agc. bypass this pin with a 1000pf capacitor to gnd to minimize coupling. 14 lnaout lna output. this pin requires an external pullup inductor and off-chip 50 ? match. 16 mix_q mixer q-channel baseband output. connect external series capacitor to ac-couple the output to the load. 18 qin1+ noninverting vga1, q-channel baseband input 19 qin1- inverting vga1, q-channel baseband input 20 dcq1+ noninverting offset correction input for q-channel vga1 amplifier 21 dcq1- inverting offset correction input for q-channel vga1 amplifier 22 qout1 q-channel vga1 amplifier baseband output 23 mixtnk inductive common-mode degeneration pin for mixer stages 24 qin2+ noninverting vga2, q-channel baseband input 25 qin2- inverting vga2, q-channel baseband input 26 dcq2+ noninverting offset correction input for q-channel vga2 amplifier 27 dcq2- inverting offset correction input for q-channel vga2 amplifier 28 qout2 q-channel vga2 amplifier baseband output 30 rfin+ i/q mixers inverting input. for narrow frequency bands between 1.8ghz and 2.5ghz, port must be matched using external matching components. pin description
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 18 ______________________________________________________________________________________ detailed description the max2700/max2701 consist of five major blocks: lna, i/q direct demodulator, vgas, gain correction, and bias circuits. low-noise amplifier the lna is a two-gain-level amplifier with low noise fig- ure and high iip3. connect gain_set to gnd to switch the amplifier to a low-gain mode that provides an accu- rate gain step. high iip3 minimizes the cross-modula- tion between tx power leakage and close-in interferers at the rx input. the lna can be turned off independent of the other functional blocks by connecting lnain to gnd. external matching is required to match the input and output to 50 ? . the lna in figures 1 and 2 is matched to 1960mhz and 2400mhz over a narrow bandwidth. i/q demodulator the direct i/q demodulator downconverts the rf signal directly to baseband i and q signals. this architec- ture s main advantage is that the received signal is amplified and filtered at baseband rather than at some high intermediate frequency. this eliminates the need for an expensive if saw filter and the if oscillator. furthermore, the direct conversion scheme eliminates the need for image rejection, thereby relaxing the bandpass filter selectivity requirements following the lna. the direct downconverter consists of highly linear double-balanced i/q mixers, an lo frequency doubler option, an lo quadrature generator, and baseband i/q buffer amplifiers driven by the mixers outputs. in a direct downconversion receiver, i/q mixers have more stringent requirements on mixer output linearity since they need to handle large voltage swings at baseband due to close-in interferers. the rf signal is applied to the differential input (rfin+, rfin-) of the direct downconversion receiver through an off-chip balun. the differential input structure results in a higher common-mode rejection for second-order nonlinearity generated in the receiver s front end. the differential input requires matching to appropriate impedance of the balun. some applications may require a bandpass filter between the lna and the mixer, as shown in figures 1 and 2, to attenuate the residual transmit power leakage and out-of-band spurious signals. the mixer baseband buffers amplify the mixer i and q differential outputs and convert them to single-ended outputs (mix_i, mix_q). these buffer amplifiers have pin name function 31 rfin- i/q mixers noninverting input. for narrow frequency bands between 1.8ghz and 2.5ghz, port must be matched using external matching components. 33 iout2 i-channel vga2 baseband output 34 dci2- inverting offset correction input for i-channel vga2 amplifier 35 dci2+ noninverting offset correction input for i-channel vga2 amplifier 36 iin2- inverting vga2, i-channel baseband input 37 iin2+ noninverting vga2, i-channel baseband input 39 iout1 i-channel vga1 amplifier baseband output 40 dci1- inverting offset correction input for i-channel vga1 amplifier 41 dci1+ noninverting offset correction input for i-channel vga1 amplifier 42 iin1- inverting vga1, i-channel baseband input 43 iin1+ noninverting vga1, i-channel baseband input 45 mix_i mixer i-channel baseband output. connect external series capacitor to ac-couple the output to the load. 47 lo lo input. internally matched to 50 ? . pin description (continued)
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 19 very low output impedance (<2 ? ). the smallest load that should be used is 600 ? . at the output of the i/q mixers buffers, baseband lowpass filters should be used to provide adjacent and alternate channel selectiv- ity. this reduces the level of adjacent channel and close-in interferers to the input of the following base- band amplifier. the lo signal is applied externally to the lo input port. an lo doubler circuit doubles the lo signal frequency before it is applied to the mixer lo port. connect x2_en to ground to enable the lo doubler circuit. with this circuit enabled, the required lo frequency is half that of the rf carrier frequency. connect x2_en to v cc to disable the frequency doubler circuit and the lo fre- quency is the same as the rf carrier frequency. the half lo frequency scheme results in the use of lower frequency and lower cost vcos. it also reduces the lo leakage to the receiver s input. the mixer is guaranteed qout2 iout2 iin2- iin2+ iout1 iin1- iin1+ mix_i shdn lnain bias x2 bias high-gain amp gain_set qin2- qin2+ qout1 qin1- qin1+ rfin+ mix_q x2_en lo ld generator doubler bias block mst shdn lnaout rfin- multiplexer amp amp i_channel agc1 i_channel agc1 q_channel agc2 i_channel agc2 q_channel q_channel q_channel i_channel double balanced mixer offset correction loop offset correction loop offset correction loop offset correction loop vga control polyphase rc quadrature generator low-gain amp lna block functional diagram
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 20 ______________________________________________________________________________________ v cc 5.6nh 5pf duplexer from transmitter bpf lpf_1 i-channel load q-channel load lpf_2 lpf_q2 lpf_q1 iout2 qout2 v cc qin2+ gnd lnain v cc v cc gnd cext- mix_i gain_set cext+ mix_q iin1+ iout1 lo gnd qin1+ dcq1+ qout1 iin2- dci2- dcq2+ qin2- v cc 100pf v cc rfin+ gnd gnd x 2 o/i o 1 2 3 5 8 6 7 10 9 4 11 12 13 14 16 15 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 48 37 38 39 40 41 42 43 44 45 46 47 i/q shdn gnd agc lnaout qin1- dcq1- dcq2- rfin- gnd dci2+ iin2+ dci1+ iin1- v cc gnd lo input 68pf rx enable doubler enable/disable lna gain select agc dci1- cext rf input 22pf 1pf 22pf t-line balun 50 ? 4.7nh 4.7nh 50 ? q2 0.1 f 0.056 f 0.1 f 0.1 f 0.056 f 0.056 f 0.01 f 100pf 22pf 6pf 68pf 4.7nh 100pf 1000pf 0.01 f v cc 1000pf 68pf to all v cc pins 0.1 f 68pf 680 ? 2.2k 1k 1k 0.1 f 0.1 f 10 f 0.56 f 2.2k 680 ? 0.56 f 0.1 f 0.056 f 1k 0.1 f 0.1 f 2.2k 680 ? 0.1 f 0.1 f 0.1 f 680 ? 2.2k 1k x2_en 68pf max2700 ctrl 1 ctrl 2 detect 17 1 1.5nh 68pf mixtnk figure 1. max2700 typical operating circuit (1960mhz)
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 21 max2701 v cc mixtnk duplexer from transmitter bpf lpf_1 i-channel load q-channel load lpf_2 lpf_q2 lpf_q1 iout2 qout2 v cc qin2+ gnd lnain v cc v cc gnd cext- mix _i gain_set cext+ mix_q iin1+ iout1 lo gnd qin1+ dcq1+ qout1 iin2- dci2- dcq2+ qin2- v cc v cc v cc rfin+ gnd gnd x 2 1 2 3 5 8 6 7 10 9 4 11 12 13 14 16 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 48 37 38 39 40 41 42 43 44 45 46 47 i/o o i/q shdn gnd agc lnaout qin1- dcq1- dcq2- rfin- gnd dci2+ iin2+ dci1+ iin1- v cc gnd lo input 68pf 1000pf 100pf rx enable doubler enable/disable lna gain select agc dci1- cext rf input 22pf 22pf 68pf t-line balun 50 ? i2 50 ? 2.7nh 2.7nh q2 0.1 f 0.056 f 0.1 f 0.1 f 0.056 f 0.056 f 0.01 f 100pf 22pf 2.7nh 2pf 1nh 68pf 0.5pf 10pf v cc 1000pf 68pf 0.5pf to all v cc pins 0.1 f 0.01 f 68pf 68pf 680 ? 2.2k 1k 1k 0.1 f 0.1 f 10 f 0.56 f 2.2k 680 ? 0.56 f 0.1 f 0.056 f 1k 0.1 f 0.1 f 2.2k 680 ? 0.1 f 0.1 f 0.1 f 680 ? 2.2k 1k x2_en ctrl 2 ctrl1 detect 1 1000pf 5.6nh 3pf figure 2. max2701 typical operating circuit (2400mhz)
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 22 ______________________________________________________________________________________ vcc j19 j20 c46 68pf c45 1000pf + c4 10 f 29 30 32 33 34 35 36 v cc rfin+ rfin- gnd 25 26 27 28 qin2- dcq2+ dcq2- qout2 iout2 dci2- dci2+ iin2- 8 7 6 5 4 3 2 1 v cc lnain gnd 12 11 10 9 x2_en v cc cext+ cext- 41 42 43 44 45 46 47 48 dci1+ iin1- iin1+ gnd 37 38 39 40 iin2+ v cc iout1 dci1- mix_i gnd lo v cc 20 19 18 17 16 15 14 13 qin1- dcq1+ mixtnk qin2+ qin1+ v cc 24 23 22 21 qout1 dcq1- mix_q gnd lnaout gnd gnd gnd agc gain_set shdn c8 100pf c9 0.01 f c7 1000pf c6 1000pf c2 68pf c3 1000pf c1 0.01 f c40 22pf j1 vcc r1 0 ? r2 100 ? r5 100 ? r6 100 ? j2 vcc r3 0 ? r4 0 ? j5 vcc r9 0 ? r10 0 ? j4 vcc r7 0 ? r8 0 ? x2en z4 6pf (1nh) c43 68pf c5 0 ? (10pf) z1 4.7nh (0.5pf) j4 c10 68pf vcc r12 0 ? r11 100 ? 1 c25 68pf c30 0.1 f c23 0.1 f vcc r26 0 ? l6 4.7nh (2.7nh) l5 4.7nh (2.7nh) c31 0.1 f r29 820 ? c22 0.1 f r23 820 ? c24 0.56 f c29 0.56 f c27 22pf c26 22pf r27 51 ? j13 r28 51 ? r24 51 ? j11 j12 r25 51 ? c28 1pf (5pf) 2 3 4 balun/toko/b4f 5 u1 max2700 max2701 vcc r40 0 ? vcc r32 0 ? l7 0 ? c48 open c41 open c47 open c42 open c33 100pf c34 0.1 f j18 c37 0.1 f r35 820 ? c36 0.1 f c39 0.56 f r39 1k r38 1k j17 c38 0.1 f r36 1.1k r37 3.6k r44 51 ? j16 c35 0.56 f r33 1.1k r34 1k j15 c32 0.1 f r30 1.1k r31 3.6k r43 51 ? j14 c18 0.1 f r18 820 ? c19 0.1 f c15 0.56 f r14 1k r13 1k c17 0.1 f r16 1.1k r41 51 ? r17 3.6k c20 0.56 f r19 1k r20 1k c21 0.1 f r22 1.1k r21 3.6k r42 51 ? 2 1 c49 5pf (3pf) l4 5.6nh vcc r15 0 ? c16 0.1 f c14 100pf gnd c11 68pf vcc r45 0 ? l3 c12 22pf c13 (2pf) open j6 j7 j8 j9 j10 31 () are for max2701ev kit only. figure 3. max2700/max2701 ev kit schematic
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 23 to operate without degrading its performance over the lo power range of -10dbm to -16dbm. the quadrature generator consists of a wideband polyphase network. each output of the polyphase filter is buffered, ampli- fied, and then fed to the mixer s differential lo port. variable gain amplifier (vga) the agc in each baseband channel i/q is implement- ed by two variable gain amplifiers with equal gains. each amplifier provides about 40db voltage gain at the maximum setting and 30db of gain control. the first baseband vga (vga1) is a cascaded wideband ampli- fier with differential input and single-ended output. it is optimized for low noise in the high-gain state and has low-power dissipation and sufficient linearity in all gain settings to ensure desired compression performance. the second baseband vga (vga2) is a multistage wideband amplifier with differential inputs and a single- ended output. in each channel, connect a baseband lowpass filter between vga1 and vga2 to provide additional channel selectivity at the adjacent channel. if the vga amplifiers are driven single ended, the com- plementary input of vga should be ac-coupled to ground through a matched source impedance. vga offset correction an internal offset correction feedback amplifier associ- ated with each vga removes the dc offsets present in the vgas. offset correction preserves maximum output compression performance during maximum gain condi- tions. each offset correction loop effectively ac-cou- ples the associated vga signal path. each vga1 network yields a highpass corner frequency according to the following: f -3db (hz) = 5300 / c dc (nf) (v agc = 2.0v) f -3db (hz) = 700 / c dc (nf) (v agc = 0.5v) where c dc is the value of the capacitors, in nano- farads, across dci1+, dci1- and dcq1+, dcq1-. note that the corner frequency is a function of the gain set- ting, increasing with increasing gain. each vga2 net- work provides a highpass corner frequency predicted by the following: f -3db (hz) = 145 / c dc (f) where c dc is the value of the capacitors, in micro- farads, across dci2+, dci2- and dcq2+, dcq2-. the time constants associated with the offset correction networks limit turn-on time. for applications where the turn-on time is critical, the offset correction networks can be disabled by shorting the corresponding pins together (dci1+ to dci1-, dcq1+ to dcq1-, dci2+ to dci2-, and dcq2+ to dcq2-). vga2 i/q gain mismatch correction the signal amplitudes at the outputs of the i- and q- channel vga2 amplifiers are compared, and any differ- ence is corrected by a differential feedback network associated with the gain control circuitry. differential amplitude information is extracted by use of a single external capacitor across pins 1 and 2 (cext- and cext+). the residual difference signal is amplified and fed back to the gain control network, increasing the gain of the channel with the smaller signal while decreasing the gain of the larger signal s channel. this network will correct amplitude mismatches generated by gain mismatches in the previous stages of the receiver (the mixer and vga1), as well as insertion-loss mismatch. the correction network is capable of decreasing up to 2db of amplitude mismatch at the inputs of the i/q vga2 amplifiers to <0.5db amplitude mismatch. the gain correction network can be disabled by shorting cext- to cext+. bias circuit operate the max2700/max2701 in shutdown mode by connecting shdn to gnd, reducing current consump- tion to 20a. in shutdown mode, bias current to all the blocks is turned off through a master shutdown circuit. in applications where the lna is not used, turn off the lna by connecting the lnain to ground. applications information lna matching the max2700/max2701 are designed to operate from 1.8ghz to 2.1ghz and 2.1ghz to 2.5ghz, respectively. the lnas in figures 1 and 2 are optimized for noise figure and gain centered around 1960mhz and 2400mhz, respectively. operation at other frequencies in the band requires reoptimization of the input and out- put matching circuits. the noise figure is sensitive to input matching and losses in the input traces. lna input matching should be optimized for desired noise figure, gain, and vswr performance. high q matching elements should be used at the lna input. proper board layout is essential to increase the isolation between lo and the lna input. this minimizes lo leakage and thus dc offset. i/q demodulator input matching the rf input match of the i/q demodulator in figure 1 and 2 are optimized for 1960mhz and 2400mhz opera- tion, respectively. for operation at a different frequency, the matching circuit should be reoptimized. single- ended operation at the demodulator is achieved through the use of an off-chip balun transformer. in figure 1, the balun, inductors, and capacitors constitute the matching circuit of the differential i/q demodulator input.
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 24 ______________________________________________________________________________________ i/q mixer and vga1 output load requirements to retain acceptable linearity performance, the mixer and vga1 output loads should be >600 ? . layout issues a properly designed pc board is an essential part of any rf/microwave circuit. use controlled impedance lines on all frequency inputs and outputs. use low- inductance connections to ground on all ground pins and wherever the components are connected to ground. place decoupling capacitors close to all v cc connections. for proper chip operation, the metal pad- dle at the back of the chips must be grounded through via holes in the board. table 2. max2700 lna s-parameters low-gain mode (v cc = 3.0v) table 1. max2700 lna s-parameters high-gain mode (v cc = 3.0v) frequency (ghz) |s11| s11 |s21| s21 |s12| s12 |s22| s22 1.70 0.542 -84.1 7.09 53.97 0.023 65.36 0.367 37.3 1.75 0.485 -82.9 7.412 41.4 0.025 46.6 0.286 11.4 1.80 0.471 -80.1 7.268 29.5 0.024 34.3 0.216 -23.1 1.85 0.466 -78.8 7.07 19.9 0.0243 29.6 0.185 -68.4 1.90 0.443 -79.2 6.977 10.1 0.025 22.5 0.217 -99.5 1.95 0.441 -79.3 6.635 0.2 0.025 13.8 0.306 -127 2.00 0.436 -84.8 6.115 -7.96 0.024 16.4 0.387 -152.8 2.05 0.324 -88.3 6.119 -13.47 0.0338 15.23 0.408 -165 2.10 0.288 -74.9 5.947 -22.7 0.0383 -4.813 0.476 -176.7 2.15 0.300 -66.7 5.687 -31.1 0.0387 -20.7 0.529 172 2.20 0.320 -63.1 5.31 -40.5 0.0384 -32.8 0.587 162.4 frequency (ghz) |s11| s11 |s21| s21 |s12| s12 |s22| s22 1.70 0.637 -65.6 0.731 52.5 0.018 77 0.398 41.5 1.75 0.625 -66.3 0.763 42.9 0.018 52 0.328 21.8 1.80 0.622 -67.1 0.772 31.3 0.016 40 0.258 -7 1.85 0.618 -67.3 0.76 21.2 0.014 39 0.191 -45 1.90 0.617 -67 0.758 10.3 0.014 38 0.203 -79 1.95 0.617 -69.2 0.717 -1.1 0.015 34 0.238 -114 2.00 0.616 -70.1 0.678 -10.7 0.014 24 0.332 -141 2.05 0.611 -71.8 0.603 -13 0.022 37.6 0.323 -105 2.10 0.611 -74.5 0.634 -19.5 0.028 13.4 0.36 -170 2.15 0.61 -76.8 0.634 0.27 0.03 -5 0.402 -178 2.20 0.6 -80 0.621 -37 0.033 -14 0.484 174
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 25 table 6. max2701 mixer rfin+ input s-parameters (v cc = 3.0v) frequency (ghz) |s11| s11 2.10 0.590 -152 2.15 0.600 -161 2.20 0.604 -171 2.25 0.619 180 2.30 0.634 171 2.35 0.651 162.7 2.40 0.663 154 2.45 0.675 147 2.50 0.690 142 table 5. max2700 mixer rfin+ input s-parameters (v cc = 3.0v) table 4. max2701 lna s-parameters low-gain mode (v cc = 3.0v) frequency (ghz) |s11| s11 |s21| s21 |s12| s12 |s22| s22 2.10 0.589 -102.2 0.684 -36.2 0.025 -10.36 0.46 -157 2.15 0.59 -106.12 0.662 -45.2 0.029 -21.6 0.49 -172 2.20 0.591 -111.15 0.644 -52.8 0.032 -35.3 0.51 176.7 2.25 0.596 -117.3 0.63 -60.4 0.033 -50.4 0.54 165 2.30 0.594 -125.2 0.621 -69 0.036 -62.2 0.56 154.5 2.35 0.58 -134 0.608 -77.8 0.037 -76.5 0.58 145.2 2.40 0.548 -144 0.589 -87.8 0.038 -96 0.6 136.5 2.45 0.506 -154.4 0.556 -98 0.035 -109 0.62 129 2.50 0.469 -164 0.519 -107 0.029 -120 0.63 122 frequency (ghz) |s11| s11 1.70 0.612 -101.2 1.75 0.637 -105 1.80 0.624 -111.5 1.85 0.615 -116 1.90 0.607 -121 1.95 0.603 -128 2.00 0.598 -135 table 3. max2701 lna s-parameters high-gain mode (v cc = 3.0v) frequency (ghz) |s11| s11 |s21| s21 |s12| s12 |s22| s22 2.10 0.303 -110 6.71 -32.9 0.036 -28.1 0.563 -162.5 2.15 0.283 -108 6.35 -42.7 0.04 -42.6 0.61 -178 2.20 0.269 -108 5.98 -49.8 0.042 -55 0.63 168.4 2.25 0.260 -109 5.7 -56.6 0.042 -67.4 0.64 155.4 2.30 0.254 -111 5.37 -63.4 0.043 -80 0.64 144 2.35 0.250 -114.6 5.08 -69.7 0.043 -92 0.632 134.4 2.40 0.241 -120 4.82 -75.7 0.04 -104 0.626 127 2.45 0.230 -129 4.55 -81.5 0.037 -114 0.625 121 2.50 0.218 -139 4.37 -87 0.035 -122 0.635 116
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers 26 ______________________________________________________________________________________ doubler disabled x x x x 2 2 2 2 _ _ _ _ e e e e n n n n = v cc doubler enabled x x x x 2 2 2 2 _ _ _ _ e e e e n n n n = 0 frequency (ghz) |s11| s11 frequency (ghz) |s11| s11 1.70 0.03 92 850 0.479 -50.6 1.75 0.053 116 875 0.474 -50.1 1.80 0.086 123 900 0.466 -51.6 1.85 0.108 127 925 0.456 -52 1.90 0.135 128 950 0.442 -52 1.95 0.161 132 975 0.424 -53 2.00 0.186 136 1000 0.403 -53.6 1025 0.384 -54 1050 0.365 -54 table 8. max2701 lo input s-parameters (x2_en = 1, x2_en = 0) chip information transistor count: 3307 doubler disabled x x x x 2 2 2 2 _ _ _ _ e e e e n n n n = v cc doubler enabled x x x x 2 2 2 2 _ _ _ _ e e e e n n n n = 0 frequency (ghz) |s11| s11 frequency (ghz) |s11| s11 2.10 0.257 160 1.05 0.358 -53.4 2.15 0.279 164 1.10 0.341 -53 2.20 0.299 167 1.15 0.32 -52 2.25 0.314 171 1.20 0.299 -52 2.30 0.33 174 1.25 0.268 -51 2.35 0.347 178 2.40 0.357 -179 2.45 0.366 -175 2.50 0.373 -171 table 7. max2700 lo input s-parameters (x2_en = 1, x2_en = 0)
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers ______________________________________________________________________________________ 27 package information 48l,tqfp.eps
max2700/max2701 1.8ghz to 2.5ghz direct downconversion receivers maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. 28 ____________________maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ? 2000 maxim integrated products printed usa is a registered trademark of maxim integrated products. package information (continued)
e nglish ? ???? ? ??? ? ??? what's ne w p roducts solutions de sign ap p note s sup p ort buy comp any me mbe rs max2700 part number table notes: see the max2700 quickview data sheet for further information on this product family or download the max2700 full data sheet (pdf, 344kb). 1. other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales . 2. didn't find what you need? ask our applications engineers. expert assistance in finding parts, usually within one business day. 3. part number suffixes: t or t&r = tape and reel; + = rohs/lead-free; # = rohs/lead-exempt. more: see full data sheet or part naming c onventions . 4. * some packages have variations, listed on the drawing. "pkgc ode/variation" tells which variation the product uses. 5. part number free sample buy direct package: type pins size drawing code/var * temp rohs/lead-free? materials analysis max2700ec m-td -40c to +85c rohs/lead-free: no max2700ec m-d tqfp;48 pin;7x7x1 mm dwg: 21-0065g (pdf) use pkgcode/variation: c 48e-7 * -40c to +85c rohs/lead-free: no materials analysis max2700ec m+d tqfp;48 pin;7x7x1 mm dwg: 21-0065g (pdf) use pkgcode/variation: c 48e+7 * -40c to +85c rohs/lead-free: yes materials analysis max2700ec m+td tqfp;48 pin;7x7x1 mm dwg: 21-0065g (pdf) use pkgcode/variation: c 48e+7 * -40c to +85c rohs/lead-free: yes materials analysis didn't find what you need? c ontac t us: send us an email c opyright 2 0 0 7 by m axim i ntegrated p roduc ts , dallas semic onduc tor ? legal n otic es ? p rivac y p olic y


▲Up To Search▲   

 
Price & Availability of MAX2700ECM-TD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X