Part Number Hot Search : 
1N6300 70004 SB120 HGT1S D45H11E3 MC79L GNTRP 2SK0765
Product Description
Full Text Search
 

To Download RN5RK451A-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rn5rk series vfm step-up dc/dc converter no.ea-045-080411 1 outline the rn5rkxx1a/xx1b/xx2a series are cmos-based vfm (chopper) step-up dc/dc converter ics with ultra low supply current and high output voltage accuracy. each of the rn5rkxx1a/xx1b consists of an oscillator, a vfm control circuit, a driver transistor to have low on resistance (lx switch), a reference voltage unit, a high speed comparator, resistors for voltage detection, an lx switch protection circuit and an internal chip enabl e circuit. a low ripple, high efficiency step-up dc/dc converter can be composed of this rn5rkxx1a/xx1b with only three external components: an inductor, a diode and a capacitor. the rn5rkxx2a uses the same chip as what is empl oyed in the rn5rkxx1a/1b ic and has a drive pin (ext) for an external transistor instead of an lx pin. as it is possible to load a large output current with a power transistor which has a low saturation voltage, rn5rkxx2a ic is recommendable to users who need an output current as large as between several tens ma and several hundreds ma. using the chip enable function, it is possible to make the supply current on standby minimized. since the package for these ics is sot-23-5, high density mounting of the ics on board is possible. features ? small number of external components .............................. only an inductor, a diode and a capacitor (rn5rkxx1a/xx1b) ? standby current ................................................................... typ. 0 a ? low temperature-drift coeffici ent of output voltage........... typ. 100ppm/ c ? output voltage rang e.......................................................... 2.0v to 5.5v ? two kinds of duty ratio....................................................... 77% (xx1a, xx2a)/ 55% (xx1b) ? high output vo ltage accu racy ............................................. 2.5% ? small packages ................................................................. sot-23-5 ? high efficiency ..................................................................... typ. 85% (rn5rk301b, v in =2v, i out =10ma) ? low ripple and low noise ? including a driver transistor with lo w on resistance........ only rn5rkxx1a/xx1b ? low start-up volt age............................................................ max.0.9v applications ? power source for battery-powered equipment. ? power source for cameras, camcorders, vcrs, and hand-held communication equipment. ? power source for those appliances which require higher cell voltage than that of batteries.
rn5r k 2 outline diagram rn5rkxx1x rn5rkxx2a lx 5 1 gnd 4 v out 2 vref chip enable ce osc 100khz vfm control buffer v lx limiter ?{ ?| error amp. lxsw ext 5 1 gnd 4 v out 2 vref chip enable ce osc 100khz vfm control buffer ?{ ?| error amp. selection guide the output voltage, the driver type, the duty cycle and the taping type for t he ics can be selected at the user's request. the selection can be made by designating the part number as shown below: rn5rkxx xx-xx part number a bc d code contents a setting output voltage (v out ) : stepwise setting with a step of 0.1v in the range of 2.0v to 5.5v is possible. b designation of driver 1: internal lx tr. driver 2: external tr. driver c designation of duty cycle a: 77% b: 55% d designation of taping type ex. tr (refer to taping specifications ; tr type is the standard direction.)
rn5r k 3 pin configurations ? sot-23-5 1 4 5 23 (mark side) pin discription ? rn5rkxx1x ? rn5rkxx2a pin no. symbol description pin no. symbol description 1 ce chip enable pin 1 ce chip enable pin 2 v out step-up output monitoring pin, power supply (for device itself) 2 v out step-up output monitoring pin, power supply (for device itself) 3 nc no connection 3 nc no connection 4 gnd ground pin 4 gnd ground pin 5 l x switching pin (nch open drain) 5 ext external tr. drive pin (cmos output)
rn5r k 4 absolute maximum ratings ? rn5rkxx1x symbol item rating unit v out step-up output pin voltage ?] 0.3 to 9.0 v v lx lx pin voltage ?] 0.3 to 9.0 v v ce ce pin voltage ?] 0.3 to v out +0.3 v i lx lx pin output current 500 ma p d power dissipation (sot-23-5)* 420 mw topt operating temperature range ?] 40 to 85 c tstg storage temperature range ?] 55 to 125 c ? rn5rkxx2a symbol item rating unit v out step-up output pin voltage ?] 0.3 to 9.0 v v ext ext pin voltage ?] 0.3 to v out +0.3 v v ce ce pin voltage ?] 0.3 to v out +0.3 v i ext ext pin output current 30 ma p d power dissipation (sot-23-5)* 1 420 mw topt operating temperature range ?] 40 to 85 c tstg storage temperature range ?] 55 to 125 c *)for power dissipation, please refer to package information to be described. absolute maximum ratings absolute maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. moreover, such values for any two items must not be reached simultaneously. operation above these absolute maximum ratings may cause degradation or permanent damage to the device. these are stress ratings only and do not necessarily imply functional operation below these limits.
rn5r k 5 electrical characteristics ? rn5rkxx1a/xx1b topt = 25 c symbol item conditions min. typ. max. unit v out output voltage v in = set v out 0.6, i out =1ma 0.975 1.025 v v in input voltage 8.0 v ? v out / ? t opt output voltage temperature coefficient ? 40 c < = < = c 100 ppm / c vstart start-up voltage v in =0v 2v* 1 0.75 0.90 v ? vstart/ ? t opt start-up voltage temperature coefficient -40c < = < = 2v* 1 -1.6 mv/ c vhold hold-on voltage (xx1a) v in =2v 0v* 1 0.7 v vhold hold-on voltage (xx1b) v in =2v 0v* 1 0.9 v i dd2 supply current2 v out = v ce =set v out +0.5v 2 5 a i standby standby current v out = 6v, v ce =0v 0.5 a i lxleak lx leakage current v out = v lx =8v 1 a fosc maximum oscillator frequency v out = v ce =set v out 0.96 80 100 120 khz ? fosc/ ? t opt frequency temperature coefficient -40c < = < = c oscillator duty cycle (xx1a) 70 77 85 % maxduty oscillator duty cycle (xx1b) v out = v ce = set v out 0.96, on (v lx "l" side) 47 55 63 % v lxlim v lx voltage limit v out = v ce =1.95v, lx switch on 0.4 0.6 0.8 v v ceh ce "h" input voltage 0.9 v v cel ce "l" input voltage v out = v ce =set v out 0.96, judgment is made by the lx waveform 0.3 v i ceh ce "h" input current v out = 6.0v, v ce = 6.0v -0.5 0 0.5 a i cel ce "l" input current v out = 6.0v, v ce = 0v -0.5 0 0.5 a 2.0v < = < = a 2.5v < = < = < = < = < = < = < = < = < = < = < = < = a
rn5r k 6 symbol item conditions min. typ. max. unit 2.0v < = < = = 0.4v 80 2.5v < = < = = 0.4v 100 3.0v < = < = = 0.4v 120 3.5v < = < = = 0.4v 140 4.0v < = < = = 0.4v 160 4.5v < = < = = 0.4v 180 i lx lx switching current 5.0v < = < = = 0.4v 200 ma *1)condition: an output load resistor r l is connected between v out and gnd. note that the resistor r l has a resistance which makes an output current 1ma after step-up operation. *2)the supply current 1 (i dd1 ) for ic itself is measured when the internal oscillator works continuously. if the oscillator works intermittently, the supply current becomes smaller th an the value which is written on the above table.
rn5r k 7 ? rn5rkxx2a topt = 25 c symbol item conditions min. typ. max. unit v out output voltage v out = v ce =0v 6v, judgment is made by the ext waveform 0.975 1.025 v v in input voltage 8.0 v ? v out / ? t opt output voltage temperature coefficient ? 40 c < = < = c 100 ppm / c vstart start-up voltage v out = v ce =0v 2v 0.7 0.8 v i dd2 supply current2 v out = v ce =set v out +0.5v 2 5 a i standby standby current v out = 6v, v ce =0v 0.5 a fosc maximum oscillator frequency v out = v ce = set v out 0.96 80 100 120 khz ? fosc/ ? t opt frequency temperature coefficient -40c < = < = c duty oscillator duty cycle v out = v ce =set v out 0.96, on (v lx ?h? side) 70 77 85 % v ceh ce ?h? input voltage 0.9 v v cel ce ?l? input voltage v out = v ce =set v out 0.96, judgment is made by the ext waveform 0.3 v i ceh ce ?h? input current v out = 6.0v, v ce = 6.0v -0.5 0 0.5 a i cel ce ?l? input current v out = 6.0v, v ce = 0v -0.5 0 0.5 a 2.0v < = < = a 3.0v < = < = < = < = < = < = a 2.0v < = < = < = < = < = < = < = < = < = < = < = < =
rn5r k 8 typical applications and technical notes rn5rkxx1x rn5rkxx2a l : 100 ?g (sumida, cd54) l : 27 h (sumida, cd105) sd : ma721 ( matsushita electronics, schottky type ) sd : rb111c (rohm, schottky type) cl : 47 f (tantalum type) cl1 : 47 f (tantalum type) cl2 : 47 f (tantalum type) tr : 2sd1628g rb : 300 ? cb : 0.01 f when you use these ics, consider the following issues; ? set external components as close as possible to th e ic and minimize the connection between the components and the ic. in particular, a capacitor should be connected to v out pin with the minimum connection. ? make sufficient grounding. a large current flows thr ough gnd pin by switching. when the impedance of the gnd connection is high, the potential within the ic is vari ed by the switching current. this may result in unstable operation of the ic. ? use capacitors with a capacity of 22 f or more, and with good high frequency characteristics such as tantalum capacitors. we recommend you to use output capacitors with an allowable voltage at least 3 times as much as setting output voltage. this is because there may be a case where a spike-shaped high voltage is generated by an inductor when an lx transistor is off. ? choose an inductor that has sufficient ly small d.c. resistance and large allowable current and is hard to reach magnetic saturation. and if the value of inductance of an inductor is extremely small, the i lx may exceed the absolute maximum rating at the maximum loading. use an inductor with appropriate inductance. ? use a diode of a schottky type with high switching speed, and also pay attention to its current capacity. ? the performance of power circuit with using this ic d epends on external components. choose the most suitable components for your application. ext gnd v ou t c e sd l c l1 v in tr rb cb c l2 l x gnd v out ce sd l c l v in
rn5r k 9 test circuits lx sbd c l r l gnd v out l v in ce v c l 1k ? a lx gnd v out ce test circuit 1 test circuit 2 c l oscilloscope lx gnd v out ce test circuit 3 *)when v lx lim and i lx are measured, the 5 ? resistor is used. otherwise 1k ? is used. components inductor (l) : 100 h, 220 h (sumida electric co., ltd; cd-54) diode (sbd) : ma721 (matsushita electronics corporation; schottky type) capacitor (c l ) : 47 f (tantalum type) using these test circuits characteristics data has been obtained as shown on the following pages. test circuit 1: typical characteristics (1)-(7) test circuit 2: typical characteristics (9)-(11) test circuit 3: typical char acteristics (8), (12)-(16)
rn5r k 10 sbd c l rb cb l v in tr v ext gnd v out ce c l a ext gnd v out ce test circuit 1 test circuit 2 c l ext gnd v out ce oscilloscope c l oscilloscope ext 100 ? gnd v out ce test circuit 3 test circuit 4 components inductor (l) : 27 h (sumida electric co., ltd; cd-104) diode (sbd) : rb111c (rohm co., ltd; schottky type) capacitor (cl) : 47 f 2(tantalum type) transistor (tr) : 2sd1628g base resistor (rb) : 300w base capacitor (cb): 0.01 f the typical characteristics were obtained with using these test circuits. test circuit 1: typical characteristics (1)-(5) test circuit 2: typical characteristics (8)-(10) test circuit 3: typical characteristics (11)-(14) test circuit 4: typical characteristics (6), (7)
rn5r k 11 typical characteristics rn5rkxx1a/b 1) output voltage vs. output current (topt=25c) rn5rk301a rn5rk301a 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 output current i out (ma) output voltage v out (v) 0 204060 160 140 80 100 120 l=100 h 1.0v 1.3v 1.5v 2.0v v in =0.9v 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 output current i out (ma) output voltage v out (v) 0 204060 160 140 80 100 120 l=220 h 1.0v 1.5v 2.0v 1.3v v in =0.9v rn5rk301b rn5rk301b 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 output current i out (ma) output voltage v out (v) 0 102030 50 40 l=100 h 1.5v 2.0v 1.3v v in =1.0v 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 output current i out (ma) output voltage v out (v) 0 102030 50 40 l=220 h 1.5v 2.0v 1.3v v in =1.0v rn5rk501a rn5rk501a 6 5 4 3 2 1 0 output current i out (ma) output voltage v out (v) 0 50 100 150 200 l=100 h 1.5v 2.0v 3.0v 4.0v v in =0.9v 6 5 4 3 2 1 0 output current i out (ma) output voltage v out (v) 0 50 100 150 200 l=220 h 1.5v 2.0v 3.0v 4.0v v in =0.9v
rn5r k 12 rn5rk501b rn5rk501b 6 5 4 3 2 1 0 output current i out (ma) output voltage v out (v) 0 50 100 150 200 l=100 h 2.0v 2.5v 3.0v 4.0v v in =1.5v 6 5 4 3 2 1 0 output current i out (ma) output voltage v out (v) 0 50 100 150 200 l=220 h 2.0v 2.5v 3.0v 4.0v v in =1.5v 2) efficiency vs. output current (topt = 25c) rn5rk301a rn5rk301a 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 20 40 60 160 140 80 100 120 l=100 h 1.0v 2.0v v in =0.9v 1.3v 1.5v 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 20 40 60 160 140 80 100 120 l=220 h 1.0v 2.0v v in =0.9v 1.3v 1.5v rn5rk301b rn5rk301b 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 102030 50 40 l=100 h 1.5v 2.0v 1.3v v in =1.0v 100 90 80 70 60 50 output current i out (ma) efficiency (%) 0 102030 50 40 l=220 h 2.0v 1.5v 1.3v v in =1.0v
rn5r k 13 rn5rk501a rn5rk501a 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 50 100 150 200 l=100 h 1.5v 2.0v 3.0v 4.0v v in =0.9v 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 50 100 150 200 l=220 h 1.5v 2.0v 3.0v 4.0v v in =0.9v rn5rk501b rn5rk501b 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 50 100 150 200 l=100 h 2.0v 2.5v v in =1.5v 4.0v 3.0v 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 50 100 150 200 l=220 h 2.0v 2.5v v in =1.5v 4.0v 3.0v 3) ripple voltage vs. output current (topt = 25c) rn5rk301a rn5rk301a 140 120 100 80 60 40 20 0 output current i out (ma) ripple voltage vr(mvp-p) 0 20 40 60 160 140 80 100 120 l=100 h 1.5v 2.0v v in =0.9v 1.0v 1.3v 160 140 120 100 80 60 40 20 0 output current i out (ma) ripple voltage vr(mvp-p) 040 20 80 60 100 160 140 120 l=220 h 2.0v v in =0.9v 1.0v 1.3v 1.5v
rn5r k 14 rn5rk301b rn5rk301b 45 40 35 30 25 20 15 10 5 0 output current i out (ma) ripple voltage vr(mvp-p) 0 102030 50 40 l=100 h 2.0v v in =1.0v 1.3v 1.5v 45 40 35 30 25 20 15 10 5 0 output current i out (ma) ripple voltage vr(mvp-p) 0 102030 50 40 l=220 h 2.0v 1.3v 1.0v 1.5v rn5rk501a rn5rk501a 200 150 100 50 0 output current i out (ma) ripple voltage vr(mvp-p) 0 50 100 150 200 l=100 h 2.0v 4.0v 3.0v 1.5v v in =0.9v 200 150 100 50 0 output current i out (ma) ripple voltage vr(mvp-p) 0 50 100 150 200 l=220 h 2.0v 4.0v 3.0v 1.5v v in =0.9v rn5rk501b rn5rk501b 140 120 100 80 60 40 20 0 output current i out (ma) ripple voltage vr(mvp-p) 0 50 100 150 200 l=100 h 4.0v 2.0v 3.0v 2.5v v in =1.5v 140 120 100 80 60 40 20 0 output current i out (ma) ripple voltage vr(mvp-p) 0 50 100 150 200 l=220 h 4.0v 3.0v 2.5v v in =1.5v
rn5r k 15 4) start-up/hold-on voltage vs. output current (topt = 25 c) rn5rk301a rn5rk501a 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 output current i out (ma) start-up/hold-on voltage vstart/vhold(v) 015 10 5 l=100 h vstart vhold 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 output current i out (ma) start-up/hold-on voltage vstart/vhold(v) 015 10 5 l=100 h vhold vstart rn5rk301b rn5rk501b 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 output current i out (ma) start-up/hold-on voltage vstart/vhold(v) 015 10 5 l=100 h vstart vhold 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 output current i out (ma) start-up/hold-on voltage vstart/vhold(v) 015 10 5 l=100 h vstart vhold 5) output voltage vs. temperature rn5rk301a rn5rk501a 3.10 3.05 3.00 2.95 2.90 temperature topt( ) output voltage v out (v) -50 -25 100 75 02550 v in =1.5v,l=100 h i out =0 m a i out =10 m a i out =30 m a 5.10 5.05 5.00 4.95 4.90 temperature topt( ) output voltage v out (v) -50 -25 100 75 02550 v in =3.0v,l=100 h i out =30 m a i out =0 m a i out =10 m a
rn5r k 16 6) start-up voltage vs. temperature rn5rk501a rn5rk501b 1 0.8 0.6 0.4 0 0.2 temperature topt( ) start-up voltage vstart(v) -50 -25 100 75 02550 l=100 h 1 0.8 0.6 0.4 0 0.2 temperature topt( ) start-up voltage vstart(v) -50 -25 100 75 02550 l=100 h 7) hold-on voltage vs. temperature rn5rk501a rn5rk501b 1 0.8 0.6 0.4 0 0.2 temperature topt( ) hold-on voltage vhold(v) -50 -25 100 75 02550 l=100 h 1 0.8 0.6 0.4 0 0.2 temperature topt( ) hold-on voltage vhold(v) -50 -25 100 75 02550 l=100 h 8) lx switching current vs. temperature rn5rk301a rn5rk501a 500 400 300 200 0 100 temperature topt( ) lx switching current ilx(ma) -50 -25 100 75 02550 500 400 300 200 0 100 temperature topt( ) lx switching current ilx(ma) -50 -25 100 75 02550
rn5r k 17 9) supply current 1 vs. temperature rn5rk301a rn5rk501a 50 40 30 20 10 temperature topt( ) supply current 1 i dd1 ( a) -50 -25 100 75 02550 80 70 60 50 30 40 temperature topt( ) supply current 1 i dd1 ( a) -50 -25 100 75 02550 10) supply current 2 vs. temperature 11) standby current 3 vs. temperature rn5rk301a rn5rk301a 5 4 3 2 0 1 temperature topt( ) supply current 2 i dd2 ( a) -50 -25 100 75 02550 1 0.8 0.6 0.4 0 0.2 temperature topt( ) supply current 3 istandby( a) -50 -25 100 75 02550 12) oscillator duty cycle vs. temperature rn5rk301a rn5rk301b 85 80 75 70 temperature topt( ) oscullator duty cycle maxduty( % ) -50 -25 100 75 02550 60 58 56 54 50 52 temperature topt( ) oscullator duty cycle maxduty( % ) -50 -25 100 75 02550
rn5r k 18 13) ce ?h? input voltage vs. temperature 14) ce ?l? input voltage vs. temperature rn5rk301a rn5rk301a 1 0.8 0.6 0.4 0 0.2 temperature topt( ) ce h input voltage v ceh ( v ) -50 -25 100 75 02550 1 0.8 0.6 0.4 0 0.2 temperature topt( ) ce l input voltage v cel ( v ) -50 -25 100 75 02550 15) maximum oscillator frequ ency vs. temperature 16) v lx voltage limit vs. temperature rn5rk301a rn5rk301a 120 110 100 90 80 70 60 50 temperature topt( ) maximum oscillator frequency f osc (khz) -50 -25 100 75 02550 0.8 0.7 0.6 0.5 0.4 temperature topt( ) v lx voltage limit v lx (v) -50 -25 100 75 02550
rn5r k 19 rn5rkxx2a 1) output voltage vs. output current (topt=25c) rn5rk302a rn5rk502a 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 output current i out (ma) output voltage v out (v) 0 200 400 600 800 l=27 h 2.0v 1.0v 1.5v 1.3v v in =0.9v 6.0 5.0 4.0 3.0 2.0 1.0 0.0 output current i out (ma) output voltage v out (v) 0 200 400 600 800 l=27 h 1.5v 2.0v 3.0v v in =1.0v 2) efficiency vs. output current (topt=25c) rn5rk302a rn5rk502a 100 90 80 70 60 50 40 output current i out (ma) efficiency (%) 0 200 400 600 800 l=27 h 1.0v 2.0v v in =0.9v 1.3v 1.5v 100 90 80 70 60 50 30 40 output current i out (ma) efficiency (%) 0 200 400 600 800 l=27 h 3.0v 1.5v 2.0v v in =1.0v 3) ripple voltage vs. output current (topt=25c) rn5rk302a rn5rk502a 250 200 150 100 50 0 output current i out (ma) ripple voltage vr(mvp-p) 0 200 400 600 800 l=27 h 2.0v 1.5v 1.3v 1.0v v in =0.9v 300 250 200 150 100 50 0 output current i out (ma) ripple voltage vr(mvp-p) 0 200 400 600 800 l=27 h 3.0v 2.0v 1.5v v in =1.0v
rn5r k 20 4) start-up/hold-on voltage vs. output current (topt=25c) rn5rk302a rn5rk502a 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 output current i out (ma) start-up/hold-on voltage vstart/vhold(v) 0 200 150 100 50 l=27 h v hold v start 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.4 0.2 0.6 0.0 output current i out (ma) start-up/hold-on voltage vstart/vhold(v) 0 200 150 100 50 l=27 h vstart,vhold 5) output voltage vs. temperature rn5rk302a rn5rk502a 3.10 3.00 2.90 3.05 2.95 2.85 2.80 temperature topt( ) output voltage v out (v) -50 -25 100 75 02550 v in =1.2v,l=27 h i out =0 m a i out =50 m a i out =100 m a 5.10 5.00 5.05 4.95 4.90 temperature topt( ) output voltage v out (v) -50 -25 100 75 02550 v in =3.0v,l=27 h i out =0 m a i out =50 m a i out =100 m a 6) ext ?h? output current vs. temperature rn5rk302a rn5rk502a 10 9 8 7 6 5 4 0 3 2 1 temperature topt( ) ext h output current i exth (ma) -50 -25 100 75 02550 10 9 8 7 6 5 4 0 3 2 1 temperature topt( ) ext h output current i exth (ma) -50 -25 100 75 02550
rn5r k 21 7) ext ?l? output current vs. temperature rn5rk302a rn5rk502a 20 18 16 14 12 10 8 0 6 4 2 temperature topt( ) ext l output current i extl (ma) -50 -25 100 75 02550 20 18 16 14 12 10 8 0 6 4 2 temperature topt( ) ext l output current i extl (ma) -50 -25 100 75 02550 8) supply current 1 vs. temperature rn5rk302a rn5rk502a 50 40 30 20 0 10 temperature topt( ) supply current 1 i dd1 ( a) -50 -25 100 75 02550 50 40 30 20 0 10 temperature topt( ) supply current 1 i dd1 ( a) -50 -25 100 75 02550 9) supply current 2 vs. temperature 10) standby current vs. temperature rn5rk302a rn5rk302a 5 4 3 2 0 1 temperature topt( ) supply current 2 i dd2 ( a) -50 -25 100 75 02550 1 0.8 0.6 0.4 0 0.2 temperature topt( ) supply current 3 istandby( a) -50 -25 100 75 02550
rn5r k 22 11) oscillator duty cycle vs. temperature 12) maximum oscillator freq uency vs. temperature rn5rk302a rn5rk302a 85 80 75 70 temperature topt( ) oscullator duty cycle maxduty( % ) -50 -25 100 75 02550 120 110 100 90 80 70 60 50 temperature topt( ) maximum oscillator frequency f osc (khz) -50 -25 100 75 02550 13) ce ?h? input voltage vs. temperature 14) ce ?l? input voltage vs. temperature rn5rk302a rn5rk302a 1 0.8 0.6 0.4 0 0.2 temperature topt( ) ce h input voltage v ceh ( v ) -50 -25 100 75 02550 1 0.8 0.6 0.4 0 0.2 temperature topt( ) ce l input voltage v cel ( v ) -50 -25 100 75 02550
pac k age information pe-sot-23-5-071228 ? sot-23-5 (sc-74a) unit: mm package dimensions 2.9 0.2 0.4 0.1 1.9 0.2 (0.95) (0.95) 54 123 +0.2 ? 0.1 1.6 +0.2 ? 0.1 1.1 +0.1 ? 0.05 0.15 2.8?0.3 0 to 0.1 0.8 0.1 0.2 min. taping specification 2.0max. 0.3?0.1 4.0?0.1 2.0?0.05 4.0?0.1 3.3 3.2 8.0?0.3 1.75?0.1 3.5?0.05 1.5 +0.1 0 ? 1.1 0.1 tr user direction of feed taping reel dimensions reuse reel (eiaj-rrm-08bc) (1reel=3000pcs) 2 0.5 11.4 1.0 9.0 0.3 13 0.2 ? 60 ? +1 0 180 ? 0 ? 1.5 21 0.8
pac k age information pe-sot-23-5-071228 power dissipation (sot-23-5) this specification is at mounted on board. power dissipation (p d ) depends on conditions of mounting on board. this specification is based on the measurement at the condition below: (power dissipation (sot-23-5) is substitution of sot-23-6.) measurement conditions standard land pattern environment mounting on board (wind velocity=0m/s) board material glass cloth epoxy plastic (double sided) board dimensions 40mm 40mm 1.6mm copper ratio top side : approx. 50% , back side : approx. 50% through-hole 0.5mm 44pcs measurement result (topt=25 c, tjmax=125 c) standard land pattern free air power dissipation 420mw 250mw thermal resistance ja = (125 ? 25 c)/0.42w = 238 c/w 400 c/w 0 50 100 25 75 85 125 150 ambient temperature ( c) 0 200 100 300 400 250 420 500 600 power dissipation p d (mw) on board free air 40 40 power dissipation measurement board pattern ic mount area unit : mm recommended land pattern 0.7 max. 0.95 0.95 1.9 2.4 1.0 (unit: mm)
mark information me-rn5rk-080405 rn5rk series mark specification ? sot-23-5 (sc-74a) 1 2 3 4 1 , 2 : product code (refer to part number vs. product code) 3 , 4 : lot number ? part number vs. product code rn5rkxx1a series rn5rkxx1b series rn5rkxx2a series product code product code product code part number 1 2 part number 1 2 part number 1 2 rn5rk301a w a rn5rk271b x a rn5rk202a y a rn5rk241a w b rn5rk201b x b rn5rk252a y b rn5rk501a w c rn5rk221b x c rn5rk272a y c rn5rk201a w d rn5rk251b x d rn5rk302a y d rn5rk251a w e rn5rk301b x e rn5rk332a y e rn5rk331a w f rn5rk331b x f rn5rk502a y f rn5rk551a w g rn5rk361b x g rn5rk552a y g rn5rk221a w h rn5rk501b x h rn5rk522a y h rn5rk271a w j rn5rk551b x j rn5rk222a y j rn5rk361a w k rn5rk391b x k rn5rk452a y k rn5rk261a w l rn5rk421b x l rn5rk532a y l rn5rk281a w m rn5rk351b x m rn5rk352a y m rn5rk321a w n rn5rk451b x n rn5rk362a y n rn5rk371a w p rn5rk462a y p rn5rk391a w q rn5rk472a y q rn5rk351a w r rn5rk521a w s rn5rk401a w t rn5rk511a w u rn5rk451a w v


▲Up To Search▲   

 
Price & Availability of RN5RK451A-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X