![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IRG4PH50KDPBF insulated gate bipolar transistor with ultrafast soft recovery diode e g n-channel c v ces = 1200v v ce(on) typ. = 2.77v @v ge = 15v, i c = 24a pd- 95189 to-247ac short circuit rated ultrafast igbt parameter max. units v ces collector-to-emitter voltage 1200 v i c @ t c = 25c continuous collector current 45 i c @ t c = 100c continuous collector current 24 i cm pulsed collector current 90 a i lm clamped inductive load current 90 i f @ t c = 100c diode continuous forward current 16 i fm diode maximum forward current 90 t sc short circuit withstand time 10 s v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 200 p d @ t c = 100c maximum power dissipation 78 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) 04/26/04 parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 0.64 r jc junction-to-case - diode ??? ??? 0.83 c/w r cs case-to-sink, flat, greased surface ??? 0.24 ??? r ja junction-to-ambient, typical socket mount ??? ??? 40 wt weight ??? 6 (0.21) ??? g (oz) thermal resistance absolute maximum ratings w features ? high short circuit rating optimized for motor control, t sc =10s, v cc = 720v , t j = 125c, v ge = 15v ? combines low conduction losses with high switching speed ? tighter parameter distribution and higher efficiency than previous generations ? igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes ? latest generation 4 igbt's offer highest power density motor controls possible ? hexfred tm diodes optimized for performance with igbts. minimized recovery characteristics reduce noise, emi and switching losses ? this part replaces the irgph50kd2 and irgph50md2 products ? for hints see design tip 97003 benefits www.irf.com 1 ? lead-free
IRG4PH50KDPBF 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 180 270 i c = 24a q ge gate - emitter charge (turn-on) ? 25 38 nc v cc = 400v see fig.8 q gc gate - collector charge (turn-on) ? 70 110 v ge = 15v t d(on) turn-on delay time ? 87 ? t r rise time ? 100 ? t j = 25c t d(off) turn-off delay time ? 140 300 i c = 24a, v cc = 800v t f fall time ? 200 300 v ge = 15v, r g = 5.0 ? e on turn-on switching loss ? 3.83 ? energy losses include "tail" e off turn-off switching loss ? 1.90 ? mj and diode reverse recovery e ts total switching loss ? 5.73 7.9 see fig. 9,10,18 t sc short circuit withstand time 10 ? ? s v cc = 720v, t j = 125c v ge = 15v, r g = 5.0 ? t d(on) turn-on delay time ? 67 ? t j = 150c, see fig. 10,11,18 t r rise time ? 72 ? i c = 24a, v cc = 800v t d(off) turn-off delay time ? 310 ? v ge = 15v, r g = 5.0 ?, t f fall time ? 390 ? energy losses include "tail" e ts total switching loss ? 8.36 ? mj and diode reverse recovery l e internal emitter inductance ? 13 ? nh measured 5mm from package c ies input capacitance ? 2800 ? v ge = 0v c oes output capacitance ? 140 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 53 ? ? = 1.0mhz t rr diode reverse recovery time ? 90 135 ns t j = 25c see fig. ? 164 245 t j = 125c 14 i f = 16a i rr diode peak reverse recovery current ? 5.8 10 a t j = 25c see fig. ? 8.3 15 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ? 260 675 nc t j = 25c see fig. ? 680 1838 t j = 125c 16 di/dt = 200a/s di (rec)m /dt diode peak rate of fall of recovery ? 120 ? a/s t j = 25c see fig. during t b ?76? t j = 125c 17 switching characteristics @ t j = 25c (unless otherwise specified) ns ns parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 1200 ? ? v v ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ? 0.91 ? v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ? 2.77 3.5 i c = 24a v ge = 15v ? 3.28 ? v i c = 45a see fig. 2, 5 ? 2.54 ? i c = 24a, t j = 150c v ge(th) gate threshold voltage 3.0 ? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ? -10 ? mv/c v ce = v ge , i c = 250a g fe forward transconductance 13 19 ? s v ce = 100v, i c = 24a i ces zero gate voltage collector current ? ? 250 a v ge = 0v, v ce = 1200v ? ? 6500 v ge = 0v, v ce = 1200v, t j = 150c v fm diode forward voltage drop ? 2.5 3.5 v i c = 16a see fig. 13 ? 2.1 3.0 i c = 16a, t j = 150c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) IRG4PH50KDPBF www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 1 10 100 1 10 v , collector-to-emitter volta g e (v) i , collector-to-emitter current (a) ce c v = 15v 20 s pulse width ge t = 25 c j t = 150 c j 1 10 100 5 6 7 8 9 10 11 12 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5 s pulse width cc t = 25 c j t = 150 c j 0.1 1 10 100 0 5 10 15 20 25 30 f, frequency (khz) load current (a) for both: duty cycle: 50% t = 125c t = 9 0 c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave: 40 IRG4PH50KDPBF 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 25 50 75 100 125 150 0 10 20 30 40 50 t , case temperature ( c) maximum dc collector current(a) c 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) -60 -40 -20 0 20 40 60 80 100 120 140 160 1.5 2.0 2.5 3.0 3.5 4.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 48 c i = a 24 c i = a 12 c IRG4PH50KDPBF www.irf.com 5 -60 -40 -20 0 20 40 60 80 100 120 140 160 1 10 100 t , junction temperature ( c ) total switching losses (mj) j r = ohm v = 15v v = 960v g ge cc i = a 48 c i = a 24 c i = a 12 c 0 10 20 30 40 50 5.4 5.8 6.2 6.6 7.0 r , gate resistance (ohm) total switching losses (mj) g v = 960v v = 15v t = 25 c i = 24a cc ge j c fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 40 80 120 160 200 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 24a cc c 5.0 ? 1 10 100 0 1000 2000 3000 4000 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c c ies c oes c res r g , gate resistance ( ? ) 800v 800v IRG4PH50KDPBF 6 www.irf.com 1 10 100 1000 1 10 100 1000 10000 v = 20v t = 125 c ge j o safe operating area v , collector-to-emitter volta g e (v) i , collector current (a) ce c 0 10 20 30 40 50 0 5 10 15 20 i , collector current (a) total switching losses (mj) c r = ohm t = 150 c v = 960v v = 15v g j cc ge fig. 13 - typical forward voltage drop vs. instantaneous forward current fig. 11 - typical switching losses vs. collector current fig. 12 - turn-off soa 5.0 ? v cc = 800v 1 10 100 1000 0.0 2.0 4.0 6.0 8.0 fm t = 150c t = 125c t = 25c j j j forward volta g e dro p - v ( v ) instantaneous forward current ( a ) IRG4PH50KDPBF www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 100 200 300 100 1000 trr - (ns) f di /dt - ( a/ s ) i = 3 2 a i = 1 6a i = 8.0a f f f v = 200v t = 125c t = 25c r j j 0 300 600 900 1200 100 1000 f di /d t - ( a/ s ) rr q - (nc ) i = 32a i = 16a i = 8.0a f f f v = 200v t = 125c t = 25c r j j 10 100 1000 100 1000 f di /d t - ( a/ s ) di(rec)m /dt - (a/s) i = 32 a i =16a i = 8.0a f f f v = 200v t = 125c t = 25c r j j 0 10 20 30 40 100 1000 f di /dt - ( a/ s ) rrm i - (a) i = 8.0a i = 16a i = 32a f f f v = 200v t = 125c t = 25c r j j IRG4PH50KDPBF 8 www.irf.com t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+ 5 s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr icdt vcicdt IRG4PH50KDPBF www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 960v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit IRG4PH50KDPBF 10 www.irf.com notes: repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20) v cc =80%(v ces ), v ge =20v, l=10h, r g = 5.0 ? (figure 19) pulse width 80s; duty factor 0.1%. pulse width 5.0s, single shot. to-247ac part marking information example: as s e mb led on ww 35, 2000 lot code 5657 wit h as s e mb l y t his is an irfpe30 in t he as s embly line "h" 035h logo internat ional rectifier irfpe30 lot code as s e mb l y 56 57 part number dat e code ye ar 0 = 2000 we e k 35 line h note: "p" in assembl y line position indicates "lead-free" to-247ac package outline dimensions are shown in millimeters (inches) data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/04 note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ |
Price & Availability of IRG4PH50KDPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |