Part Number Hot Search : 
ICS551M 89LPC9 KBPM302G CMY211 RC15005 FCQ06A06 1SRWA 54HC3
Product Description
Full Text Search
 

To Download ADIS16488 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  tactical grade ten degrees of freedom inertial sensor data sheet ADIS16488 rev. b information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p .o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ? 2011 C 2012 analog devices, inc. all rights reserved. features triaxial, digital gyroscope , 450/sec dynamic range < 0.05 orthogonal alignment 6 /h r in - run bias stability 0.3/hr ang ul ar random walk 0.01% nonlinearity triaxial, digital accelerometer, 18 g triaxial, delta angle and delta velocity outputs triaxial, digital magnetometer, 2.5 gauss digital pressure sensor, 300 mbar to 1100 mbar fast start - up time, ~ 500 ms factory - calibrated sensitivity, bias, and axial alignment calibration temperat ure range: ?40c to +70 c spi - compatible serial interface e mbedded temperature sensor programmable operation and control automatic and manual bias correction controls 4 fir filter banks, 120 configurable taps digital i/o: data - ready alarm indicator, external clock alarms for condition monitoring power - down/sleep mode for power management optional external sample clock input: up to 2 .4 khz single - command self - test single - supply operation: 3.0 v to 3.6 v 2000 g shock survivability operating temperature range: ?40c to +85c applications platform stabilization and control navigation personnel t racking instrument robotics general description the ADIS16488 isensor? devic e is a complete inertial system that includes a triaxis gyroscope, a triaxis accelerometer , tri axis magnetometer , and pressure sensor. each inertial sensor in the ADIS16488 combines industry -leading i mems? tec hnology with signal conditioning that optimizes dynamic performance. the factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyro scope bias). as a result, each sensor has its own dynamic compensation for mulas that provide accurate sensor measurements. the ADIS16488 provides a simple, cost - effective method for integrating accurate, multiaxis inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. all necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. tight orthogonal alignment simplifies inertial frame alignment in navigation systems. the spi and register structure provide a simple interface for data collection and configuration control. the ADIS16488 uses the same footprint and connector system as the adis16375 , which greatly simplifies the upgrade process. it comes in a module that is approximately 47 mm 44 mm 14 mm and has a standard connector interface. f unctional b lock d iagram controlller clock triaxia l gyro triaxia l acce l power management cs sclk din dout gnd vdd temp vdd dio1 dio2 dio3 dio4 vddrtc rst spi triaxia l magn pressure self-test i/o alarms output dat a registers user contro l registers calibr a tion and fi l ters ADIS16488 10277-001 figure 1.
ADIS16488 data sheet rev. b | page 2 of 36 t able of contents features .............................................................................................. 1 applications ....................................................................................... 1 gener al description ......................................................................... 1 functional block diagram .............................................................. 1 revision history ............................................................................... 2 s pecifications ..................................................................................... 3 timing specifications .................................................................. 5 absolute maximum ratings ............................................................ 6 esd caution .................................................................................. 6 pin configuration and function descriptions ............................. 7 typical performance characteristics ............................................. 8 basic operation ................................................................................. 9 register structure ......................................................................... 9 spi communication ................................................................... 10 device configuration ................................................................ 10 reading sensor data .................................................................. 10 user registers .................................................................................. 11 output data registers .................................................................... 14 inertial sensor data format ...................................................... 14 rotation rate (gyroscope) ........................................................ 14 acceleration ................................................................................. 15 delta angles ................................................................................ 15 delta velocity .............................................................................. 16 magnetometers ........................................................................... 17 barometer .................................................................................... 17 internal temperature ................................................................. 17 status/alarm indicators ............................................................. 18 firmware revision ..................................................................... 19 product identification ................................................................ 19 digital signal processing ............................................................... 20 gyroscopes/accelerometers ..................................................... 20 averaging/decimation filter .................................................... 20 magnetometer/barometer ......................................................... 20 fir filter banks .......................................................................... 21 calibration ....................................................................................... 23 gyroscopes .................................................................................. 23 accelerometers ........................................................................... 24 magnetometers ........................................................................... 24 barometers .................................................................................. 26 restoring factory calibration .................................................. 26 point of percussion alignment ................................................. 26 alarms .............................................................................................. 27 static alarm use ......................................................................... 27 dynamic alarm use .................................................................. 27 system controls .............................................................................. 29 global commands ..................................................................... 29 memory management ............................................................... 29 general - purpose i/o ................................................................. 29 power management ................................................................... 30 applications information .............................................................. 32 prototype interface board ......................................................... 32 installation tips .......................................................................... 32 outline dimensions ....................................................................... 33 ordering guide .......................................................................... 33 revision history 2/12 rev. a to rev. b change to features section ............................................................. 1 changes to table 3 ............................................................................ 6 changes to figure 7 and figure 8 ................................................... 8 changes to delta angles section .................................................. 15 changes to delta velocity section, table 31, table 32, table 33, and table 34 ..................................................................................... 16 change to status/alarm indicators section ................................ 18 changes to gyroscopes/accelerometers section, averaging/decimation filter section, magnetometer/barometer sectio n, and figure 20 .................................................................... 20 changes to input sync/clock control section ........................... 30 changes to p rototype i nterface b oard section and figure 26 .......................................................................................... 30 12/11 rev. 0 to rev. a changes to specifications section ................................................... 3 changes to system/alarm indicators section ............................ 18 changes to averaging/ decimation filter section ...................... 20 changes to general - purpose i/o section ................................... 29 changes to input sync/clock control section ........................... 30 10/11 revision 0 : initial version
data sheet ADIS16488 rev. b | pag e 3 of 36 specifications t a = 25c, v dd = 3.3 v, angular rate = 0/sec, dynamic range = 45 0/sec 1 g , 300 m bar to 1100 mbar, unless otherwise noted. table 1. parameter test conditions/comments min typ max unit gyroscopes dynamic range 450 480 /sec sensitivity x_gyro_out and x_gyro_low (32 - bit) 3.052 10 ?7 /sec/lsb init ial sensitivity tolerance 1 % sensitivity temperature coefficient ?40c t a +70c, 1 35 ppm/c misalignment axis -to - axis 0.05 degrees axis - to - frame (package) 1.0 degrees nonlinearity best - fit straight line , fs = 450/sec 0.01 % of fs initial bias error 1 0. 2 /sec in - run bias stability 1 6.25 / hr angular random walk 1 0.3 /hr bias temperature coefficient ?40c t a +70 c , 1 0.0025 /sec/c linear acceleration effect on bias any axis, 1 (config[7] = 1) 0.009 /sec/ g output noise no filtering 0.16 /sec rms rate noise density f = 25 hz, no filtering 0.0066 /sec/hz rms 3 db bandwidth 330 hz sensor resonant frequency 18 khz accelerometers each axis dynamic range 18 g sensitivity x_accl_out and x_accl_low (32 - bit) 1.221 10 ?8 g /lsb initial sensitivity tolerance 0.5 % sensitivity temperature coefficient ?40c t a +85c , 1 25 ppm/c misalignment axis -to - axis 0.035 degrees axis -to - frame (package) 1.0 degrees nonlinearity best - fit straight line, 10 g 0.1 % of fs best - fit straight line, 18 g 0.5 % of fs initial bias error 1 16 m g in - run bias stability 1 0.1 m g velocity random walk 1 0.029 m/sec/hr bias temperature coefficient ?40c t a +85c 0.1 m g /c output noise no filtering 1.5 m g rms noise density f = 25 hz, no filtering 0.067 m g /hz rms 3 db bandwidth 330 hz sensor resonant frequency 5.5 khz magnetometer dynamic range 2.5 gauss sensitivity 0. 1 mga uss/lsb initial sensitivity tolerance 2 % sensitivity temperature coefficient 1 275 ppm/c misalignment axis to axis 0.25 degrees axis to frame (package) 0.5 degrees nonlinearity best fit straight line 0.5 % of fs initial bias error 0 gauss stimulus 15 mgauss bias temperature coefficient ?40c t a +85c , 1 0.3 mgauss/c output noise no filtering 0.45 mgauss noise density f = 25 hz, no filtering 0.054 mgauss/hz 3 db bandwidth 330 hz
ADIS16488 data sheet rev. b | page 4 of 36 parameter test conditions/comments min typ max unit barometer pressure range 300 1100 mbar extended 10 1200 mbar sensitivity barom_out and barom_low (32 - bit) 6.1 10 ?7 mbar/lsb error with supply 0.04 %/v total error 4.5 mbar relative error 1 ?40c to +85c 2.5 mbar linearity 2 best fit straight line, fs = 1100 mba r 0.1 % of fs ?40c to +85c 0.2 % of fs linear -g sensitivity 1 g , 1 0.005 mbar/ g noise 0.025 mbar rms temperature sensor scale factor output = 0x0000 at 25c (5c) 0.00565 c/lsb logic inputs 3 input high voltage, v ih 2.0 v input low voltage, v il 0.8 v cs wake - up pulse width 20 s logic 1 input current, i ih v ih = 3.3 v 10 a logic 0 input current, i il v il = 0 v all pins except rst 10 a rst pin 0.33 ma input capacitance, c in 10 pf digital outputs output high voltage, v oh i source = 0.5 ma 2.4 v output low voltage, v ol i sink = 2.0 ma 0.4 v flash memory endurance 4 100,000 cycles data retention 5 t j = 85c 20 years functiona l times 6 time until data is available power - on start - up time 500 ms reset recovery time 500 ms sleep mode recovery time 500 s flash memory update time 375 ms flash memory test time 50 ms automatic self - test time using internal clo ck, 100 sps 12 ms conversion rate 2.46 ksps initial clock accuracy 0.02 % temperature coefficient 40 ppm/c sync input clock 0.7 7 2.4 khz power supply, vdd operating voltage range 3.0 3.6 v power supply current 8 normal mode, vdd = 3.3 v , 254 ma sleep mode, vdd = 3.3 v 12.2 ma power - down mode, vdd = 3.3 v 45 a power supply, vddrtc operating voltage range 3.0 3.6 v real - time clock supply current normal mode, vddrtc = 3.3 v 13 a 1 the relative error assumes that the initial error, at 25c, is corrected in the end application. 2 linearity errors assume a full scale (fs) of 1000 mbar. 3 the digital i/o signals are driven by an internal 3.3 v supply , and the inputs are 5 v tolerant. 4 endurance is qualified as per jedec standard 22 , method a117 , and measured at ?40 c , +25 c , +85 c, and +125 c. 5 the data r etention specifica tion assumes a junction temperature (t j ) of 8 5 c as per jedec s tandard 22 , method a117. data r etention lifetime decreases with t j . 6 these times do not include thermal settling and internal filter response times, which may affect overall accuracy. 7 device functions at clock rates below 0.7 khz, but at reduced performance levels. 8 supply current transients can reach 450 ma for 400 s during start - up and reset recovery.
data sheet ADIS16488 rev. b | pag e 5 of 36 timing specification s t a = 25c, v dd = 3.3 v, unless otherwise noted. table 2. normal mode parameter description min 1 typ max 1 unit f sclk serial clock 0.01 15 mhz t stall stall period between data 2 s t cls serial clock low peri od 31 ns t chs serial clock high period 31 ns t cs chip select to clock edge 32 ns t dav dout valid after sclk edge 10 ns t dsu din setup time before sclk rising edge 2 ns t dhd din hold time after sclk rising edge 2 ns t dr , t df dout rise/fall times, 100 pf loading 3 8 ns t dsoe cs assertion to data out active 0 11 ns t hd sclk edge to data out invalid 0 ns t dshi cs de assertion to data out high impedance 0 9 ns t 1 input sync pulse wi dth 5 s t 2 input sync to data - ready output 490 s t 3 input sync period 417 s 1 guaranteed by design and characterization, but not tested in production . timing diagrams cs sclk dout din 1 2 3 4 5 6 15 16 r/w a5 a6 a4 a3 a2 d2 msb db14 d1 lsb db13 db12 db10 db11 db2 lsb db1 t cs t dshi t dav t hd t chs t cls t dsoe t dhd t dsu 10277-002 figure 2 . spi timing and sequence cs sclk t stall 10277-003 figure 3 . stall time and data rate t 3 t 2 t 1 sync clock (clkin) data ready output registers 10277-004 data valid data valid figure 4 . input clock timing diagram
ADIS16488 data sheet rev. b | page 6 of 36 absolute maximum rat ings table 3. parameter rating acceleration any axis, unpowered 2000 g any axis, powered 2000 g v dd to gnd ?0.3 v to + 3.6 v digital input voltage to gnd ?0.3 v to v dd + 0.2 v digital output voltage to gnd ?0.3 v to vdd + 0.2 v operating temperature range ?40c to + 85c storage temperature range ?65c to +1 50 c 1 barometric pressure 6 bar 1 extended exposu re to temperatures that are lower than ? 40c or higher than +105c can adversely affect the accuracy of the factory calibration. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating o nly; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliabilit y. table 4 . package characteristics package type ja jc device weight 24 - lead module ( ml - 24 - 6 ) 22.8 c/w 10.1 c/w 48 g esd caution
data sheet ADIS16488 rev. b | pag e 7 of 36 pin configuration and function descripti ons 1 dio3 sclk din dio1 dio2 vdd gnd gnd dnc dnc dnc vddrtc dio4 dout cs rst vdd vdd gnd dnc dnc dnc dnc dnc 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ADIS16488 top view (not to scale) notes 1. this represen ta tion displ a ys the top view pinout for the m a ting socket connec t or. 2. the actua l connec t or pins are not visible from the top vie w. 3. m a ting connec t or: samtec clm- 1 12-02 or equi v alen t. 4. dnc = do not connect t o these pins. 10277-005 figure 5 . mating connector pin assignments 10277-006 pin 1 pin 23 figure 6 . axial ori entation ( top side facing up) table 5 . pin function descriptions pin no. mnemonic type description 1 dio3 input/ output configurable digital input/output . 2 dio4 input/ output configurable digital input/output . 3 sclk i nput spi s erial clock. 4 dout o utput spi data output. clocks output on sclk falling edge. 5 din i nput spi data input. clocks input on sclk rising edge. 6 cs i nput spi chip select. 7 dio1 input/ output configurable digital input/output. 8 rst i nput reset. 9 dio2 input/ output configurable digital input/output. 10, 11, 12 v dd s upply power supply. 13, 14, 15 gnd s upply power ground. 16 to 22, 24 dnc not applicable do not connect to the se pin s. 23 vddrtc s upply real - time clock power supply.
ADIS16488 data sheet rev. b | page 8 of 36 typical performance characteristics 1000 1 10 100 0.01 0.1 1 10 100 1000 10000 root allan variance (/hour) integration period (seconds) 10277-007 +1 C1 average figure 7 . gyroscope allan variance , 25c 0.001 0.00001 0.0001 0.01 0.1 1 10 100 1000 10000 root allan variance ( g) integration period (seconds) 10277-008 +1 C1 average figure 8 . accelerometer allan variance, 25 c 0.8 ?0.8 ?0.6 ?0.4 ?0.2 0 0.2 0.4 0.6 ?40 ?30 ?20 ?10 0 10 20 30 40 50 60 70 80 gyro scale error (% fs) temperature (c) 10277-109 initial error = 0.5% tempco = 35ppm/c figure 9. gyroscope scale (sen sitivity) error and hysteresis vs. temperature 0.6 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0 0.1 0.2 0.3 0.4 0.5 ?40 ?30 ?20 ?10 0 10 20 30 40 50 60 70 80 gyro bias error (/sec) temperature (c) 10277-110 initial error = 0.2/sec tempco = 0.0025/sec/c figure 10 . gyroscope bias error and hysteresis vs. temperature
data sheet ADIS16488 rev. b | page 9 of 36 basic operation the ADIS16488 is an autonomous sensor system that starts up on its own when it has a valid power supply. after running through its initialization process, it begins sampling, processing, and loading calibrated sensor data into the output registers, which are accessible using the spi port. the spi port typically connects to a compatible port on an embedded processor, using the connection diagram in figure 11. the four spi signals facilitate synchronous, serial data communication. connect rst (see table 5) to vdd or leave it open for normal operation. the factory default configuration provides users with a data-ready signal on the dio2 pin, which pulses high when new data is available in the output data registers. system processor spi master sclk cs din dout sclk ss mosi miso +3.3v irq dio2 vdd i/o lines are compatible with 3.3v logic levels 10 6 3 5 4 9 11 12 23 13 14 15 ADIS16488 10277-009 figure 11. electrical connection diagram table 6. generic master processor pin names and functions mnemonic function ss slave select irq interrupt request mosi master output, slave input miso master input, slave output sclk serial clock embedded processors typically use control registers to configure their serial ports for communicating with spi slave devices such as the ADIS16488 . table 7 provides a list of settings, which describe the spi protocol of the ADIS16488 . the initialization routine of the master processor typically establishes these settings using firmware commands to write them into its serial control registers. table 7. generic master processor spi settings processor setting description master the ADIS16488 operates as a slave. sclk 15 mhz maximum serial clock rate. spi mode 3 cpol = 1 (polarity), and cpha = 1 (phase). msb-first mode bit sequence. 16-bit mode shift register/data length. register structure the register structure and spi port provide a bridge between the sensor processing system and an external, master processor. it contains both output data and control registers. the output data registers include the latest sensor data, a real-time clock, error flags, alarm flags, and identification data. the control registers include sample rate, filtering, input/output, alarms, calibration, and diagnostic configuration options. all communication between the ADIS16488 and an external processor involves either reading or writing to one of the user registers. dsp output registers control registers triaxis gyro triaxis magn baro temp sensor controller triaxis accel spi 10277-010 figure 12. basic operation the register structure uses a paged addressing scheme that is composed of 13 pages, with each one containing 64 register locations. each register is 16 bits wide, with each byte having its own unique address within that pages memory map. the spi port has access to one page at a time, using the bit sequence in figure 17. select the page to activate for spi access by writing its code to the page_id register. read the page_id register to determine which page is currently active. table 8 displays the page_id contents for each page, along with their basic functions. the page_id register is located at address 0x00 on every page. table 8. user register page assignments page page_id function 0 0x00 output data, cl ock, identification 1 0x01 reserved 2 0x02 calibration 3 0x03 control: sample rate, filtering, i/o, alarms 4 0x04 serial number 5 0x05 fir filter bank a coefficient 0 to coefficient 59 6 0x06 fir filter bank a, coefficient 60 to coefficient 119 7 0x07 fir filter bank b, coefficient 0 to coefficient 59 8 0x08 fir filter bank b, coefficient 60 to coefficient 119 9 0x09 fir filter bank c, coefficient 0 to coefficient 59 10 0x0a fir filter bank c, coefficient 60 to coefficient 119 11 0x0b fir filter bank d, coefficient 0 to coefficient 59 12 0x0c fir filter bank d, coefficient 60 to coefficient 119
ADIS16488 data sheet rev. b | page 10 of 36 s pi communication the spi port supports fu ll duplex communication, as shown in figure 17 , which enables external processors to write to din while reading dout , if the previous command was a read request . figure 17 provides a guideline for the bit coding on both din and dout. de vice configuration the spi provides write access to the control registers, one byte at a time, using the bit assignments shown in figure 17 . each register has 16 bits, where bits[7:0] represent the lower address (listed in table 9 ) and bits[15:8] represent the upper address. write to the lower byte of a register first, followed by a write to its upper byte second. the only register that changes with a single write to it s lower byte is the page_id register. for a write command, the first bit in the din sequence is set to 1. address b its[a6:a0] represent the target address , and data command bits [dc7:dc0] represent the data being written to the location. figure 13 provides an example of writing 0x0 3 to address 0x 00 ( page_id [7:0]), using din = 0x 8 003. this write command activates the c ontrol page for spi access. 10277-011 sclk cs din din = 1000 0000 0000 0011 = 0x8003, writes 0x03 to address 0x00 figure 13 . spi sequence for activating the control p age (din = 0x 80 03 ) dual memory structure writing configuration data to a control register updates its sram contents, which are volatile. after optimizing each relevant control register setting in a system, use the manual flash update command, which is located in glob_cmd[3] on p age 3 of the register map. activate the manual flash update command by turning to p age 3 (din = 0x8003) and setting glob_cmd[3] = 1 (din = 0x820 8 , then din = 0x8300 ). m ake sure that the power supply is within specification for the entire 375 ms processing time for a flash memory update. table 9 provides a memory map for all of the user registers, which includes a column of flash backup information. a yes in this column indicates that a register has a mirro r location in flash and, when backed up properly, automatically restores itself during startup or after a reset. figure 14 provides a diagram of the dual memory structure used to manage operation and store critical user setti ngs. nonvolatile flash memory (no spi access) manual flash backup start-up reset volatile sram spi access 10277-012 figure 14 . sram and flash memory diagram r eading s ensor d ata the ADIS16488 automatically starts up and activates p age 0 for data register access. write 0x00 to the page _ id regi ster (din = 0x8000) to activate p age 0 for data access after accessing any other page. a single register read requires two 16 - bit spi cycles. the first cycle requests the contents of a register using the bit assignments in fig ure 17 , and then the register contents follow dout during the second sequence. the first bit in a din command is zero, followed by either the upper or lower address for the register. the last eight bits are dont care, but the spi requires the full set of 16 sclks to receive the request. figure 15 includes two register reads in succession , which starts with din = 0x 1a 00 to request the contents of the z_ gyro_out register and follows with 0x18 00 to request the contents of the z_gyro_ low register . din dout 0x1a00 0x1800 next address z_gyro_out z_gyro_low 10277-013 figure 15 . spi r ead e xample figure 16 provides an example of the four spi signals when reading prod_id in a repeating pattern. this is a good pattern to use for troubleshooting the spi interface setup and communications because the contents of prod_id are predefined and stable. sclk cs din dout dout = 0100 0000 0110 1000 = 0x4068 = 16,488 (prod_id) din = 0111 1110 0000 0000 = 0x7e00 10277-014 figure 16 . spi read example, second 16 - bit sequence 10277-015 r/w r/w a6 a5 a4 a3 a2 a1 a0 dc7 dc6 dc5 dc4 dc3 dc2 dc1 dc0 d0d1d2d3d4d5d6d7d8d9d10d11d12d13d14 d15 cs sclk din dout a6 a5 d13d14 d15 notes 1. dout bits are produced only when the previous 16-bit din sequence starts with r/w = 0. 2. when cs is high, dout is in a three-state, high impedance mode, which allows multifunctional use of the line for other devices. figure 17 . spi communication bit sequence
data sheet ADIS16488 rev. b | pag e 11 of 36 u ser regi sters table 9 . user register memory map (n/a = not applicable) name r/w flash page_id address default register description format page_id r/w no 0x00 0x00 0x00 page i dentifier n/a reserved n/a n/a 0x00 0x02 to 0x0 4 n/a res erved n/a seq_cnt r no 0x00 0x06 n/a sequence counter table 56 sys_e_flag r no 0x00 0x08 0x0000 output, system error flags table 47 diag_sts r no 0x00 0x0a 0x0000 output, self - test error flags table 48 alm_sts r no 0x00 0x0c 0x0000 output, alarm error flags table 49 temp_out r no 0x00 0x0e n/a output, temperature table 45 x_gyro_low r no 0x00 0x10 n/a output, x - axis gyrosco pe, low word table 14 x_gyro_out r no 0x00 0x12 n/a output, x - axis gyroscope, high word table 10 y_gyro_low r no 0x00 0x14 n/a output, y - axis gyroscope, low word table 15 y_gy ro_out r no 0x00 0x16 n/a output, y - axis gyroscope, high word table 11 z_gyro_low r no 0x00 0x18 n/a output, z - axis gyroscope, low word table 16 z_gyro_out r no 0x00 0x1a n/a output, z - axis gyroscope, h igh word table 12 x_accl_low r no 0x00 0x1c n/a output, x - axis accelerometer, low word table 21 x_accl_out r no 0x00 0x1e n/a output, x - axis accelerometer, high word table 17 y_accl_low r no 0x00 0x20 n/a output, y - axis accelerometer, low word table 22 y_accl_out r no 0x00 0x22 n/a output, y - axis accelerometer, high word table 18 z_accl_low r no 0x00 0x24 n/a output, z - axis accelerometer, low word table 23 z_accl_out r no 0x00 0x26 n/a output, z - axis accelerometer, high word table 19 x_magn_ out r no 0x00 0x28 n/a output, x - axis magnetometer , high word table 38 y_magn_ out r no 0x00 0x2a n/a output, y - axis magnetometer , high word table 39 z_magn_ out r no 0x00 0x2c n/a output, z - axis magnetometer , high word table 40 barom_low r no 0x00 0x2e n/a ou tput, barometer, low word table 44 barom_out r no 0x00 0x30 n/a output, barometer, high word table 42 reserved n/a n/a 0x00 0x3 2 to 0x3 e n/a reserved n/a x_deltang_low r no 0x00 0x40 n/a output, x - axis delta angle, low word table 28 x_deltang_out r no 0x00 0x42 n/a output, x - axis delta angle, high word table 24 y_deltang_low r no 0x00 0x44 n/a output, y - axis delta angle, low word table 29 y_deltang_out r no 0x00 0x46 n/a output, y - axis delta angle, high word table 25 z_deltang_low r no 0x00 0x48 n/a output, z - axis delta angle, low word table 30 z_deltang_out r no 0x00 0x4 a n/a output, z - axis delta angle, high word table 26 x_deltvel_low r no 0x00 0x4c n/a output, x - axis delta velocity, low word table 35 x_deltvel_out r no 0x00 0x4e n/a output, x - axis delta velocity, hig h word table 31 y_deltvel_low r no 0x00 0x50 n/a output, y - axis delta velocity, low word table 36 y_deltvel_out r no 0x00 0x52 n/a output, y - axis delta velocity, high word table 32 z_deltvel_low r no 0x00 0x54 n/a output, z - axis delta velocity, low word table 37 z_deltvel_out r no 0x00 0x56 n/a output, z - axis delta velocity, high word table 33 reserved n/a n/a 0x00 0x58 to 0 x7 6 n/a reserved n/a time_ms_out r yes 0x00 0x78 n/a factory configuration time: minutes/seconds table 124 time_dh_out r yes 0x00 0x7a n/a factory configuration date /time: day/hour table 125 time_ym_ou t r yes 0x00 0x7c n/a factory configuration date : year /month table 126 prod_id r yes 0x00 0x7e 0x4068 output, product identification (16, 488) table 53 reserved n/a n/a 0x01 0x00 to 0x7 e n/a reserved n/a page_id r/w no 0x02 0x00 0x00 page identifier n/a reserved n/a n/a 0x02 0x02 n/a reserved n/a x_gyro_scale r/w yes 0x02 0x04 0x0000 calibration, scale, x - axis gyroscope table 71 y_gyro_scale r/w yes 0x02 0x06 0x0000 calibrati on, scale, y - axis gyroscope table 72 z_gyro_scale r/w yes 0x02 0x08 0x0000 calibration, scale, z - axis gyroscope table 73 x_accl_scale r/w yes 0x02 0x0a 0x0000 calibration, scale, x - axis accelerometer table 81 y_accl_scale r/w yes 0x02 0x0c 0x0000 calibration, scale, y - axis accelerometer table 82 z_accl_scale r/w yes 0x02 0x0e 0x0000 calibration, scale, z - axis accelerometer ta ble 83
ADIS16488 data sheet rev. b | page 12 of 36 name r/w flash page_id address default register description format xg_bias_low r/w yes 0x02 0x10 0x0000 calibration, offset, gyro scope , x- axis , low word table 67 xg_bias_high r/w yes 0x02 0x12 0x0000 calibration, offset, gyroscope, x- axis , high word table 64 yg_bias_low r/w yes 0x02 0x14 0x0000 calibration, offset, gyroscope, y- axis , low word table 68 yg_bias_high r/w yes 0x02 0x16 0x0000 calibration, offset, gyroscope, y- axis , high word table 65 zg_bias_low r/w yes 0x02 0x18 0x0000 calibration, offset, gyroscope, z- axis , low word table 69 zg_bias_high r/w yes 0x02 0x1a 0x0000 calibration, offset, gyroscope, z- axis , high word table 66 xa_bias_low r/w yes 0 x02 0x1c 0x0000 calibration, offset, accel erometer , x- axis , low word table 78 xa_bias_high r/w yes 0x02 0x1e 0x0000 calibration, offset, accelerometer, x- axis , high word table 75 ya_bias_low r/w yes 0x0 2 0x20 0x0000 calibration, offset, accelerometer, y- axis , low word table 79 ya_bias_high r/w yes 0x02 0x22 0x0000 calibration, offset, accelerometer, y- axis , high word table 76 za_bias_low r/w yes 0x02 0x24 0x0000 calibration, offset, accelerometer, z - axis , low word table 80 za_bias_high r/w yes 0x02 0x26 0x0000 calibration, offset, accelerometer, z- axis , high word table 77 hard_iron_x r/w yes 0x02 0x28 0x0000 calibration, hard iron, magnetometer , x- axis table 84 hard_iron_y r/w yes 0x02 0x2a 0x0000 calibration, hard iron, magnetometer , y- axis table 85 hard_iron_z r/w yes 0x02 0x2c 0x0000 calibratio n, hard iron, magnetometer , z- axis table 86 soft_iron_s11 r/w yes 0x02 0x2e 0x0000 calibration, soft iron, magnetometer, s11 table 88 soft_iron_s12 r/w yes 0x02 0x30 0x0000 calibration, soft iron, magne tometer, s12 table 89 soft_iron_s13 r/w yes 0x02 0x32 0x0000 calibration, soft iron, magnetometer, s13 table 90 soft_iron_s21 r/w yes 0x02 0x34 0x0000 calibration, soft iron, magnetometer, s21 table 91 soft_iron_s22 r/w yes 0x02 0x36 0x0000 calibration, soft iron, magnetometer, s22 table 92 soft_iron_s23 r/w yes 0x02 0x38 0x0000 calibration, soft iron, magnetometer, s23 table 93 soft_iron_s31 r/w yes 0x02 0x3a 0x0000 calibration, soft iron, magnetometer, s31 table 94 soft_iron_s32 r/w yes 0x02 0x3c 0x0000 calibration, soft iron, magnetometer, s32 table 95 soft_iron_s33 r/w yes 0x02 0x3e 0x0000 calibration, soft iron, magnetometer, s33 table 96 br_bias_low r/w yes 0x02 0x40 0x0000 calib ration, offset, barometer, low word table 99 br_bias_high r/w yes 0x02 0x42 0x0000 cali bration, offset, barometer, high word table 98 reserved n/a n/a 0x02 0x44 to 0x7 2 n/a reserved n/a user_scr_1 r/w yes 0x02 0x74 0x0000 user scratch register 1 table 120 user_scr_2 r/w yes 0x02 0x76 0x0 000 user scratch register 2 table 121 user_scr_3 r/w yes 0x02 0x78 0x0000 user scratch register 3 table 122 user_scr_4 r/w yes 0x02 0x7a 0x0000 user scratch register 4 table 123 flshcnt_low r yes 0x02 0x7c n/a diagnostic, flash memory count, low word table 115 flshcnt_high r yes 0x02 0x7e n/a diagnostic, flash memory count, high word table 116 page_id r/w no 0x03 0x00 0x0000 page identifier n/a glob_cmd w no 0x03 0x02 n/a control, global commands table 114 reserved n/a n/a 0x03 0x04 n/a reserved n/a fnctio_ctrl r/w yes 0x03 0x06 0x000d control, i/o pins, functional definitions table 117 gpio_ctrl r/w yes 0x03 0x08 0x00x0 1 control, i/o pins, general purpose table 118 config r/w yes 0x03 0x0a 0x00c0 control, clock , and miscellaneous correction table 74 dec_rate r/w yes 0 x03 0x0c 0x0000 control, output sample rate decimation table 55 null_cnfg r/w yes 0x03 0x0e 0x070a control, automatic bias correction config uration table 70 slp_cnt r/w no 0x03 0x10 n/a control, power - down/sleep mode table 119 reserved n/a n/a 0x03 0x12 to 0x1 4 n/a reserved n/a filtr_bnk_0 r/w yes 0x03 0x16 0x0000 filter selection table 57 filtr_bnk_1 r/w yes 0x03 0x18 0x0000 filter selection table 58 reserved n/a n/a 0x03 0x1a to 0x1 e n/a reserved n/a alm_cnfg_0 r/w yes 0x03 0x20 0x0000 alarm configuration table 110 alm_cnfg_1 r/w yes 0x03 0x22 0x0000 alarm configuration table 111 alm_cnfg_2 r/w yes 0x03 0x24 0x0000 alarm configuration table 112 reserved n/a n/a 0x03 0x26 n/a reserved n/a xg_alm_magn r/w yes 0x03 0x28 0x0000 alarm, x - axis gyroscope threshold setting table 100 yg_alm_magn r/w yes 0x03 0x2a 0x0000 alarm, y - axis gyroscope threshold setting table 101 zg_alm_magn r/w yes 0x03 0x2c 0x0000 alarm, z - axis gyroscope threshold setting table 102
data sheet ADIS16488 rev. b | pag e 13 of 36 name r/w flash page_id address default register description format xa_alm_magn r/w yes 0x03 0x2e 0x0000 alarm, x - axis accelerometer threshold table 103 ya_alm_magn r/w yes 0x03 0x30 0x0000 alarm, y - axis accelerometer threshold table 104 za_alm_magn r/w yes 0x03 0x32 0x0000 alarm , z - axis accelerometer threshold table 105 xm_alm_magn r/w yes 0x03 0x34 0x0000 alarm, x - axis magnetometer threshold table 106 ym_alm_magn r/w yes 0x03 0x36 0x0000 alarm, y - axis magnetometer threshold table 107 zm_alm_magn r/w yes 0x03 0x38 0x0000 alarm, z - axis magnetometer threshold table 108 br_alm_magn r/w yes 0x03 0x3a 0x0000 alarm, barometer threshold setting table 109 reserved n/a n/a 0x03 0x3c to 0x7 6 n/a reserved n/a firm_rev r yes 0x03 0x78 n/a f irmware revision table 50 firm_dm r yes 0x03 0x7a n/a f irmware programming date: day/month table 51 firm_y r yes 0x 03 0x7c n/a f irmware program ming date: year table 52 reserved n/a n/a 0x03 0x7e n/a reserved n/a reserved n/a n/a 0x04 0x00 to 0x1 8 n/a reserved n/a serial_num r yes 0x04 0x20 n/a serial number table 54 reserved n/a n/a 0x04 0x22 to 0x7f n/a reserved n/a fir_coef_axxx r/w yes 0x05 0x00 to 0x7 e n/a fir filter bank a, coefficients 0 through 59 table 59 fir_coef_axxx r/w yes 0x06 0x00 to 0x7e n/a fir filter bank a, coefficients 60 through 119 table 59 fir_coef_bxxx r/w yes 0x07 0x00 to 0x7e n/a fir filter bank b, coefficients 0 through 59 table 60 fir_coef_bxxx r/w yes 0x08 0x00 to 0x7e n/a fir filter bank b, coefficients 60 through 119 table 60 fir_coef_cxxx r/w yes 0x09 0x00 to 0x7e n/a fir filter bank c, coefficients 0 through 59 table 61 fir_coef_cxxx r/w yes 0x0a 0x00 to 0x7e n/a fir filter bank c, coefficients 60 thro ugh 119 table 61 fir_coef_dxxx r/w yes 0x0b 0x00 to 0x7e n/a fir filter bank d, coefficients 0 through 59 table 62 fir_coef_dxxx r/w yes 0x0c 0x00 to 0x7e n/a fir filter bank d, coefficients 60 through 119 table 62 1 the gpio_ctrl[7:4] bits reflect the logic levels on the diox lines and do not have a default setting.
ADIS16488 data sheet rev. b | page 14 of 36 output data register s after the ADIS16488 completes its start - up process, the page_id register contain s 0x0000, which sets page 0 as the active page for spi access. page 0 contains the output data, real - time clock, status , and product identification registers. inertial sensor data format the gy roscope, accelerometer, delta angle , delta velocity , and barometer output data registers use a 32- bit, twos complement format. each output uses two registers to support this resolution . figure 18 provides an example of how each register contributes to each inertial measurement. in this case, x _gyro_out is the most significant word (upper 16 bits) , and x _gyro_low is the least significant word (lower 16 bits). in many cases, using the most significant word registers alone provide sufficient resolution for preserving key performance metrics. 10277-016 x-axis gyroscope d at a 0 15 15 0 x_gyro_out x_gyro_low figure 18 . gyroscope output format exam ple , dec_rate > 0 the arrows in figure 19 describe the direction of the motion, which produces a positive output response in each sensors output register. the accelerometers respond to both dynamic and static forces associated with acceleration, including gravity. when lying perfectly flat, as shown in figure 19 , the z - axis accelerometer output is 1 g , and the x and y accelerometers are 0 g . rotation rate (gyros cope) the registers that use the x_gyro_out format are the primary registers for the gyroscope measurements (see table 10, tabl e 11, and table 12) . when processing data from these registers, use a 16 - bit, twos compleme nt data format. table 13 provides x_gyro_out digital coding examples. table 10. x_gyro_out ( page 0, base address = 0x12 ) bits description [15:0] x- axis g yroscope data; twos complement, 450 /sec range , 0/sec = 0x0000, 1 lsb = 0.02/sec table 11 . y_ gyro_out ( page 0, base address = 0x16 ) bits description [15:0] y- axis gyroscope data; twos complement, 450/sec range, 0/sec = 0x0000, 1 lsb = 0.02/sec table 12 . z_gyro_out ( page 0, base address = 0x1a ) bits description [15:0] z- axis gyroscope data; twos complement, 450/sec range, 0/sec = 0x0000, 1 lsb = 0.02/sec table 13 . x_ gyro_out data format examples rotation rate decimal hex binary +450 /sec +22,500 0x5 7e4 0101 0111 1110 0100 +0.04 /sec +2 0x0002 0000 0000 0000 0010 +0.02 /sec +1 0x0001 0000 0000 0000 0001 0/sec 0 0x0000 0000 0000 0000 0000 ?0.02 /sec ?1 0xffff 1111 1111 1111 1111 ?0.04 /sec ?2 0xfffe 1111 1111 1111 1110 ?45 0/sec ?22,500 0xa 81c 1010 1000 0001 1100 the registers that use the x_ gyro_ low naming format provide additional resolution for the gyroscope measurements (see table 14, table 15, and table 16 ). the msb has a weight of 0.01 /sec , and each subsequent bit has ? the weight of the previous one. table 14. x_ gyro_ low ( page 0, base a ddress = 0x10 ) bits description [15:0] x- axis gyroscope data ; additiona l resolution bits table 15. y_gyro_low ( page 0, base address = 0x14 ) bits description [15:0] y- axis gyroscope data; additional resolution bits table 16. z_gyro_low ( page 0, base address = 0x18 ) bits description [15:0] z- axis gyroscope data; additional resolution bits pin 1 pin 23 a y m y g y y-axis g x x-axis a x m x z-axis a z m z g z 10277-017 figure 19 . inertial sensor direction reference diagram
data sheet ADIS16488 rev. b | pag e 15 of 36 acceleration the registers that use the x_accl_out format are the primary registers for the accelerometer measurements (see tabl e 17, table 18 , and table 19) . when processing data from these registers, use a 16 - bit, twos complement data format. table 20 provides x_ accl _out digital coding examples. table 17. x_ accl _out ( page 0, base a ddress = 0x1e ) bits description [15:0] x- axis a ccelerometer data; twos complement , 18 g range, 0 g = 0x0000, 1 lsb = 0.8 m g table 18 . y_accl _out ( page 0, base a ddress = 0x22 ) bits description [15:0] y- axis accelerometer data; twos complement, 18 g range, 0 g = 0x0000, 1 lsb = 0.8 m g table 19 . z_accl _out ( page 0, base address = 0x26 ) bits descriptio n [15:0] z- axis accelerometer data; twos complement, 18 g range, 0 g = 0x0000, 1 lsb = 0.8 m g table 20 . x_ accl _out data format examples acceleration decimal hex binary +18 g +22,500 0x57e4 0101 0111 1110 0100 +1.6 m g +2 0x0002 0000 0000 0000 0010 +0.8 m g +1 0x0001 0000 0000 0000 0001 0 mg 0 0x0000 0000 0000 0000 0000 ?0.8 m g ?1 0xffff 1111 1111 1111 1111 ?1.6 m g ?2 0xfffe 1111 1111 1111 1110 ?18 g ?22,500 0xa81c 1010 1000 0001 1100 the registers that use the x_ accl _low naming format provide additional resolution for the accelerometer measurements (see tabl e 21, table 22, and tabl e 23 ). the msb has a weight of 0.4 m g , and each subsequent bit has ? the weight of the previous one. table 21. x_ accl _low ( page 0, base ad dress = 0x1c ) bits description [15:0] x- axis a ccelerometer data; additional resolution bits table 22 . y_accl_low ( page 0, base address = 0x20 ) bits description [15:0] y- axis accelerometer data; additional resolution bits table 23 . z_accl _low (page 0, base address = 0x24 ) bits description [15:0] z- axis accelerometer data; additional resolution bits delta angles the delta angle outputs represent an integration of the gyro - scope measurements and use the following formula for all three axes (x - axis displayed): ( ) s snx nx s x f rate dec t t 1_ ; 2 ,1, + = + ? =? + ? where: x is the gyroscope, x - axis. t s i s the time between samples. when using the internal sample clock, f s is equal to 2.46 khz. when using the external clock option, the time between samples is the time between active edges on the input clock signal, as mea sured by the internal clock (252 mhz). see table 55 for more information on the dec_rate register. the registers that use the x_deltang_out format are the primary registers for the delta angle calculations. when processing data from these registers, use a 16 - bit, twos complement data format (see table 24, table 25 , and tabl e 26 ). table 27 provides x_deltang_out digital cod ing examples. table 24 . x_deltang_out ( page 0, base address = 0x42 ) bits description [15:0] x - axis d elta angle data; twos complement, 720 range , 0 = 0x0000, 1 lsb = 720/2 15 = ~0.022 table 25. y_deltan g_out ( page 0, base address = 0x46 ) bits description [15:0] y- axis delta angle data; twos complement, 72 0 range, 0 = 0x0000, 1 lsb = 720/2 15 = ~0.022 table 26. z_deltang_out ( page 0, base address = 0x4a ) bits description [1 5:0] z- axis delta angle data; twos complement, 72 0 range, 0 = 0x0000, 1 lsb = 720/2 15 = ~0.022 table 27. x_deltang_out data format examples angle () decimal hex binary + 720 (2 15 ? 1)/ 2 15 +32,767 0x7fff 0111 1 111 1110 1111 +1440/2 15 +2 0x0002 0000 0000 0000 0010 +720/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ?720/2 15 ?1 0xffff 1111 1111 1111 1111 ?1440/2 15 ?2 0xfffe 1111 1111 1111 1110 ? 720 ? 32,768 0x 8000 1 000 0000 0000 0000
ADIS16488 data sheet rev. b | page 16 of 36 the registers that use the x_deltang_low format provide additional resolution for the gyroscope measurements (see table 28, table 29, and table 30 ). the msb has a weight of ~ 0.01 1 (720/ 2 16 ), and each subsequent bit carries a weight of ? of the previous one. table 28. x_deltang_low ( page 0, base address = 0x40 ) bits description [15:0] x - axis d elta angle data ; additional resolution bits table 29. y_ deltang_low ( page 0, base address = 0x44 ) bits description [15:0] y- axis delta angle data; additional resolution bits table 30. z_deltang_low ( page 0, base address = 0x48 ) bits description [15:0] z- axis delta angle data; additional resolution bits delta velocity the delta velocity outputs represent an integration of the accelerometer measurements and use the following formula for all three axes (x - axis displayed): ( ) s snx nx s x f rate dec t aa t 1_ ; 2 ,1, + = + ? =? + where: a x is the accelerometer , x - axis. t s i s the time between samples. when using the internal sample clock, f s is equal to 2.46 khz. when using the external clock option, the time between samples is the time between active edges on the input clock signal, as measured by the internal clock ( 252 mhz). see table 55 for more information on the dec_rate register. the registers that use the x _deltvel_out format are the primary registers for the delta velocity calculations. when processing data from these registers, use a 16 - bit, twos complement data format (see table 31, table 32 , and table 33 ). table 34 p rovides x_deltvel_out digital coding examples. table 31 . x_deltvel_out ( page 0, base address = 0x4e ) bits description [15:0] x- axis d elta velocity data; twos complement, 200 m/sec range , 0 m/sec = 0x0000 1 lsb = 200 m/sec (2 15 C 1) = ~ 6.104 mm/sec table 32. y_deltvel_out ( page 0, base address = 0x52 ) bits description [15:0] y- axis delta velocity data; twos complement, 20 0 m/sec range, 0 m/sec = 0x0000 1 lsb = 20 0 m/sec (2 15 ? 1) = ~6.104 mm/sec table 33. z_deltvel_out ( page 0, base address = 0x56 ) bits description [15:0] z- axis delta velocity data; twos complement, 20 0 m/sec range, 0 m/sec = 0x0000 1 lsb = 20 0 m/sec (2 15 ? 1) = ~6.104 mm/sec table 34. x_deltvel_out , data format examples velocity (m/sec) decimal hex binary + 160 (2 15 ? 1)/ 2 15 +32,767 0x7fff 0111 1111 111 1 1111 + 400 /2 15 +2 0x0002 0000 0000 0000 0010 +200/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 000 0 0000 0000 0000 ?200/2 15 ?1 0xffff 1111 1111 1111 1111 ?400/2 15 ?2 0xfffe 1111 1111 1111 1110 ?160 ?32,768 0x8000 1000 0000 0000 0000 the registers that use the x _deltvel_low naming format provide additional resolution for the gyroscope measurements (see table 35, table 36 , and tabl e 37 ). the msb has a weight of ~ 3.05 2 mm/sec ( 200 m/sec 2 16 ), and each subsequent bit carries a weight of ? of the previous one. table 35. x_deltvel_low ( page 0, base address = 0x4c ) bits description [15:0] x- axis d elta velocity data ; additional resolution bits table 36. y_deltvel_low ( page 0, base address = 0x50 ) bits description [15:0] y- axis delta velocity data; additional resolution bits table 37. z_deltvel_low ( page 0, base address = 0x54 ) bits description [15:0] z- axis delta velocity data; additional resolution bits
data sheet ADIS16488 rev. b | pag e 17 of 36 magnetometers the registers that use the x_magn_ out format are the primary registers for the magnetometer measurements. when processing data from these registers, use a 16 - bit, twos complement data format. table 38 , table 39, and table 40 provide each registers numerical format, and table 41 provides x _ magn_ out digital coding examples. table 38 . x _ magn_ out (page 0, base address = 0x 28) bits description [15:0] x- axis magnet ometer data; twos complement, 3.2767 g auss range, 0 g auss = 0x0000, 1 lsb = 0.1 mg auss table 39 . y _ magn_ out (page 0, base address = 0x 2a) bits description [15:0] y- axis magnetometer data; twos complement, 3.2767 g auss range, 0 g auss = 0x0000, 1 lsb = 0.1 mg auss table 40. z _ magn_ out (page 0, base address = 0x 2c) bits description [15:0] z- axis magnetometer data; twos complement, 3.2767 g auss range, 0 gauss = 0x0000, 1 lsb = 0.1 mg auss table 41 . x_ magn_ out data format examples magnetic field decimal hex binary +3.2767 gauss +32,767 0x7fff 0111 1111 1111 1111 +0.2 mgauss +2 0x0002 0000 0000 0000 0010 +0.1 mgauss +1 0x0001 0000 0000 0000 0001 0 gauss 0 0x0000 0000 0000 0000 0000 ?0.1 mgauss ?1 0xffff 1111 1111 1111 1111 ?0.2 mgauss ?2 0xfffe 1111 1111 1111 1110 ?3. 2768 gauss ?32,768 0x8000 1000 0000 0000 0000 barometer the barom_out register (s ee table 42) and barom_low register (s ee table 44) provide access to the barometric pressure data. these two registers combine to provide a 32 - bit, twos comple ment format. some applications are able to use barom_out by itself. for cases where the finer resolution available from bar om_low is valuable, combine them in the same manner as the gyroscopes ( s ee figure 18 ). when processing data from the barom_out register alone, use a 16- bit, twos complement data format. table 42 provide s the numerical format in barom_out , and table 43 provides digital coding examples. table 42 . barom_out (page 0, base address = 0x 30) bits description [15:0] barometric pressure; twos complement, 1.31 b ar range, 0 bar = 0x0000, 40 bar/lsb table 43 . barom _out data format examples pressure (bar) decimal hex binary + 0.00004 (2 15 ? 1) +32,767 0x7fff 0111 1111 1110 1111 +0.00008 +2 0x0002 0000 0000 0000 0010 + 0.00004 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ?0.00004 ?1 0xffff 1111 1111 1111 1111 ?0.00008 ?2 0xfffe 1111 1111 1111 1110 ?0.00004 2 15 ?32,768 0x8000 1000 0000 0000 0000 the barom_low register provides additional resolution for the barometric pressure measurement. the msb has a weight of 20 bar, and each subsequent bit carries a weight of ? of the previous one. table 44 . barom_low (page 0, base address = 0x 2e) bits description [15:0] barometric pressure; additional resolution bits internal temperature the temp_out register provides an internal temperature measurement that can be useful for observing relative temperatur e changes inside of the ADIS16488 (see tabl e 45 ). tabl e 46 provides temp_out digital coding examples . note that this temperature reflect s a higher temperature than ambient, due to self - heating. table 45 . temp_out (page 0, base address = 0x0e) bits description [15:0] temperature data; twos comple ment, 0.00565c per lsb, 25c = 0x0000 table 46. temp_out data format examples temperature (c) decimal hex binary +85 +10,619 0x297b 0010 1001 0111 1011 +25 + 0.0113 +2 0x0002 0000 0000 0000 0010 +25 + 0.00565 +1 0x0001 0000 0000 0000 0001 +25 0 0x0000 0000 0000 0000 0000 +25 ? 0.00565 ?1 0xffff 1111 1111 1111 1 111 +25 ? 0.0113 ?2 0xfffe 1111 1111 1111 1110 ?40 ?11,504 0xd310 1101 0011 000 1 0000
ADIS16488 data sheet rev. b | page 18 of 36 status/ alarm indicators the sys_e_flag register in table 47 provides the system error flags and new data bits for the magnetometer and bar ometer outputs . the new data flags are useful for triggering data collec - tion of the magnetometer and barometer (x_ma gn_out and baro_xxx registers) because they update at a fixed rate that is not dependent on the dec_rate setting. note that reading sys_e_f lag also resets it to 0x0000. table 47 . sys_e_flag ( page 0, base addr ess = 0x08 ) bits description (default = 0x0000) [15] watch dog timer flag (1 = timed out) [14:10] not used 9 new data flag, barometer (1 = new , unread data) 1 8 new data flag, magnetometer (1 = new , unread data) 2 7 processing o verrun (1 = error) 6 flash memory update, result of glob_cmd[ 3] = 1 (1 = failed update, 0 = update successful) 5 inertial self - test failure (1 = diag_sts 0x0 000) 4 sensor overrange (1 = at least one sensor over ranged) 3 spi communication error (1 = error condition, when the number of sclk pulses is not equal to a multiple of 16 ) [2:1] not used 0 alarm status flag (1 = alm_sts 0x0 000) 1 this flag restore s to zero after reading t he contents on barom_out . 2 this flag restore s to zero after reading one x_magn_out register. the diag_sts register in table 48 provides the flags for the internal sel f- test function, which is from glob_cmd[1] ( s ee table 114). note that the b arometers flag, d ia g_sts[11], only updates after start - up and reset operations. note that reading diag_sts also resets it to 0x0000. table 48 . diag_sts ( page 0, base address = 0x0a ) bits description (default = 0x0000) [15:12] not used 11 self - test failure, b arometer (1 = failed at start -up ) 10 self - test failure, z- axis magnetometer (1 = failure ) 9 self - test failure, y - axis magnetometer (1 = failure ) 8 self - test failure, x- axis magnetomet er (1 = failure ) [7:6] not used 5 self - test failure, z - axis accelerometer (1 = failure) 4 self - test failure, y - axis accelerometer (1 = failure) 3 self - test failure, x - axis accelerometer (1 = failure) 2 self - test failure, z - axis gyroscope (1 = failure) 1 self - test failure, y - axis gyroscope (1 = failure) 0 self - test failure, x - axis gyroscope (1 = failure) the alm_sts register in table 49 provides the alarm bits for the programmable alarm levels of each sensor . note that re ading alm_sts also resets it to 0x0000. table 49 . alm_sts ( page 0, base address = 0x0c ) bits description (default = 0x0000) [15:12] not used 11 barometer alarm flag (1 = alarm is active) 10 z- axis magnetometer alarm flag (1 = alarm is active) 9 y- axis magnetometer alarm flag (1 = alarm is active) 8 x- axis magnetometer alarm flag (1 = alarm is active) [7:6] not used 5 z- axis accelerometer alarm flag (1 = alarm is active) 4 y - axis accelerometer alarm flag (1 = alarm is active) 3 x- axis accelerometer alarm flag (1 = alarm is active) 2 z- axis gyroscope alarm flag (1 = alarm is active) 1 y- axis gyroscope alarm flag (1 = alarm is active) 0 x- axis gyroscope alarm flag (1 = alarm is active)
data sheet ADIS16488 rev. b | pag e 19 of 36 firmware revision the firm_rev registe r (s ee table 50 ) provides the firmware revision for the internal processor. each nibble represents a digit in this revision code. for example, if firm_rev = 0x0102, the firmware revision is 1.02. table 50. firm_rev ( page 3, base address = 0x 78) bits description [15:12] binary, revision, 10s digit [11:8] binary, revision, 1s digit [7:4] binary, revision, tenths digit [ 3 :0] binary, revision, hundredths digit the firm_dm register (s ee table 51) contains the month and day of the factory configuration date . firm_dm [15:12] and firm_dm [11:8] contain digits that represent the month of factory configuration. for example, november is the 11 th month in a year and represented by firm_ dm [15:8] = 0x11. firm_ dm [7:4] and firm_dm [3:0] contain digits that represent the day of factory configuration. for example, the 27 th day of the month is represented by firm_dm [7:0] = 0x27. table 51. firm_dm (page 3 , base address = 0x7 a) bits description [15:12] binary, month 10s digit, r ange: 0 to 1 [11:8] binary, month 1s digit, r ange: 0 to 9 [7:4] binary, day 10s digit, r ange: 0 to 3 [3:0] binary, day 1s digit, r ange: 0 to 9 the firm_y register (s ee tabl e 52 ) contains the year of the factory configuration date. for example, the year of 2013 is represented by firm_y = 0x2013. table 52. firm_y (page 3 , base address = 0x7 c) bits description [15:12] binary, year 1000s digit , r ange: 0 to 9 [11:8] binary, year 100s digit, r ange: 0 to 9 [7:4] binary, year 10s digit, r ange: 0 to 9 [3:0] binary, year 1s digit, r ange: 0 to 9 product identification the prod_id register (s ee table 53 ) contains the b inary equivalent of the part number (1 6 ,488 = 0x4068) , and the serial_num register (s ee table 54 ) contains a lot - specific serial number. table 53 . prod_id ( page 0, base address = 0x7e ) bits description (d efault = 0x4068) [15:0] product identification = 0x 4068 table 54 . serial_num ( page 4, base address = 0x 20) bits description [15:0] lot - specific serial number
ADIS16488 data sheet rev. b | page 20 of 36 digital s ignal p rocessing gyroscopes/accelerom eters figure 20 provides a signal flow diagram for all of the comp o- nents and settings that influence the frequency response for the accelerometers and gyroscopes. the sample rate for each accelerometer and gyroscope is 9.84 khz. each sensor has its own averaging/ decimation filter stage, which reduces the update rate to 2.46 ksps. when using the external clock option (fnctio_ctrl[7:4], s ee table 117 ), the input clock drives a 4- sample burst at a sample rate of 9.84ksps, w hich feeds into the 4x aver aging/decimation filter. this results in a data rate that is equal to the input clock frequency. averaging/decimation filter the dec_rate register (see table 55 ) provides user control for the final filt er stage (see figure 20 ), which averages and decimates the accelerometers, gyroscopes , delta angle , and delta velocity data. the output sample rate is equal to 2460/(dec_rate + 1). when using the external clock option (fnctio_ctr l[7:4], s e e table 117), replace the 2460 number in this relationship, with the input clock frequency. for example, turn to page 3 (din = 0x8003) , and set dec_rate = 0x18 (din = 0x8c18, then din = 0x8d00) to reduce the output sample rate to 98.4 sps (2460 25). table 55 . dec_rate (page 3, base address = 0x0c) bits description (default = 0x0000) [15:11] dont care [10:0] decimation rate, binary format, maximum = 2047 see figure 20 for impact on sample rat e magnetometer/barometer when using the internal sampling clock, the magnetometer output registers (xmagn_out) update at a rate of 102.5 sps and the barometer output registers (baro_xxx) update at a rate of 51.25 sps. when using the external clock, the m agnetome - ters update at a rate of 1/24th of the input clock frequency and the barometers update at a rate that is 1/48th of the input clock frequency. the update rates for the magnetometer and barome - ters do not change with the dec_rate register settings. sys_e_flag[9:8] ( s ee table 47 ) offers new data bits for these r egister s and the seq_cnt register provides a counter function to help determine when there is new data in the magnetometer and barometer registers. when seq_cnt = 0x0 001, there is new data in the magnetometer and barometer output registers. the seq_cnt register can be useful during initialization to help synchronize read loops for new data in both magnetometer and barometer outputs. when beginning a continuous read loo p, read seq_cnt, then subtract this val u e from the maximum value shown (range) in table 56 to calculate the number of internal sample cycles until both magn etometer and barometer data is new. table 56. seq_cnt (page 0 , base address = 0x 06) bits description [15:11] dont care [6:0] binary count er : range = 1 to 48/(dec_ rate + 1) mems sensor 330hz 4 2.46khz, f s gyroscope 2-pole: 404hz, 757hz accelerometer 1-pole: 330hz 4 a verage decim a tion fi lter select able fir fi l ter bank fi l tr_bnk_0 fi l tr_bnk_1 a verage/decim a tion fi lter d = dec_r a te[10:0] + 1 1 4 4 d 1 d d fir fi lter bank 10277-018 f s interna l clock 9.84khz diox optiona l input clock fnctio_ctrl[7] = 1 f s < 2400hz notes 1. when fnctio_ctrl[7] = 1, each clock pulse on the design a ted diox line (fnctio_ctrl[5:4]) s t arts a 4-sample burs t, at a sample r a te of 9.84khz. these four samples feed in t o the 4x a verage/decim a tion fi l ter, which produces a d at a r a te th a t is equa l t o the input clock frequenc y. figure 20 . sampling and frequency response block diagram
data sheet ADIS16488 rev. b | pag e 21 of 36 fir filter banks the ADIS16488 provides four configurable, 120 - tap fir filte r banks. each coefficient is 16 bits wide and occupies its own register location with each page. when designing a fir filter for these banks, use a sample rate of 2.46 khz and scale the coefficients so that their sum equals 32,768. for filter designs that have less than 120 taps, load the coefficients into the lower portion of the filter and start with coefficient 1. make sure that all unused taps are equal to zero, so that they do not add phase delay to the response. the filtr_bnk_x registers provide three bits per sensor, which configure the filter bank (a, b, c, d) and turn filtering on and off. for example, turn to page 3 (din = 0x8003), then write 0x0057 to filtr_bnk_0 (din = 0x9657, din = 0x9700) to set the x - axis gyroscop e to use the fir filter in bank d, to set the y - axis gyroscope to use the fir filter in bank b , and to enable these fir filters in both x - and y - axis gyroscopes. note that the filter settings update after writing to the upper byte ; therefore, always configure the lower byte first. in cases that require configuration to only the lower byte of either filtr_bnk _ 0 or filtr_bnk_ 1, complete the process by writing 0x00 to the upper byte. table 57. filtr_bnk_0 (page 3, base address = 0x16) bits description (default = 0x0000) 15 dont care 14 y- axis accelerometer filter enable (1 = enabled) [13:12] y- axis accelerometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 11 x- axis accelerometer filter enable (1 = enabled) [10:9] x- axis accelerometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 8 z- axis gyroscope filter enable (1 = enabled) [7:6] z- axis gyroscope filter bank selectio n: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 5 y- axis gyroscope filter enable (1 = enabled) [4:3] y- axis gyroscope filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 2 x- axis gyroscope filter enable (1 = enabled) [1:0] x- axis gyroscope filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d table 58. filtr_bnk_1 (page 3, base address = 0x18) bits description (default = 0x0000) [15:12] dont care 11 z- axis magnetometer filter en able (1 = enabled) [10:9] z- axis magnetometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 8 y- axis magnetometer filter enable (1 = enabled) [7:6] y- axis magnetometer filter bank selection: 00 = bank a, 01 = bank b, 10 = ban k c, 11 = bank d 5 x- axis magnetometer filter enable (1 = enabled) [4:3] x- axis magnetometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 2 z- axis accelerometer filter enable (1 = enabled) [1:0] z- axis accelerometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d filter memory organization each filter bank uses two pages of the user register structure. see table 59, table 60, table 61 , and table 62 for the register addresses in each filter bank. table 59 . filter bank a memory map page page_id address register 5 0x05 0x00 page_id 5 0x05 0x02 to 0x07 not used 5 0x05 0x08 fir_coef_a000 5 0x05 0x0a fir_coef_a001 5 0x05 0x0c to 0x7c fir_coef_a 002 to fir_coef_a058 5 0x05 0x7e fir_coef_a059 6 0x06 0x00 page_id 6 0x06 0x02 to 0x07 not used 6 0x06 0x08 fir_coef_a060 6 0x06 0x0a fir_coef_a061 6 0x06 0x0c to 0x7c fir_coef_a0 62 to fir_coef_a118 6 0x06 0x7e fir_coef_d119 table 60 . filter bank b memory map page page_id address register 7 0x07 0x00 page_id 7 0x07 0x02 to 0x07 not used 7 0x07 0x08 fir_coef_b000 7 0x07 0x0a fir_coef_b001 7 0x07 0x0c to 0x7c fir_coef_b 002 to fir_coef_b058 7 0x07 0x7e fir_coef_b059 8 0x08 0x00 page_id 8 0x08 0x02 to 0x07 not used 8 0x08 0x08 fir_coef_b060 8 0x08 0x0a fir_coef_b061 8 0x08 0x0c to 0x7c fir_coef_b 062 to fir_coef_b118 8 0x08 0x7e fir_coef_ b 119 table 61 . filter bank c memory map page page_id address register 9 0x09 0x00 page_id 9 0x09 0x02 to 0x07 not used 9 0x09 0x08 fir_coef_c000 9 0x09 0x0a fir_coef_c001 9 0x09 0x0c to 0x7c fir_coef_c 002 to fir_coef_c058 9 0x09 0x7e fir_coef_c059 10 0x0a 0x00 page_id 10 0x0a 0x02 to 0x07 not used 10 0x0a 0x08 fir_coef_c060 10 0x0a 0x0a fir_coef_c061 10 0x0a 0x0c to 0x7c fir_coef_c 062 to fir_coef_c118 10 0x0a 0x7e fir_coef_c119
ADIS16488 data sheet rev. b | page 22 of 36 table 62 . filter bank d memory map page page_id address register 11 0x0b 0x00 page_id 11 0x0b 0x02 to 0x07 not used 11 0x0b 0x08 fir_coef_d000 11 0x0b 0x0a fir_coef_d001 11 0x0b 0x0c to 0x7c fir_coef_d002 to fir_coef_d058 11 0x0b 0x7e fir_coef_d059 12 0x0c 0x00 page_id 12 0x0c 0x02 to 0x07 not used 12 0x0c 0x08 fir_coef_d06 0 12 0x0c 0x0a fir_coef_d061 12 0x0c 0x0c to 0x7c fir_coef_d062 to fir_coef_d118 12 0x0c 0x7e fir_coef_d119 default filter performance the fir filter banks have factory - programmed filter designs. they are all low - pass filters that have unity dc gain. table 63 provides a summary of each filter design , and figure 21 shows the frequency response characteristics. the phase delay is equal to ? of the total number of taps . table 63. fir filter descriptions, default configuration fir filter bank taps ?3 db frequency (hz) a 120 310 b 120 55 c 32 275 d 32 63 no fir fi l tering 0 ?10 ?20 magnitude (db) ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 0 200 400 600 800 1000 1200 frequenc y (hz) 10277-019 ad c b figure 21 . fir filter frequenc y re sponse curves
data sheet ADIS16488 rev. b | pag e 23 of 36 c alibration the ADIS16488 factory c alibration produces correction formulas for the gyroscope s, accelerometers, magnetometers , and barometer s , and then programs them into the flash memory. in addition, there are a series of user - configurable calibration registers, for in - system tuning. g yroscopes the user - calibration for the gyroscopes includes registers for adjusting bias and sensitivity , as shown in figure 22. x-axis gyro f ac t ory calibr a tion and fi l tering x_gyro_out x_gyro_low xg_bias_high xg_bias_low 1 + x_gyro_scale 10277-020 figure 22 . user calibration signal path, gyroscopes manual bias correction the x g_bias_high registers (see table 64, table 65 , and table 66) and x g_bias _low registers (see tabl e 67, table 68, and table 69) provide a bias adjustment function for the outpu t of each gyro scope sensor. table 64 . xg_bias_high (page 2, base address = 0x12) bits description (default = 0x0000) [15:0] x- axis gyroscope offset correction, upper word twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 65 . yg_bias_high (page 2, base address = 0x16) bits description (default = 0x0000) [15:0] y- axis gyroscope offset correction, upper word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 66 . zg_bias_high (page 2, base address = 0x1a) bits description (default = 0x0000) [15:0] z- axis gyroscope offset correction, upper word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 67 . xg_bias_low (page 2, base address = 0x10) bits description (default = 0x0000) [15:0] x- axis gyroscope offset correction, lower word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02 /sec 2 16 = ~0.000000305/sec table 68 . yg_bias_low (page 2, base address = 0x14) bits description (default = 0x0000) [15:0] y- axis gyroscope offset correction, lower word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02 /sec 2 16 = ~0.000000305/sec table 69 . zg_bias_low (page 2, base address = 0x18) bits description (default = 0x0000) [15:0] z- axis gyroscope offset correction, lower word twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec 2 16 = ~0.000000305/sec bias null command the continuous bias estimator (cbe) accumulates and averages data in a 64 - sample fifo. the average time ( t a ) for the bias estimates relies on the sample time base setting in null_cnfg[ 3 :0 ] (see table 70 ). users can load the correction factors of the cbe into the gyroscope offset correction registers (see table 64, table 65 , table 66 , table 67 , table 68, and table 69 ) using the bias null command in glob_cmd[0] (see table 114 ). null_cnfg[13:8] provide on/off controls for the sensors that update when issuing a bias null command. the factory default configuration for null_cnfg enables the bias null command for the gyroscopes, disables the bias null command for the accel - erometers, and establishes the average time to ~26.64 seconds. table 70 . null_cnfg (page 3, base address = 0x0e) bits description (default = 0x070 a) [15:14] not used 13 z- axis acceleration bias correction enable (1 = enabled) 12 y- axis acceleration bias correction enable (1 = enabled) 11 x- axis acceleration bias correction enable (1 = enabled) 10 z- axis gyroscope bias correction enable (1 = enabled) 9 y- axis gyroscope bias correction enable (1 = enabled) 8 x- axis gyroscope bias correction enable (1 = enabled) [7:4] not used [3:0] time base control (t b c), range: 0 to 13 (default = 1 0); t b = 2 tbc /2460, time base, t a = 64 t b , average time turn to page 3 (din = 0x8003) and set glob_cmd[0] = 1 (din = 0x8201 , then din = 0x8300) to update the user offset registers with the correction factors of the cbe. make sure that the inertial platform is stable during the entire average time for optimal bias estimates. manual sens itivity correction the x _gyro_scale registers enable sensitivity adjustment (see table 71, table 72, and table 73 ). table 71 . x_gyro_scale (page 2, base address = 0x 04) bits description (default = 0x0000) [15:0] x - axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.0003052% table 72 . y_gyro_scale (page 2, base address = 0x 06) bits descriptio n (default = 0x0000) [15:0] y- axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.0003052% table 73 . z_gyro_scale (page 2, base address = 0x 08) bits description (default = 0x0000) [15:0] z- axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.0003052%
ADIS16488 data sheet rev. b | page 24 of 36 linear acceleration on effect on gyroscope bias mems gyroscopes typically have a bias response to linear acceleration that is normal to their axis of rota tion. the ADIS16488 offers an optional compensation function for this effect. turn to page 3 (din = 0x8003) and set config[7] = 1 (din = 0x9080, din = 0x9100). table 74 . config (page 3 , base address = 0x0a) bits description (default = 0x00c0) [15:8] not used 7 linear -g compensation for gyroscopes (1 = enabled) 6 point of percussion alignment (1 = enabled) [5:2] not used 1 real - time clock, daylight savings time (1: enabled, 0: disa bled) 0 real - time clock control (1: relative/elapsed timer mode, 0: calendar mode) a ccelerometers the user - calibration for the accelerometers includes registers for adjusting bias and sensitivity , as shown in figure 23. x-axis acc l f ac tory calibr a tion and fi l tering x_accl_out x_accl_low xa_bias_high xa_bias_low 1 + x_accl_scale 10277-021 figure 23 . user calibration signal path, gyroscopes manual bias correction the xa_bias_high (see table 75, table 76, and table 77 ) and xa_bias_low (see table 78, table 79, and table 80 ) registers provide a bias adjustment function for the output of each gyroscope sensor. the x a_bias_high registers use the same format as x_accl_out regi sters. the xa_bias_low registers use the same format as x_accl_low registers. table 75. xa_bias_high ( page 2, base address = 0x1e ) bits description (default = 0x0000) [15:0] x- axis a cceleromete r offset correction, high word, t wos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 76. ya_bias_high ( page 2, base address = 0x22 ) bits description (default = 0x0000) [15:0] y- axis accelerometer offset correction, high word, t wos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 77. za_bias_high ( page 2, base address = 0x26 ) bits description (default = 0x0000) [15:0] z- axis accelerometer off set correction, high word, t wos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 78. xa_bias_low ( page 2, base address = 0x1c ) bits description (default = 0x0000) [15:0] x- axis accelerometer offset correction , low word, t wos complement, 0 g = 0x0000, 1 lsb = 0.8 m g 2 16 = ~0.0000122 m g table 79. ya_bias_low (p age 2, base address = 0x20 ) bits description (default = 0x0000) [15:0] y- axis accelerometer offset correction, low word, t wos complement, 0 g = 0x0000, 1 lsb = 0.8 m g 2 16 = ~0.0000122 m g table 80. za_bias_low ( page 2, base addr ess = 0x24 ) bits description (default = 0x0000) [15:0] z- axis accelerometer offset correction, low word;, t wos complement, 0 g = 0x0000, 1 lsb = 0.8 m g 2 16 = ~0.0000122 m g manual sensitivity correction the x _accl_scale registers enable sensitivity adj ustment (see table 81, table 82, tabl e 83 ). table 81. x_accl_scale ( page 2, base address = 0x 0a) bits description (default = 0x0000) [15:0] x- axis accel erometer scale correction, t wos complement, 0x0000 = unity gain , 1 lsb = 1 2 15 = ~0.0003052% table 82. y_accl_scale ( page 2, base address = 0x 0c) bits description (default = 0x0000) [15:0] y - axis accelerometer scale correction, twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.0003052% table 83. z_accl_scale ( page 2, base address = 0x 0e) bits description (default = 0x0000) [15:0] z- axis accelerometer scale correction, twos complement, 0x0000 = u nity gain, 1 lsb = 1 2 15 = ~0.0003052% magnetometers the user calibration registers enable both hard - iron and soft - iron correction, as shown in the following relationship: ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + + + 1 1 1 33 32 31 23 22 21 13 12 11 the m x , m y , and m z variables represent the magnetometer data, prior to application of the user correction formula. the m xc , m yc , and m zc represent the magnetometer data, after the application of the user correction formula.
data sheet ADIS16488 rev. b | pag e 25 of 36 hard - iron correction table 84, tabl e 85, and table 86 describe the register format for the hard - iron correction factors: h x , h y , and h z . the se registers use a twos complement format. table 87 provides some numerical examples for convert ing the digital codes for these registers into their decimal equivalent. table 84 . hard_iron_x (page 2, base address = 0x28) bits description (default = 0x0000) [15:0] x- axis magnetometer hard - iron correction factor, h x twos comp lement, 3.2767 g auss range, 0.1 mg auss/lsb, 0 g auss = 0x0000 ( s ee table 87 ) table 85 . hard_iron_y (page 2, base address = 0x2a) bits description (default = 0x0000) [15:0] y- axis magnetometer hard - iron co rrection factor, h y twos complement, 3.2767 g auss range, 0.1 mg auss/lsb, 0 g auss = 0x0000 ( s ee table 87 ) table 86 . hard_iron_ z (page 2, base address = 0x2c) bits description (default = 0x0000) [15:0] z-a xis magnetometer hard - iron correction factor, h z twos complement, 3.2767 g auss range, 0.1 mg auss/lsb, 0 g auss = 0x0000 ( s ee table 87 ) table 87. x_magn_out data format examples magnetic field decimal hex b inary +3.2767 gauss +32,767 0x7fff 0111 1111 1111 1111 +0.2 mgauss +2 0x0002 0000 0000 0000 0010 +0.1 mgauss +1 0x0001 0000 0000 0000 0001 0 gauss 0 0x0000 0000 0000 0000 0000 ?0.1 mgauss ?1 0xffff 1111 1111 1111 1111 ?0.2 mgauss ?2 0xfffe 1111 1111 1111 1110 ? 3.2768 gauss ?32,768 0x8000 1000 0000 0000 0000 soft - iron correction matrix the soft - iron correction matrix contains correction factors for both sensitivity (s 11 , s 22 , s 33 ) and alignment (s 12 , s 13 , s 21 , s 23 , s 31 , s 32 ). the registers that repre sent each soft - iron correction factor are in table 88 (s 11 ), table 89 (s 12 ), tabl e 90 (s 13 ), tabl e 91 (s 21 ), table 92 (s 22 ), table 93 (s 23 ), table 94 (s 31 ), table 95 (s 32 ), and table 96 (s 33 ). table 97 offers some numerical examples for converting betw een the digital codes and their effect on the magnetometer output, in terms of percent - change. table 88 . soft_iron_s11 (page 2, base address = 0x2e) bits description (default = 0x0000) [15:0] m agnetometer soft - iron correction facto r, s 11 twos complement format, s ee table 97 for examples table 89 . soft_iron_s12 (page 2, base address = 0x30) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 12 twos complement format, s ee table 97 for examples table 90 . soft_iron_s13 (page 2, base address = 0x32) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 13 twos complemen t format, s ee table 97 for examples table 91 . soft_iron_s21 (page 2, base address = 0x34) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 21 twos complement format, s ee table 97 for examples table 92 . soft_iron_s22 (page 2, base address = 0x36) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 22 twos complement format, s ee table 97 for examples table 93 . soft_iron_s23 (page 2, base address = 0x38) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 23 twos complement format, s ee table 97 for examples table 94 . soft_iron_s31 (page 2, base address = 0x3a) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 31 twos complement format, s ee ta ble 97 for examples table 95 . soft_iron_s32 (page 2, base address = 0x3c) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 32 twos complement format, s ee table 97 for examples table 96 . soft_iron_s33 (page 2, base address = 0x3e) bits description (default = 0x0000) [15:0] magnetometer soft - iron correction factor , s 33 twos complement format, s ee table 97 for examples table 97 . soft iron correction, numerical examples delta (%) decimal hex binary +100 C 1/2 16 +32,767 0x7fff 0111 1111 1111 1111 +200/2 15 +2 0x0002 0000 0000 0000 0010 +100/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ?100/2 15 ?1 0xffff 1111 1111 1111 1111 ?200/2 15 ?2 0xfffe 1111 1111 1111 1110 ?100 ?32,768 0x8000 1000 0000 0000 0000
ADIS16488 data sheet rev. b | page 26 of 36 b arometers the br_bias_high register (s ee tabl e 98 ) and br_bias_low register ( table 99 ) provide an offset control function and use the same format a s the output registers, barom_out and barom_low. table 98. br_bias_high (page 2 , base address = 0x42) bits description (default = 0x0000) [15:0] barometri c pressure bias correction factor, high word t wos complement, 1.3 bar measurement range, 0 bar = 0x0000, 1 lsb = 40 bar table 99. br_bias_low (page 2 , base address = 0x40) bits description (default = 0x0000) [15:0] barometric p ressure bias correction factor, low word twos complement, 1.3 bar measurement range, 0 bar = 0x0000, 1 lsb = 40 bar 2 16 = ~0.00061 bar restoring factory calibration turn to page 3 (din = 0x8003) and s et glob_cmd [6 ] = 1 (din = 0x a 240 , din = 0xa300 ) to execute the factory calibration restore function. this function resets each user calibration register to zero , resets all sensor data to 0, and automatically updates the flash memory within 72 ms . see table 114 for more information on glob_cmd. point of percussion alignment config [6] offer s a point of percussion alignment function that maps the accelerometer sensor s to the corner of the package identified in figure 24 . t o activate this feature, turn to page 3 (din = 0x8003), then set config [6] = 1 ( din = 0x 8a40 , din = 0x 8b00 ). see table 74 for more information on the config register. 10277-022 pin 1 pin 23 point of percussion alignment reference poin t. see config[6]. figure 24 . point of percussion reference point
data sheet ADIS16488 rev. b | pag e 27 of 36 alarms eac h sensor has an independent alarm function that provides controls for alarm magnitude, polarity, and enabling a dynamic rate - of - change option. the alm_sts register (s ee table 49) contains the alarm output flags and the f nctio_ctrl register (s ee table 117 ) provides an option for configuring one of the digital i/o lines as an alarm indicator. static alarm use the static alarm setting compares each sensors output with the trigger settings in the x x_alm_magn registers (see table 100, table 101, tabl e 102, table 103, table 104, tabl e 105, table 106, table 107, table 108, and table 109 ) of that sensor. the polarity controls for each alarm are in the alm_c n fg_x registers (see table 110 , table 111, table 112). the polarity establishes whether gre ater than or less than produces an alarm condition. the com parison between the x x_alm_magn value and the output data only applies to the upper word or 16 bits of the output data. dynamic alarm use the dynamic alarm setting provides the option of comparing the change in each sensors output over a period of 48.7 ms with that sensors xx_alm_magn register. table 100. x g_ alm_mag n ( page 3, base address = 0x 28) bits description (default = 0x0000) [15:0] x- axis g yroscope alarm threshold setting s, twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 101 . yg_ alm_mag n ( page 3, base address = 0x 2a) bits description (default = 0x0000) [15:0] y- axis gyroscope alarm threshold settings , twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 102 . zg_ alm_mag n ( page 3, base address = 0x 2c) bits description (default = 0x0000) [15:0] z- axis gyroscope alarm threshold settings , twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 103 . xa_alm_mag n ( page 3, base address = 0x 2e) bits description (default = 0x0000) [15:0] x- axis accelerometer alarm thres hold settings , twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 104 . ya_alm_mag n ( page 3, base address = 0x 30) bits description (default = 0x0000) [15:0] y- axis accelerometer alarm threshold settings , twos complement, 0 g = 0x0 000, 1 lsb = 0.8 m g table 105 . za_alm_mag n ( page 3, base address = 0x 32) bits description (default = 0x0000) [15:0] z- axis accelerometer alarm threshold settings , twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 106 . xm_alm_mag n (page 3, base address = 0x3 4) bits description (default = 0x0000) [15:0] x- axis magnet ometer alarm threshold settings , twos complement, 0 g auss = 0x0000, 1 lsb = 0.1 m g auss table 107 . ym_alm_mag n (page 3, base address = 0x3 6) bits description (default = 0x0000) [15:0] y- axis magnet ometer alarm threshold settings , twos complement, 0 g auss = 0x0000, 1 lsb = 0.1 m g auss table 108 . zm_alm_mag n (page 3, base address = 0x3 8) bits desc ription (default = 0x0000) [15:0] z- axis magnet ometer alarm threshold settings , twos complement, 0 gauss = 0x0000, 1 lsb = 0.1 m g auss table 109. br _alm_mag n (page 3, base address = 0x3a) bits description (default = 0x0000) [15:0] z- axis bar ometer alarm threshold settings , twos complement, 0 bar = 0x0000, 1 lsb = 40 bar table 110. alm_cnfg_0 ( page 3, base address = 0x20 ) bits description (default = 0x0000) 15 x- axis accelerometer alarm (1 = enabled) 14 not used 13 x- axis accelerometer alarm polarity (1 = greater than) 12 x- axis accelerometer dynamic enable (1 = enabled) 11 z- axis gyroscope alarm (1 = enabled) 10 not used 9 z- axis gyroscope alarm polarity (1 = greater than) 8 z- axis gyroscope dynami c enable (1 = enabled) 7 y- axis gyroscope alarm (1 = enabled) 6 not used 5 y- axis gyroscope alarm polarity (1 = greater than) 4 y- axis gyroscope dynamic enable (1 = enabled) 3 x - axis gyroscope alarm (1 = enabled) 2 not used 1 x- axis gyroscope alarm polarity (1 = greater than) 0 x- axis gyroscope dynamic enable (1 = enabled)
ADIS16488 data sheet rev. b | page 28 of 36 table 111. alm_cnfg_1 ( page 3, base address = 0x22 ) bits description (default = 0x0000) 15 y- axis magnetometer alarm (1 = enabled) 14 not used 13 y- axi s magnetometer alarm polarity (1 = greater than) 12 y- axis magnetometer dynamic enable (1 = enabled) 11 x- axis magnetometer (1 = enabled) 10 not used 9 x- axis magnetometer alarm polarity (1 = greater than) 8 x- axis magnetometer dynamic enable (1 = ena bled) 7 z- axis accelerometer alarm (1 = enabled) 6 not used 5 z- axis accelerometer alarm polarity (1 = greater than) 4 z- axis accelerometer dynamic enable (1 = enabled) 3 y- axis accelerometer alarm (1 = enabled) 2 not used 1 y- axis accelerometer ala rm polarity (1 = greater than) 0 y - axis accelerometer dynamic enable (1 = enabled) table 112 . alm_cnfg_2 (page 3, base address = 0x2 4) bits description (default = 0x0000) [15:8] not used 7 barometer alarm (1 = enabled) 6 not us ed 5 barometer alarm polarity (1 = greater than) 4 barometer dynamic enable (1 = enabled) 3 z - axis magnetometer alarm (1 = enabled) 2 not used 1 z- axis magnetometer alarm polarity (1 = greater than) 0 z- axis magnetometer dynamic enable (1 = enabled) alarm example table 113 of fers an alarm configuration example, which sets the z- axis gyroscope alarm to trip when z _gyro_out > 131.1/sec (0x199b ). table 113 . alarm configuration example din descripti on 0xac9b set zg _alm_magn [7:0] = 0x 9b 0x ad19 set zg _alm_magn [15:8] = 0x 19 0xa000 set alm_cnfg_0 [7:0] = 0x00 0xa103 set alm_cnfg_0 [15:8] = 0x03
data sheet ADIS16488 rev. b | pag e 29 of 36 system controls the ADIS16488 provides a number of system - level controls for managing its operation , which include reset, self - test, calibration, memory management, and i/o configuration. global commands the glob_cmd register (see table 114 ) provides trigger bits for several operations. write 1 to the appropriate bit in glob_cmd to start a function. after the function completes, the bit restores to 0. table 114 . glob_cmd ( page 3, base address = 0x02 ) bits description execution time [15:8] n ot used not applicable 7 software reset 120 ms 6 factory calibration restore 75 ms [5:4] not used not applicable 3 flash memory update 375 ms 2 flash memory test 50 ms 1 s elf - test 12 ms 0 bias null see table 70 software r eset tur n to p age 3 (din = 0x8003) and then s et glob_cmd[7] = 1 (din = 0x 8280, din = 0x8300 ) to reset the operation, which removes all data, initializes all registers from their flash settings, and starts data collection. this function provides a firmware alternative to the rst line ( s ee table 5 , p in 8). automatic self - test tur n to page 3 (din = 0x8003) and then set glob_cmd[1] = 1 (din = 0x820 2, then din = 0x8300 ) to run an automatic self - test routine, which executes the following steps: 1. measure output on each sensor . 2. activate self - test on each sensor . 3. measure output on each sensor . 4. de activate the self - test on each sensor . 5. calculate the difference with self - test on and off . 6. compare the difference w ith internal p ass/fail criteria . 7. report the pass/fail results for each sensor in diag_sts. after waiting 12 ms for this test to complete, turn to p age 0 (din = 0x8000) and read diag_sts using din = 0x0a00. note that using an external clock can extend this time. when usi ng an external clock of 100 hz, this time extends to 35 ms. note that 100 hz is too slow for optimal sensor performance . memory management the data retention of the flash memory depends on temperature and the number of write cycles. figure 25 characterizes the dependence on temperature , and the flshcnt_low and flshcnt_high register s (see table 115 and table 116) provide a running count of flash write cycles. the flash updates e very time glob_cmd[6], glob_cmd[3] , or glob_cmd[0] is set to 1. table 115. flshcnt_low ( page 2, base address = 0x7 c) bits description [15:0] binary counter; number of flash updates , lower word table 116. f lshcnt_high ( page 2, base address = 0x7 e) bits description [15:0] binary counter; number of flash updates, upper word 10277-023 600 450 300 150 0 30 40 retention ( y ears) junction temper a ture (c) 55 70 85 100 125 135 150 figure 25 . flash memory retention flash memory test tur n to p age 3 (din = 0x8003), and then set glob_cmd[2] = 1 (din = 0x820 4, din = 0x8300 ) to run a che ck sum test of the internal flash memory, which compares a factory - programmed value with the current sum of the same memory locations. the result of this test loads into sys_e_flag[6]. tur n to p age 0 (din = 0x8000 ) and use din = 0x0800 to read sys_e_flag . general - purpose i/o there are four general - purpose i/o lines : dio1 , dio2, dio3 , and dio4. the fn ct io_ctrl register controls the basic function of each i/o line , which provides a number of useful functions. each i/ o line will only support one function at a time . in cases where a single line has two different assignments, the enable bit for the lower - priority function will automatically re set to zero and be disabled. the priority is (1) data - ready, (2) sync clock inp ut, (3) alarm indicator , and (4) general - purpose, where 1 ident ifies the highest priority and 4 indicates the lowest priority.
ADIS16488 data sheet rev. b | page 30 of 36 table 117. fnc tio_ctrl ( page 3, base address = 0x06 ) bits description (default = 0x000 d) [15:12] not use d 11 alarm indicator: 1 = enabled, 0 = disabled 10 alarm indicator polarity: 1 = positive, 0 = negative [9:8] alarm indicator line selection: 00 = dio1, 01 = dio2, 10 = dio3, 11 = dio4 7 sync clock input enable: 1 = enabled, 0 = disabled 6 sync clock input polarity: 1 = rising edge, 0 = falling edge [5:4] sync clock input line selection: 00 = dio1, 01 = dio2, 10 = dio3, 11 = dio4 3 data - ready enable: 1 = enabled, 0 = disabled 2 data - ready polarity: 1 = positive, 0 = negative [1:0] data - ready lin e selection: 00 = dio1, 01 = dio2, 10 = dio3, 11 = dio4 data - ready i ndicator fnc tio_ctrl[3 :0] provide some configuration options for using one of the diox lines as a data - ready indicator signal, which can drive a processors interrupt control line. the f actory default assigns dio2 as a positive polarity, data - ready signal. use the following sequence to change this assignment to dio1 with a negative polarity: t urn to p age 3 (din = 0x8003) and set fnc t io_ c trl[3:0] = 1000 (din = 0x 8608 , then din = 0x8700 ). t he timing jitter on the data - ready signal is 1.4 s. input sync/clock control fnc tio_ctrl [7:4] provide some configuration options for using one of the diox lines as an input synchronization signal for sampling inertial sensor data. for example, use the fo llowing sequence to establish dio4 as a positive polarity, input clock pin and keep the factory default setting for the data - ready function: turn to p age 3 (din = 0x8003) and set fnc tio_ctrl [7: 0] = 0xfd (din = 0x86fd , then din = 0x8700 ). note that this co mmand also disables the internal sampling clock , and no data sampling takes place without the input clock signal. when selecting a clock input frequency , conside r the 330 hz sensor bandwidth, because under sampling the sensors can degrade noise and stabi lity performance. general -p urpose i/o control when fnc tio_ctrl does not configure a diox pin, gpio_ctrl provides register controls for general - purpose use of the pin. gpio_ctrl[3:0] provides input/output assignment controls for each line. when the diox lines are inputs, monitor their level by reading gpio_ctrl[7:4]. when the diox lines are used as outputs, set their level by writing to gpio_ctrl[7:4]. for example, use the following sequence to set dio1 and dio3 as high and low output lines , respectively , and set dio2 and dio4 as input lines . t urn to p age 3 (din = 0x8003) and set gpio_ctrl[7 :0] = 0x15 (din = 0x88 15 , then din = 0x8900 ). table 118 . gpio_ctrl ( page 3, base address = 0x08 ) bits description (default = 0x00 x 0) 1 [15:8] dont care 7 general - purpose i/o line 4 (dio4 ) data level 6 general - purpose i/o line 3 (dio3 ) data level 5 general - purpose i/o line 2 (dio2) data level 4 general - purpose i/o line 1 (dio1) data level 3 general - purpose i/o line 4 (dio 4 ) direction contr ol (1 = output, 0 = input) 2 general - purpose i/o line 3 (dio3 ) direction control (1 = output, 0 = input) 1 general - purpose i/o line 2 (dio2) direction control (1 = output, 0 = input) 0 general - purpose i/o line 1 (dio1) direction control (1 = output, 0 = input) 1 gpio_ctrl[7:4] reflect s levels on diox lines. power management the slp_cnt register (see table 119 ) provides controls for both power - down mode and sleep modes. the trade - off between power - down mode and sleep mod e is between idle power and recovery time. power - down mode offers the best idle power consumption but requires the most time to recover. also, all volatile settings are lost during power - down but are preserved during sleep mode. for timed sleep mode, turn to p age 3 (din = 0x8003) , write the amount of sleep time to slp_cnt [7:0] and then, set slp_cnt[8 ] = 1 (din = 0x 9101 ) to start the sleep period . for a timed power - down period, change the last command to set slp_cnt [9] = 1 (din = 0x9102). to power down or s leep for an indefinite period, set slp_cnt [7:0] = 0x00 first, then set either slp_cnt [8] or slp_cnt [9] to 1. note that the command takes effect when the cs line goes high. to awaken the device from sleep or power - down mode, use one of the following options to restore normal operation: ? a ssert cs from high to low. ? p ulse rst low , then high again . ? cycle the power . for example, set slp_cnt [7:0] = 0x 6 4 (din = 0x 9064) , then set slp_cnt [8] = 1 (din = 0x9101) t o start a sleep period of 100 seconds.
data sheet ADIS16488 rev. b | pag e 31 of 36 table 119. slp_cnt ( page 3, base address = 0x10 ) bits description [15:10] not used 9 power - down mode 8 normal sleep mode [7:0] p rogrammable time bits; 1 sec/lsb ; 0x00 = indefinite if the sleep mode and power - down mode bits are both set high, the normal sleep mode ( slp_cnt [8]) bit take s precedence. general - purpose registers the user_scr_x registers ( s ee table 120, tabl e 121, table 122 , and table 123 ) provide four 16 - bit registers for storing data. table 120 . user_scr_1 (page 2, base address = 0x74) bits description [15:0] user - defined table 121 . user_scr_2 (page 2, base address = 0x76) bits description [15:0] user - defined table 122 . user_scr_3 (page 2, base address = 0x78) bits description [15:0] user - defined table 123 . user_scr_4 (page 2, base address = 0x7a) bits description [15:0] user - defined real - time clock configuration/data the vddrtc power supply pin (see table 5 , pin 23 ) provides a separate supply for the real - time clock (rtc) function. this enables th e rtc to keep track of time, even when the main supply (vdd) is off. configure the rtc function by selecting one of two modes in config [0] (see table 74 ). the real - time clock data is available in the time_ms_out register (see table 124 ), time_dh_ out register (see table 125 ), and time_ym_out register (see table 126 ). when using the elapsed timer mode, the time data registers start at 0x0000 when the de vice starts up (or resets) and begin keeping time in a manner that is similar to a stopwatch. when using the clock/calendar mode, write the current time to the real - time registers in the following sequence: seconds (time_ms_out[ 5 :0]), minutes (time_ ms_o ut[ 13 :8]), hours (time_dh_out[ 5 :0]), day (time_dh_out[ 12 :8]), month (time_ym_out[ 3 :0]), and year (time_ym_out[ 14 :8]). the updates to the timer do not become active until a successful write to the time_ ym_out[ 14 :8] byte. the real - time clock registers ref lect the newly updated values only after the next seconds tick of the clock that follows the write to time_ym_out[ 14 :8] (year). wr it ing to time_ ym_out[ 14 :8] activates all timing values; therefore, always write to this location last when updating the timer , even if the year information does not require updating. write the current time to each time data register after setting config [0] = 1 (din = 0x8003, din = 0x8a01). note that config [1] provides a bit for managing daylight savings time. after the config a nd time_xx_out registers are configured, set glob_cmd[3] = 1 (din = 0x8003, din = 0x8204 , din = 0x8300 ) to back these settings up in flash, and use a separate 3.3 v source to supply power to the vddrtc function. note that access to time data in the time_xx _out registers requires normal operation (vdd = 3.3 v and full startup), but the timer function only requires that vddrtc = 3.3 v when the rest of the ADIS16488 is turned off. table 124 . time_ms_out (page 0, base address = 0x7 8) bits description [15:14] not used [13:8] minutes, binary data, range = 0 to 59 [7:6] not used [5:0] seconds, binary data, range = 0 to 59 table 125 . time_dh_out (page 0, base addres s = 0x7 a) bits description [15:13] not used [12:8] day, binary data, range = 1 to 31 [7:6] not used [5:0] hours, binary data, range = 0 to 23 table 126 . time_ym_out (page 0, base address = 0x7 c) bits description [15] not use d [14:8] year, binary data, range = 0 to 99, relative to 2000 a.d. [7:4] not used [3:0] month, binary data, range = 1 to 12
ADIS16488 data sheet rev. b | page 32 of 36 applications information prototype i nterface b oard the ADIS16488/pcbz includes one ADIS16488amlz , one interface printed circuit board ( pcb ) , and four m2 0.4 18 mm machine screws . the interface pcb provides four holes for ADIS16488amlz a ttachment and four larger holes for attaching the interface pcb to another surface. the ADIS16488amlz attachment holes are pre - tapped for m2 0.4 mm machine screws and the four larger holes, located in each corner, support attachment with m2.5 or #4 machine screws. j1 is a dual - row, 2 mm (pitch) connector that work s with a number of ribbon cable systems, including 3m part number 152212 - 0100- gb (ribbon crimp connector) and 3m part number 3625/12 (ribbon cable). note that j1 has 16 pads but currently uses a 12 - pin connector. the extra pins accommodate future evaluation system plans. figure 27 provides the pin assignments for j1. the pin descriptions match those listed in table 5 . the c1 and c2 locations provide solder pads for extra capacitors, which can provide additional filtering for start - up transients and supply noise. 10277-024 ADIS16488 mounting holes 6.35mm 58.42mm 64.77mm 66.04mm 59.69mm 6.35mm 1.65mm 1 1.30mm figure 26 . physical diagram for the ADIS16488/pcbz 1 rst 2 sclk 3 cs 4 dout 5 dnc 6 din 7 gnd 8 gnd 9 gnd 10 vdd 11 vdd 12 vdd 13 dio1 14 dio2 15 dio3 16 dio4 j1 10277-200 figure 27 . ADIS16488/pcbz j1 pin assignments installation tips figure 28 and figure 29 pr ovide the mechanical design informatio n used for the ADIS16488/pcbz . use the se figures when implementing a connector - down approach, where the mating connector and the ADIS16488amlz are on the same surface. when designing a connector - up system, use the mounting holes shown in figure 28 as a guide in designing the bulkhead mounting system and use figure 29 as a guide in developing the mating connector interface on a flexible circuit or other connector system. the suggested torque setting for the attachment hardware is 40 inch - ounces, or 0.2825 n - m. 10277-025 0.560 bsc 2 alignment holes for m a ting socket 2.500 bsc 4 19.800 bsc 39.600 bsc 42.600 21.300 bsc 5 bsc 5 bsc 1.642 bsc notes 1. all dimensions in mm units. figure 28 . suggested mounting hole locations, connector down 0.4334 [ 1 1.0] 0.0240 [0.610] 0.019685 [0.5000] (typ) 0.054 [1.37] 0.0394 [1.00] 0.0394 [1.00] 0.1800 [4.57] nonpl ated thru hole 2 0.022 di a (typ) 0.022 di a thru hole (typ) nonpl a ted thru hole 10277-026 figure 29 . suggested layout and mechanical design for the mating connector
data sheet ADIS16488 rev. b | page 33 of 36 outline dimensions 10-20-2010-b bottom view front view 44.254 44.000 43.746 42.854 42.600 42.346 47.254 47.000 46.746 14.254 14.000 13.746 3.454 3.200 2.946 39.854 39.600 39.346 ? 2.40 bsc (4 plcs) 19.80 2.20 bsc detail a detail b 5.50 bsc 5.50 bsc 1.00 bsc 1.142 bsc 2.84 bsc detail a detail b 1.00 bsc pitch 0.30 sq bsc figure 30 . 24 - lead module w ith connector interface [module] (ml- 24 -6) dimensions shown in millimeters ordering guide model 1 , 2 temperature range package description package option ADIS16488 a mlz ?40c to + 85c 24- lead module with connector interface [module] ml -24-6 ADIS16488 /pcbz interface pcb 1 z = rohs compliant part. 2 the ADIS16488/pcbz includes one ADIS16488amlz and one interface board pcb. see figure 26 for more information on the interface pcb.
ADIS16488 data sheet rev. b | page 34 of 36 notes
data sheet ADIS16488 rev. b | page 35 of 36 notes
ADIS16488 data sheet rev. b | page 36 of 36 notes ?2011C2012 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. d10277-0-2/12(b)


▲Up To Search▲   

 
Price & Availability of ADIS16488

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X