Part Number Hot Search : 
MP3021DQ SS6620 25VF020 LC866556 SX812X PKD01FP DKWP40 BL6464AA
Product Description
Full Text Search
 

To Download M95640-MB3TPP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M95320 M95320-W M95320-R M95640 M95640-W M95640-R
32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
Feature summary
Compatible with SPI Bus Serial Interface (Positive Clock SPI Modes) Single Supply Voltage: - 4.5 to 5.5V for M95320 and M95640 - 2.5 to 5.5V for M95320-W and M95320-W - 1.8 to 5.5V for M95320-R and M95640-R 10MHz, 5MHz or 2MHz clock rates 5ms or 10ms Write Time Status Register Hardware Protection of the Status Register Byte and Page Write (up to 32 Bytes) Self-Timed Programming Cycle Adjustable Size Read-Only EEPROM Area Enhanced ESD Protection More than 1 million Write cycles More than 40-Year Data Retention Packages - ECOPACK(R) (RoHS compliant) MLP8 (MB) 2x3 mm TSSOP8 (DW) 169 mil width
SO8 (MN) 150 mil width

July 2006
Rev 6
1/44
www.st.com 1
Contents
M95320, M95640, M95320-x, M95640-x
Contents
1 2 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.0.1 2.0.2 2.0.3 2.0.4 2.0.5 2.0.6 Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.1 4.1.2 4.1.3 4.1.4 Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Internal device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 4.3 4.4
Active Power and Standby Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 6
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 6.2 6.3 Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3.1 6.3.2 6.3.3 6.3.4 WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/44
M95320, M95640, M95320-x, M95640-x
Contents
6.4 6.5 6.6
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Power-up and delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 7.2 Power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 9 10 11 12
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3/44
List of tables
M95320, M95640, M95320-x, M95640-x
List of tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Write-Protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Operating conditions (M95320 and M95640) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Operating conditions (M95320-W and M95640-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Operating conditions (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DC characteristics (M95320 and M95640, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . 27 DC characteristics (M95320 and M95640, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . 27 DC characteristics (M95320-W and M95640-W, device grade 6). . . . . . . . . . . . . . . . . . . . 28 DC characteristics (M95320-W and M95640-W, device grade 3). . . . . . . . . . . . . . . . . . . . 28 DC characteristics (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AC characteristics (M95320 and M95640, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . 30 AC characteristics (M95320 and M95640, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . 31 AC characteristics (M95320-W and M95640-W, device grade 6). . . . . . . . . . . . . . . . . . . . 32 AC characteristics (M95320-W and M95640-W, device grade 3). . . . . . . . . . . . . . . . . . . . 33 AC characteristics (M95320-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 AC characteristics (M95640-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SO8N - 8 lead Plastic Small Outline, 150 mils body width, package mechanical data . . . 38 TSSOP8 - 8 lead Thin Shrink Small Outline, package mechanical data . . . . . . . . . . . . . . 39 MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package mechanical data. . . . . . . 40 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4/44
M95320, M95640, M95320-x, M95640-x
List of figures
List of figures
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Bus master and memory devices on the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Hold condition activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Write Disable (WRDI) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Write Status Register (WRSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Serial Input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SO8N - 8 lead Plastic Small Outline, 150 mils body width, package outline . . . . . . . . . . . 38 TSSOP8 - 8 lead Thin Shrink Small Outline, package outline . . . . . . . . . . . . . . . . . . . . . . 39 MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package outline . . . . . . . . . . . . . . 40
5/44
Summary description
M95320, M95640, M95320-x, M95640-x
1
Summary description
These electrically erasable programmable memory (EEPROM) devices are accessed by a high speed SPI-compatible bus. The M95320, M95320-W and M95320-R are 32Kbit devices organized as 4096 x 8 bits. The M95640, M95640-W and M95640-R are 64Kbit devices organized as 8192 x 8 bits. The device is accessed by a simple serial interface that is SPI-compatible. The bus signals are C, D and Q, as shown in Table 1 and Figure 1. The device is selected when Chip Select (S) is taken Low. Communications with the device can be interrupted using Hold (HOLD). In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. ECOPACK(R) packages are Lead-free and RoHS compliant. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 1. Logic diagram
VCC
D C S W HOLD M95xxx
Q
VSS
AI01789C
Figure 2.
8 pin package connections
M95xxx S Q W VSS 1 2 3 4 8 7 6 5
AI01790D
VCC HOLD C D
1. See Package mechanical section for package dimensions and how to identify pin-1.
6/44
M95320, M95640, M95320-x, M95640-x Table 1. Signal names
C D Q S W HOLD VCC VSS Serial Clock Serial data Input Serial data Output Chip Select Write Protect Hold Supply Voltage Ground
Summary description
7/44
Signal description
M95320, M95640, M95320-x, M95640-x
2
Signal description
During all operations, VCC must be held stable and within the specified valid range: VCC(min) to VCC(max). All of the input and output signals must be held High or Low (according to voltages of VIH, VOH, VIL or VOL, as specified in Table 13 to Table 17). These signals are described next.
2.0.1
Serial Data Output (Q)
This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of Serial Clock (C).
2.0.2
Serial Data Input (D)
This input signal is used to transfer data serially into the device. It receives instructions, addresses, and the data to be written. Values are latched on the rising edge of Serial Clock (C).
2.0.3
Serial Clock (C)
This input signal provides the timing of the serial interface. Instructions, addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C).
2.0.4
Chip Select (S)
When this input signal is High, the device is deselected and Serial Data Output (Q) is at high impedance. Unless an internal Write cycle is in progress, the device will be in the Standby Power mode. Driving Chip Select (S) Low selects the device, placing it in the Active Power mode. After Power-up, a falling edge on Chip Select (S) is required prior to the start of any instruction.
2.0.5
Hold (HOLD)
The Hold (HOLD) signal is used to pause any serial communications with the device without deselecting the device. During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don't Care. To start the Hold condition, the device must be selected, with Chip Select (S) driven Low.
2.0.6
Write Protect (W)
The main purpose of this input signal is to freeze the size of the area of memory that is protected against Write instructions (as specified by the values in the BP1 and BP0 bits of the Status Register). This pin must be driven either High or Low, and must be stable during all write operations.
8/44
M95320, M95640, M95320-x, M95640-x
Connecting to the SPI bus
3
Connecting to the SPI bus
These devices are fully compatible with the SPI protocol. All instructions, addresses and input data bytes are shifted in to the device, most significant bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C) after Chip Select (S) goes Low. All output data bytes are shifted out of the device, most significant bit first. The Serial Data Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction (such as the Read from Memory Array and Read Status Register instructions) have been clocked into the device. Figure 3 shows three devices, connected to an MCU, on a SPI bus. Only one device is selected at a time, so only one device drives the Serial Data Output (Q) line at a time, all the others being high impedance.
Figure 3.
Bus master and memory devices on the SPI bus
VSS VCC R(2) SDO
SPI Interface with (CPOL, CPHA) = (0, 0) or (1, 1)
SDI SCK CQD VCC VSS R(2) SPI Memory Device R(2) CQD VCC VSS SPI Memory R(2) Device SPI Memory Device CQD VCC VSS
SPI Bus Master
CS3
CS2
CS1 S W HOLD S W HOLD S W HOLD
AI12836
1. The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate. 2. These pull-up resistors, R, ensure that the memory devices are not selected if the Bus Master leaves the S line in the highimpedance state. As the Bus Master may enter a state where all inputs/outputs are in high impedance at the same time (e.g.: when the Bus Master is reset), the clock line (C) must be connected to an external pull-down resistor so that, when all inputs/outputs become high impedance, S is pulled High while C is pulled Low (thus ensuring that S and C do not become High at the same time, and so, that the tSHCH requirement is met).
9/44
Connecting to the SPI bus
M95320, M95640, M95320-x, M95640-x
3.1
SPI modes
These devices can be driven by a microcontroller with its SPI peripheral running in either of the two following modes:

CPOL=0, CPHA=0 CPOL=1, CPHA=1
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and output data is available from the falling edge of Serial Clock (C). The difference between the two modes, as shown in Figure 4, is the clock polarity when the bus master is in Stand-by mode and not transferring data:

C remains at 0 for (CPOL=0, CPHA=0) C remains at 1 for (CPOL=1, CPHA=1) SPI modes supported
Figure 4.
CPOL CPHA
0
0
C
1
1
C
D
MSB
Q
MSB
AI01438B
10/44
M95320, M95640, M95320-x, M95640-x
Operating features
4
4.1
4.1.1
Operating features
Supply voltage (VCC)
Operating supply voltage VCC
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range must be applied (see Table 8.). In order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually of the order of 10nF to 100nF) close to the VCC/VSS package pins. This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal write cycle (tW).
4.1.2
Power-up conditions
When the power supply is turned on, VCC rises from VSS to VCC. During this time, the Chip Select (S) is not allowed to float but must follow the VCC voltage, therefore the S line should be connected to VCC via a suitable pull-up resistor. In addition, the Chip Select (S) input offers a built-in safety feature, as the S input is edge sensitive as well as level sensitive: after Power-up, the device does not become selected until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select (S) must have been High, prior to going Low to start the first operation. The VCC rise time must not be faster than 1V/s.
4.1.3
Internal device Reset
In order to prevent inadvertent Write operations during Power-up, a Power On Reset (POR) circuit is included. At Power-up (continuous rise of VCC), the device will not respond to any instruction until VCC has reached the Power On Reset threshold voltage (this threshold is lower than the minimum VCC operating voltage defined in Tables XX). When VCC has passed the POR threshold, the device is reset and in the following state:

Standby Power mode deselected (at next Power-up, a falling edge is required on Chip Select (S) before any instructions can be started). not in the Hold Condition the Write Enable Latch (WEL) is reset to 0 Write In Progress (WIP) is reset to 0. The SRWD, BP1 and BP0 bits of the Status Register are in the same state as when the power was last removed (they are nonvolatile bits).
Status Register state:

11/44
Operating features
M95320, M95640, M95320-x, M95640-x
4.1.4
Power-down
At Power-down (continuous decrease of VCC), as soon as VCC drops from the normal operating voltage to below the Power On Reset threshold voltage, the device stops responding to any instruction sent to it. During Power-down, the device must be deselected and in Standby Power mode (that is there should be no internal Write cycle in progress). Chip Select (S) should be allowed to follow the voltage applied on VCC.
4.2
Active Power and Standby Power modes
When Chip Select (S) is Low, the device is selected, and in the Active Power mode. The device consumes ICC, as specified in Table 13 to Table 17. When Chip Select (S) is High, the device is deselected. If an Erase/Write cycle is not currently in progress, the device then goes in to the Standby Power mode, and the device consumption drops to ICC1.
4.2.1
Hold condition
The Hold (HOLD) signal is used to pause any serial communications with the device without resetting the clocking sequence. During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don't Care. To enter the Hold condition, the device must be selected, with Chip Select (S) Low. Normally, the device is kept selected, for the whole duration of the Hold condition. Deselecting the device while it is in the Hold condition, has the effect of resetting the state of the device, and this mechanism can be used if it is required to reset any processes that had been in progress. The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as Serial Clock (C) already being Low (as shown in Figure 5). The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as Serial Clock (C) already being Low. Figure 5 also shows what happens if the rising and falling edges are not timed to coincide with Serial Clock (C) being Low. Figure 5. Hold condition activation
C
HOLD
Hold Condition
Hold Condition
AI02029D
12/44
M95320, M95640, M95320-x, M95640-x
Operating features
4.3
Status Register
Figure 6 shows the position of the Status Register in the control logic of the device. The Status Register contains a number of status and control bits that can be read or set (as appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a detailed description of the Status Register bits.
4.4
Data protection and protocol control
Non-volatile memory devices can be used in environments that are particularly noisy, and within applications that could experience problems if memory bytes are corrupted. Consequently, the device features the following data protection mechanisms:

Write and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events: - - - - Power-up Write Disable (WRDI) instruction completion Write Status Register (WRSR) instruction completion Write (WRITE) instruction completion

The Block Protect (BP1, BP0) bits allow part of the memory to be configured as readonly. This is the Software Protected Mode (SPM). The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits to be protected. This is the Hardware Protected Mode (HPM).
For any instruction to be accepted, and executed, Chip Select (S) must be driven High after the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising edge of Serial Clock (C). Two points need to be noted in the previous sentence:
The `last bit of the instruction' can be the eighth bit of the instruction code, or the eighth bit of a data byte, depending on the instruction (except for Read Status Register (RDSR) and Read (READ) instructions). The `next rising edge of Serial Clock (C)' might (or might not) be the next bus transaction for some other device on the SPI bus. Write-Protected block size
Array Addresses Protected Protected Block BP1 0 0 1 1 BP0 0 1 0 1 none Upper quarter Upper half Whole memory M95640, M95640-W, M95640-R, M95640-S none 1800h - 1FFFh 1000h - 1FFFh 0000h - 1FFFh M95320, M95320-W, M95320-R, M95320-S none 0C00h - 0FFFh 0800h - 0FFFh 0000h - 0FFFh
Table 2.
Status Register Bits
13/44
Memory organization
M95320, M95640, M95320-x, M95640-x
5
Memory organization
The memory is organized as shown in Figure 6. Figure 6.
HOLD W S C D Q Control Logic
Block diagram
High Voltage Generator
I/O Shift Register
Address Register and Counter
Data Register Status Register
Size of the Read only EEPROM area
Y Decoder
1 Page
X Decoder
AI01272C
14/44
M95320, M95640, M95320-x, M95640-x
Instructions
6
Instructions
Each instruction starts with a single-byte code, as summarized in Table 3. If an invalid instruction is sent (one not contained in Table 3.), the device automatically deselects itself. Table 3. Instruction set
Description Write Enable Write Disable Read Status Register Write Status Register Read from Memory Array Write to Memory Array Instruction Format 0000 0110 0000 0100 0000 0101 0000 0001 0000 0011 0000 0010
Instruction WREN WRDI RDSR WRSR READ WRITE
6.1
Write Enable (WREN)
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction. The only way to do this is to send a Write Enable instruction to the device. As shown in Figure 7, to send this instruction to the device, Chip Select (S) is driven Low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven High. Figure 7. Write Enable (WREN) sequence
S 0 C Instruction D High Impedance Q
AI02281E
1
2
3
4
5
6
7
15/44
Instructions
M95320, M95640, M95320-x, M95640-x
6.2
Write Disable (WRDI)
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction to the device. As shown in Figure 8, to send this instruction to the device, Chip Select (S) is driven Low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven High. The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:

Power-up WRDI instruction execution WRSR instruction completion WRITE instruction completion. Write Disable (WRDI) sequence
Figure 8.
S 0 C Instruction D High Impedance Q
AI03750D
1
2
3
4
5
6
7
16/44
M95320, M95640, M95320-x, M95640-x
Instructions
6.3
Read Status Register (RDSR)
The Read Status Register (RDSR) instruction allows the Status Register to be read. The Status Register may be read at any time, even while a Write or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible to read the Status Register continuously, as shown in Figure 9. The Status Register format is shown in Table 4 and the status and control bits of the Status Register are as follows:
6.3.1
WIP bit
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress.
6.3.2
WEL bit
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write or Write Status Register instruction is accepted.
6.3.3
BP1, BP0 bits
The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions. These bits are written with the Write Status Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to 1, the relevant memory area (as defined in Table 4) becomes protected against Write (WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the Hardware Protected mode has not been set.
6.3.4
SRWD bit
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected mode (when the Status Register Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven Low). In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for execution. Table 4.
b7 SRWD 0 0 0 BP1 BP0 WEL
Status Register format
b0 WIP
Status Register Write Protect Block Protect Bits Write Enable Latch Bit Write In Progress Bit
17/44
Instructions Figure 9.
S 0 C Instruction D 1 2 3 4 5 6 7 8
M95320, M95640, M95320-x, M95640-x Read Status Register (RDSR) sequence
9 10 11 12 13 14 15
Status Register Out High Impedance Q 7 MSB 6 5 4 3 2 1 0 7 MSB
Status Register Out 6 5 4 3 2 1 0 7
AI02031E
6.4
Write Status Register (WRSR)
The Write Status Register (WRSR) instruction allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded and executed, the device sets the Write Enable Latch (WEL). The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) Low, followed by the instruction code and the data byte on Serial Data Input (D). The instruction sequence is shown in Figure 10. The Write Status Register (WRSR) instruction has no effect on b6, b5, b4, b1 and b0 of the Status Register. b6, b5 and b4 are always read as 0. Chip Select (S) must be driven High after the rising edge of Serial Clock (C) that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise, the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (S) is driven High, the self-timed Write Status Register cycle (whose duration is tW) is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is completed, the Write Enable Latch (WEL) is reset. The Write Status Register (WRSR) instruction allows the user to change the values of the Block Protect (BP1, BP0) bits, to define the size of the area that is to be treated as readonly, as defined in Table 4. The Write Status Register (WRSR) instruction also allows the user to set or reset the Status Register Write Disable (SRWD) bit in accordance with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR) instruction is not executed once the Hardware Protected Mode (HPM) is entered. The contents of the Status Register Write Disable (SRWD) and Block Protect (BP1, BP0) bits are frozen at their current values from just before the start of the execution of Write Status Register (WRSR) instruction. The new, updated, values take effect at the moment of completion of the execution of Write Status Register (WRSR) instruction.
18/44
M95320, M95640, M95320-x, M95640-x Table 5. Protection modes
Instructions
Memory Content W SRWD Signal Bit 1 0 1 0 0 1 Mode Write Protection of the Status Register Protected Area(1) Unprotected Area(1)
Status Register is Writable Software (if the WREN instruction Protected has set the WEL bit) Write Protected (SPM) The values in the BP1 and BP0 bits can be changed Status Register is Hardware Hardware write protected Protected The values in the BP1 and Write Protected (HPM) BP0 bits cannot be changed
Ready to accept Write instructions
0
1
Ready to accept Write instructions
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 2.
The protection features of the device are summarized in Table 2. When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial delivery state), it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless of the whether Write Protect (W) is driven High or Low. When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two cases need to be considered, depending on the state of Write Protect (W):
If Write Protect (W) is driven High, it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction. If Write Protect (W) is driven Low, it is not possible to write to the Status Register even if the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction. (Attempts to write to the Status Register are rejected, and are not accepted for execution). As a consequence, all the data bytes in the memory area that are software protected (SPM) by the Block Protect (BP1, BP0) bits of the Status Register, are also hardware protected against data modification.
Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be entered:

by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W) Low or by driving Write Protect (W) Low after setting the Status Register Write Disable (SRWD) bit.
The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write Protect (W) High. If Write Protect (W) is permanently tied High, the Hardware Protected Mode (HPM) can never be activated, and only the Software Protected Mode (SPM), using the Block Protect (BP1, BP0) bits of the Status Register, can be used.
19/44
Instructions Table 6. Address range bits(1)
32 Kbit Devices A12-A0
M95320, M95640, M95320-x, M95640-x
Device Address Bits
64 Kbit Devices A11-A0
1. b15 to b13 are Don't Care on the 64 Kbit devices. b15 to b12 are Don't Care on the 32 Kbit devices.
Figure 10. Write Status Register (WRSR) sequence
S 0 C Instruction Status Register In 7 High Impedance Q
AI02282D
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
D
6
5
4
3
2
1
0
MSB
20/44
M95320, M95640, M95320-x, M95640-x
Instructions
6.5
Read from Memory Array (READ)
As shown in Figure 11, to send this instruction to the device, Chip Select (S) is first driven Low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data Input (D). The address is loaded into an internal address register, and the byte of data at that address is shifted out, on Serial Data Output (Q). If Chip Select (S) continues to be driven Low, the internal address register is automatically incremented, and the byte of data at the new address is shifted out. When the highest address is reached, the address counter rolls over to zero, allowing the Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a single READ instruction. The Read cycle is terminated by driving Chip Select (S) High. The rising edge of the Chip Select (S) signal can occur at any time during the cycle. The first byte addressed can be any byte within any page. The instruction is not accepted, and is not executed, if a Write cycle is currently in progress. Figure 11. Read from Memory Array (READ) sequence
S 0 C Instruction 16-Bit Address 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31
D High Impedance Q
15 14 13 MSB
3
2
1
0 Data Out 1 7 6 5 4 3 2 1 0 Data Out 2 7
MSB
AI01793D
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don't Care.
21/44
Instructions
M95320, M95640, M95320-x, M95640-x
6.6
Write to Memory Array (WRITE)
As shown in Figure 12, to send this instruction to the device, Chip Select (S) is first driven Low. The bits of the instruction byte, address byte, and at least one data byte are then shifted in, on Serial Data Input (D). The instruction is terminated by driving Chip Select (S) High at a byte boundary of the input data. In the case of Figure 12, this occurs after the eighth bit of the data byte has been latched in, indicating that the instruction is being used to write a single byte. The self-timed Write cycle starts, and continues for a period tWC (as specified in Table 18 to Table 22), at the end of which the Write in Progress (WIP) bit is reset to 0. If, though, Chip Select (S) continues to be driven Low, as shown in Figure 13, the next byte of input data is shifted in, so that more than a single byte, starting from the given address towards the end of the same page, can be written in a single internal Write cycle. Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If the number of data bytes sent to the device exceeds the page boundary, the internal address counter rolls over to the beginning of the page, and the previous data there are overwritten with the incoming data. (The page size of these devices is 32 bytes). The instruction is not accepted, and is not executed, under the following conditions:

if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable instruction just before) if a Write cycle is already in progress if the device has not been deselected, by Chip Select (S) being driven High, at a byte boundary (after the eighth bit, b0, of the last data byte that has been latched in) if the addressed page is in the region protected by the Block Protect (BP1 and BP0) bits.
Figure 12. Byte Write (WRITE) sequence
S 0 C Instruction 16-Bit Address Data Byte 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31
D High Impedance Q
15 14 13
3
2
1
0
7
6
5
4
3
2
1
0
AI01795D
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don't Care.
22/44
M95320, M95640, M95320-x, M95640-x Figure 13. Page Write (WRITE) sequence
S 0 C Instruction 16-Bit Address Data Byte 1 1 2 3 4 5 6 7 8 9 10
Instructions
20 21 22 23 24 25 26 27 28 29 30 31
D
15 14 13
3
2
1
0
7
6
5
4
3
2
1
0
S 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 C Data Byte 2 Data Byte 3 Data Byte N
D
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
AI01796D
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don't Care.
23/44
Power-up and delivery state
M95320, M95640, M95320-x, M95640-x
7
7.1
Power-up and delivery state
Power-up state
After Power-up, the device is in the following state:

Standby Power mode deselected (after Power-up, a falling edge is required on Chip Select (S) before any instructions can be started). not in the Hold Condition the Write Enable Latch (WEL) is reset to 0 Write In Progress (WIP) is reset to 0
The SRWD, BP1 and BP0 bits of the Status Register are unchanged from the previous power-down (they are non-volatile bits).
7.2
Initial delivery state
The device is delivered with the memory array set at all 1s (FFh). The Status Register Write Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.
24/44
M95320, M95640, M95320-x, M95640-x
Maximum rating
8
Maximum rating
Stressing the device outside the ratings listed in Table 7 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 7.
Symbol TSTG TA TLEAD VO VI VCC VESD Storage Temperature Ambient operating temperature Lead Temperature during Soldering Output Voltage Input Voltage Supply Voltage Electrostatic Discharge Voltage (Human Body model)(2)
Absolute maximum ratings
Parameter Min. -65 -40 See -0.50 -0.50 -0.50 -4000 Max. 150 130 note (1) VCC+0.6 6.5 6.5 4000 Unit C C C V V V V
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK(R) 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)
25/44
DC and AC parameters
M95320, M95640, M95320-x, M95640-x
9
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 8.
Symbol VCC TA Supply Voltage Ambient Operating Temperature (Device Grade 6) Ambient Operating Temperature (Device Grade 3)
Operating conditions (M95320 and M95640)
Parameter Min. 4.5 -40 -40 Max. 5.5 85 125 Unit V C C
Table 9.
Symbol VCC TA
Operating conditions (M95320-W and M95640-W)
Parameter Supply Voltage Ambient Operating Temperature (Device Grade 6) Ambient Operating Temperature (Device Grade 3) Min. 2.5 -40 -40 Max. 5.5 85 125 Unit V C C
Table 10.
Symbol VCC TA
Operating conditions (M95320-R and M95640-R)
Parameter Supply Voltage Ambient Operating Temperature Min.(1) 1.8 -40 Max. (1) 5.5 85 Unit V C
1. This product is under development. For more information, please contact your nearest ST sales office.
Table 11.
Symbol CL
AC measurement conditions(1)
Parameter Load Capacitance Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Reference Voltages Min. Typ. 30 50 0.2VCC to 0.8VCC 0.3VCC to 0.7VCC Max. Unit pF ns V V
1. Output Hi-Z is defined as the point where data out is no longer driven.
Figure 14. AC measurement I/O waveform
Input Levels 0.8VCC Input and Output Timing Reference Levels 0.7VCC 0.3VCC
AI00825B
0.2VCC
26/44
M95320, M95640, M95320-x, M95640-x Table 12.
Symbol COUT CIN
DC and AC parameters
Capacitance(1)
Parameter Output Capacitance (Q) Input Capacitance (D) Input Capacitance (other pins) Test Condition VOUT = 0V VIN = 0V VIN = 0V Min. Max. 8 8 6 Unit pF pF pF
1. Sampled only, not 100% tested, at TA=25C and a frequency of 5MHz.
Table 13.
Symbol ILI ILO ICC ICC1 VIL VIH VOL(1) VOH(1)
DC characteristics (M95320 and M95640, device grade 6)
Parameter Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 2 mA, VCC = 5V IOH = -2 mA, VCC = 5V 0.8VCC Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 10MHz, VCC = 5V, Q = open S = VCC, VCC = 5V, VIN = VSS or VCC -0.45 0.7VCC Min. Max. 2 2 5 2 0.3VCC VCC+1 0.4 Unit A A mA A V V V V
1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.
Table 14.
Symbol ILI ILO ICC ICC1 VIL VIH VOL(1) VOH(1)
DC characteristics (M95320 and M95640, device grade 3)
Parameter Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 2mA, VCC = 5V IOH = -2mA, VCC = 5V 0.8 VCC Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 5MHz, VCC = 5V, Q = open S = VCC, VCC = 5V, VIN = VSS or VCC -0.45 0.7 VCC Min. Max. 2 2 4 5 0.3 VCC VCC+1 0.4 Unit A A mA A V V V V
1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.
27/44
DC and AC parameters Table 15.
Symbol ILI ILO ICC ICC1 VIL VIH VOL VOH
M95320, M95640, M95320-x, M95640-x DC characteristics (M95320-W and M95640-W, device grade 6)
Parameter Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 5MHz, VCC = 2.5V, Q = open S = VCC, VCC = 2.5V VIN = VSS or VCC -0.45 0.7VCC IOL = 1.5mA, VCC = 2.5V or IOL = 2mA, VCC = 5.5V IOH = -0.4mA, VCC = 2.5V or IOH = -2mA, VCC = 5.5V 0.8VCC Min. Max. 2 2 3 1 0.3VCC VCC+1 0.4 Unit A A mA A V V V V
Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
Table 16.
Symbol ILI ILO ICC ICC1 VIL VIH VOL VOH
DC characteristics (M95320-W and M95640-W, device grade 3)
Parameter Input Leakage Current Output Leakage Current Supply Current Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 5MHz, VCC = 2.5V, Q = open Min. Max. 2 2 3 2 -0.45 0.3VCC Unit A A mA A V V V V
Supply Current (Standby) S = VCC, VCC = 2.5V, VIN = VSS or VCC Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 1.5mA, VCC = 2.5V IOH = -0.4mA, VCC = 2.5V 0.8VCC
0.7VCC VCC+1 0.4
28/44
M95320, M95640, M95320-x, M95640-x Table 17.
Symbol ILI ILO ICC
DC and AC parameters
DC characteristics (M95320-R and M95640-R)
Parameter Input Leakage Current Output Leakage Current Supply Current Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at max clock frequency, 1.8V < VCC = 2.5V, Q = open S = VCC, VIN = VSS or VCC, 1.8V < VCC = 2.5V -0.45 Min.(1) Max.(1) 1 1 3 Unit A A mA
ICC1 VIL VIH VOL VOH
Supply Current (Standby) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
1 0.3 VCC
A V V V V
0.7 VCC VCC+1 IOL = 0.15 mA, VCC = 1.8 V IOH = -0.1 mA, VCC = 1.8 V 0.8 VCC 0.3
1. This product is under qualification. For more information, please contact your nearest ST sales office.
29/44
DC and AC parameters Table 18.
M95320, M95640, M95320-x, M95640-x AC characteristics (M95320 and M95640, device grade 6)
Test conditions specified in Table 11 and Table 8
Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH(1) tCL(1) tCLCH(2) tCHCL
(2)
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min. D.C. 15 15 40 25 15 40 40
Max. 10
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 15 15 15 20 0 0 25 25 0 20 20 25 25 5
s s ns ns ns ns ns ns ns ns ns ns ns ns ns ms
tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ(2) tCLQV tCLQX tQLQH(2) tQHQL(2) tHHQV tHLQZ(2) tW
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). 2. Value guaranteed by characterization, not 100% tested in production.
30/44
M95320, M95640, M95320-x, M95640-x Table 19.
DC and AC parameters
AC characteristics (M95320 and M95640, device grade 3)
Test conditions specified in Table 11 and Table 8
Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH(1) tCL(1) tCLCH tCHCL
(2) (2)
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min. D.C. 90 90 100 90 90 90 90
Max. 5
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 20 30 70 40 0 0 100 60 0 50 50 50 100 5
s s ns ns ns ns ns ns ns ns ns ns ns ns ns ms
tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ(2) tCLQV tCLQX tQLQH(2) tQHQL(2) tHHQV tHLQZ(2) tW
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). 2. Value guaranteed by characterization, not 100% tested in production.
31/44
DC and AC parameters Table 20.
M95320, M95640, M95320-x, M95640-x AC characteristics (M95320-W and M95640-W, device grade 6)
Test conditions specified in Table 11 and Table 9 Current Product Version(1) Min. Max. New Product Version(2) Min. D.C. 30 30 40 30 30 42 40 1 1 20 30 70 40 0 0 100 60 0 50 50 50 100 5 0 40 40 40 40 5 10 10 30 30 0 0 40 40 2 2 Max. 10 MHz ns ns ns ns ns ns ns s s ns ns ns ns ns ns ns ns ns ns ns ns ns ms
Symbol
Alt.
Parameter
Unit
fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH(3) tCL(3) tCLCH(4) tCHCL
(4)
fSCK
Clock Frequency
D.C. 90 90 100 90 90 90 90
5
tCSS1 S Active Setup Time tCSS2 S Not Active Setup Time tCS tCSH S Deselect Time S Active Hold Time S Not Active Hold Time tCLH tCLL tRC tFC tDSU tDH Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active tDIS tV tHO tRO tFO tLZ tHZ tWC Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ(4) tCLQV tCLQX tQLQH tQHQL
(4) (4)
tHHQV tHLQZ(4) tW
1. Current product version is identified by Process Identification letter `V''. 2. New product version is identified by Process Identification letter `P'. Please contact your nearest ST sales office for details (PCN MPG-NVM/05/1315 and PCN MPG-NVM/05/1191) 3. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). 4. Value guaranteed by characterization, not 100% tested in production.
32/44
M95320, M95640, M95320-x, M95640-x Table 21.
DC and AC parameters
AC characteristics (M95320-W and M95640-W, device grade 3)
Test conditions specified in Table 11 and Table 9
Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH(1) tCL(1) tCLCH tCHCL
(2) (2)
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min. D.C. 90 90 100 90 90 90 90
Max. 5
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 20 30 70 40 0 0 100 60 0 50 50 50 100 5
s s ns ns ns ns ns ns ns ns ns ns ns ns ns ms
tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ
(2)
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
tCLQV tCLQX tQLQH tQHQL
(2) (2)
tHHQV tHLQZ(2) tW
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). 2. Value guaranteed by characterization, not 100% tested in production.
33/44
DC and AC parameters Table 22. AC characteristics (M95320-R)
M95320, M95640, M95320-x, M95640-x
Test conditions specified in Table 11 and Table 10 Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH(1) tCL(1) tCLCH tCHCL
(2) (2)
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min. D.C. 60 60 90 60 60 90 90
Max. 5
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
2 2 20 20 60 60 0 0 80 80 0 80 80 80 80 10
s s ns ns ns ns 0 0 ns ns ns ns ns ns ns ms
tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ(2) tCLQV tCLQX tQLQH(2) tQHQL(2) tHHQV tHLQZ(2) tW
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). 2. Value guaranteed by characterization, not 100% tested in production.
34/44
M95320, M95640, M95320-x, M95640-x Table 23. AC characteristics (M95640-R)
DC and AC parameters
Test conditions specified in Table 11 and Table 9 Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH(1) tCL(3) tCLCH(2) tCHCL
(4)
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min. D.C. 150 150 200 150 150 200 200
Max. 2
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
2 2 50 50 150 150 0 0 200 200 0 200 200 200 200 10
s s ns ns ns ns 0 0 ns ns ns ns ns ns ns ms
tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ(4) tCLQV tCLQX tQLQH
(4)
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
tQHQL(4) tHHQV tHLQZ(4) tW
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). 2. Value guaranteed by characterization, not 100% tested in production.
35/44
DC and AC parameters Figure 15. Serial Input timing
M95320, M95640, M95320-x, M95640-x
tSHSL S tCHSL C tDVCH tCHDX D MSB IN tCLCH LSB IN tCHCL tSLCH tCHSH tSHCH
Q
High Impedance
AI01447C
Figure 16. Hold timing
S tHLCH tCLHL C tCLHH tHLQZ Q tHHQV tHHCH
D
HOLD
AI01448B
36/44
M95320, M95640, M95320-x, M95640-x Figure 17. Output timing
S tCH C tCLQV tCLQX Q tQLQH tQHQL D
ADDR. LSB IN
DC and AC parameters
tCLQV tCLQX
tCL
tSHQZ
LSB OUT
AI01449e
37/44
Package mechanical
M95320, M95640, M95320-x, M95640-x
10
Package mechanical
Figure 18. SO8N - 8 lead Plastic Small Outline, 150 mils body width, package outline
h x 45 A2 b e 0.25 mm GAUGE PLANE k
8
A ccc c
D
E1
1
E A1 L L1
SO-A
1. Drawing is not to scale.
Table 24.
SO8N - 8 lead Plastic Small Outline, 150 mils body width, package mechanical data
millimeters inches Max 1.75 0.10 1.25 0.28 0.17 0.48 0.23 0.10 4.90 6.00 3.90 1.27 4.80 5.80 3.80 - 0.25 0 0.40 1.04 5.00 6.20 4.00 - 0.50 8 1.27 0.041 0.193 0.236 0.154 0.050 0.189 0.228 0.150 - 0.010 0 0.016 0.25 0.004 0.049 0.011 0.007 0.019 0.009 0.004 0.197 0.244 0.157 - 0.020 8 0.050 Typ Min Max 0.069 0.010
Symbol Typ A A1 A2 b c ccc D E E1 e h k L L1 Min
38/44
M95320, M95640, M95320-x, M95640-x
Package mechanical
Figure 19. TSSOP8 - 8 lead Thin Shrink Small Outline, package outline
D
8
5
c
E1 E
1
4
A1 A CP b e A2
L L1
TSSOP8AM
1. Drawing is not to scale.
Table 25.
Symbol
TSSOP8 - 8 lead Thin Shrink Small Outline, package mechanical data
millimeters Typ. Min. Max. 1.200 0.050 1.000 0.800 0.190 0.090 0.150 1.050 0.300 0.200 0.100 3.000 0.650 6.400 4.400 0.600 1.000 0 8 2.900 - 6.200 4.300 0.450 3.100 - 6.600 4.500 0.750 0.1181 0.0256 0.2520 0.1732 0.0236 0.0394 0 8 0.1142 - 0.2441 0.1693 0.0177 0.0394 0.0020 0.0315 0.0075 0.0035 Typ. inches Min. Max. 0.0472 0.0059 0.0413 0.0118 0.0079 0.0039 0.1220 - 0.2598 0.1772 0.0295
A A1 A2 b c CP D e E E1 L L1
39/44
Package mechanical
M95320, M95640, M95320-x, M95640-x
Figure 20. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package outline
D L3 e b L1
E
E2
L A D2 ddd A1
UFDFPN-01
1. Drawing is not to scale.
Table 26.
MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, package mechanical data
millimeters inches Max 0.60 0.05 0.30 0.010 0.079 1.55 1.65 0.05 3.00 0.15 0.50 0.45 - 0.40 0.25 - 0.50 0.15 0.30 8 0.012 8 0.020 0.018 0.118 0.006 - 0.016 0.010 - 0.020 0.006 0.061 0.065 0.002 Typ 0.022 Min 0.020 0.000 0.008 Max 0.024 0.002 0.012
Symbol Typ A A1 b D D2 ddd E E2 e L L1 L3 N 0.25 2.00 0.55 Min 0.50 0.00 0.20
40/44
M95320, M95640, M95320-x, M95640-x
Part numbering
11
Part numbering
Table 27.
Example: Device Type M95 = SPI serial access EEPROM Device Function 640 = 64 Kbit (8192 x 8) 320 = 32 Kbit (4096 x 8) Operating Voltage blank = VCC = 4.5 to 5.5V W = VCC = 2.5 to 5.5V R = VCC = 1.8 to 5.5V Package MN = SO8 (150 mil width) DW = TSSOP8 (169 mil width) MB = MLP8 (2x3 mm) Device Grade 6 = Industrial temperature range, -40 to 85 C. Device tested with standard test flow 3 = Device tested with High Reliability Certified Flow(1)Automotive temperature range (-40 to 125 C) Option blank = Standard Packing T = Tape and Reel Packing Plating Technology blank = Standard SnPb plating P or G = ECOPACK (RoHS compliant) Process letter(2) /B = DP26% Rsst /P = DP26% Chartered
1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy. 2. The Process letter only concerns Grade-3 devices.
Ordering information scheme
M95640 - W MN 6 T P /B
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST Sales Office. The category of second-Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.
41/44
Revision history
M95320, M95640, M95320-x, M95640-x
12
Revision history
Table 28.
Date 13-Jul-2000
Document revision history
Revision 1.2 Changes Human Body Model meets JEDEC std (Table 2). Minor adjustments on pp 1,11,15. New clause on p7. Addition of TSSOP8 package on pp 1, 2, Ordering Info, Mechanical Data Test condition added ILI and ILO, and specification of tDLDH and tDHDL removed. tCLCH, tCHCL, tDLDH and tDHDL changed to 50ns for the -V range. "-V" Voltage range changed to "2.7V to 3.6V" throughout. Maximum lead soldering time and temperature conditions updated. Instruction sequence illustrations updated. "Bus Master and Memory Devices on the SPI bus" illustration updated. Package Mechanical data updated M95160 and M95080 devices removed to their own data sheet Endurance increased to 1M write/erase cycles Instruction sequence illustrations updated Document reformatted using the new template. No parameters changed. Announcement made of planned upgrade to 10MHz clock for the 5V, -40 to 85C, range. Endurance set to 100K write/erase cycles 10MHz, 5MHz, 2MHz clock; 5ms, 10ms Write Time; 100K, 1M erase/write cycles distinguished on front page, and in the DC and AC Characteristics tables Process indentification letter corrected in footnote to AC Characteristics table for temp. range 3 -S voltage range upgraded by removing it and inserting -R voltage range in its place Table of contents, and Pb-free options added. VIL(min) improved to -0.45V VI(min) and VO(min) corrected (improved) to -0.45V TSSOP8 connections added to DIP and SO connections
16-Mar-2001
1.3
19-Jul-2001 06-Dec-2001 18-Dec-2001 08-Feb-2002
1.4 1.5 2.0 2.1
18-Dec-2002
2.2
26-Mar-2003 26-Jun-2003 15-Oct-2003 21-Nov-2003 28-Jan-2004
2.3 2.4 3.0 3.1 4.0
42/44
M95320, M95640, M95320-x, M95640-x Table 28.
Date
Revision history
Document revision history (continued)
Revision Changes M95320-S and M95640-S root part numbers (1.65 to 5.5V Supply) and related characteristics added. 20MHz Clock rate added.TSSOP14 package removed and MLP8 package added. Description of Power On Reset: VCC Lock-Out Write Protect updated. Product List summary table added. Absolute Maximum Ratings for VIO(min) and VCC(min) improved. Soldering temperature information clarified for RoHS compliant devices. Device Grade 3 clarified, with reference to HRCF and automotive environments. AEC-Q100-002 compliance. tCHHL(min) and tCHHH(min) is tCH for products under "S" process. tHHQX corrected to tHHQV. Figure 16: Hold timing updated. Document converted to new ST template. Packages are ECOPACK(R) compliant. PDIP package removed. SO8N package specifications updated (see Table 24 and Figure 18). M95640-S and M95320-S part numbers removed (DC and AC parameters updated accordingly). How to identify previous, current and new products by the Process identification letter Table removed. Figure 4: SPI modes supported updated and Note 2 added. First three paragraphs of Section 4: Operating features replaced by Section 4.1: Supply voltage (VCC). TA added to Table 7: Absolute maximum ratings. ICC and ICC1 updated in Table 13, Table 14, Table 15 and Table 17. VOL and VOH updated in Table 15. ICC updated in Table 16. Data in Table 17 is no longer preliminary. tCH updated in Table 20. Table 23: AC characteristics (M95640-R) added. Timing line of tSHQZ modified in Figure 17: Output timing. Process letter added to Table 27: Ordering information scheme, Note 2 removed. Note 2 removed from Figure 2.
24-May-2005
5.0
07-Jul-2006
6
43/44
M95320, M95640, M95320-x, M95640-x
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
44/44


▲Up To Search▲   

 
Price & Availability of M95640-MB3TPP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X