Part Number Hot Search : 
1205E M050A 01907 NTE391 DT72V02L TINY1 144865 MC33286
Product Description
Full Text Search
 

To Download IRF2907ZS-7PPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -www..com 97031
IRF2907ZS-7PPBF
Features
l l l l l
Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax
HEXFET(R) Power MOSFET
D
VDSS = 75V RDS(on) = 3.8m
G S
Description
Specifically designed for high current, high reliability applications, this HEXFET(R) Power MOSFET utilizes the latest processing techniques and advanced packaging technology to achieve extremely low on-resistance and world -class current ratings. Additional features of this design are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Server & Telecom OR'ing, Automotive and low voltage Motor Drive Applications.
S (Pin 2, 3, 5, 6, 7) G (Pin 1)
ID = 160A
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C ID @ TC = 25C IDM PD @TC = 25C VGS EAS EAS (tested) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (See Fig. 9) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Max.
180 120 160 700 300 2.0 20 160 410 See Fig.12a,12b,15,16 -55 to + 175
Units
A
c
W W/C V mJ A mJ C
c
h
d
g
Thermal Resistance
RJC RCS RJA RJA Junction-to-Case j
Parameter
Typ.
--- 0.50
Max.
0.50 --- 62 40
Units
C/W
Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Junction-to-Ambient (PCB Mount, steady state)
j
ij
--- ---
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com
1
08/03/05
IRF2907ZS-7PPBF
Static @ TJ = 25C (unless otherwise specified)
Parameter
V(BR)DSS VDSS/TJ RDS(on) SMD VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
www..com
Min. Typ. Max. Units
75 --- --- 2.0 94 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0.066 3.0 --- --- --- --- --- --- 170 55 66 21 90 92 44 4.5 7.5 7580 970 540 3750 650 1110 --- --- 3.8 4.0 --- 20 250 200 -200 260 --- --- --- --- --- --- --- --- --- --- --- --- --- --- pF
Conditions
V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 110A V VDS = VGS, ID = 250A S VDS = 25V, ID = 110A A VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125C nA VGS = 20V VGS = -20V nC ID = 110A VDS = 60V VGS = 10V ns VDD = 38V ID = 110A RG = 2.6 VGS = 10V D nH Between lead,
e
e d
6mm (0.25in.) from package
G
S and center of die contact VGS = 0V VDS = 25V = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, = 1.0MHz VGS = 0V, VDS = 60V, = 1.0MHz VGS = 0V, VDS = 0V to 60V
Diode Characteristics
Parameter
IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min. Typ. Max. Units
--- --- --- --- --- --- --- --- 35 40 160 A 700 1.3 53 60 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G D
S p-n junction diode. TJ = 25C, IS = 110A, VGS = 0V TJ = 25C, IF = 110A, VDD = 38V di/dt = 100A/s
e
e
Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25C, L=0.026mH, R G = 25, IAS = 110A, VGS =10V. Part not recommended for use above this value. Pulse width 1.0ms; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994.
R is measured at TJ of approximately 90C.
2
www.irf.com
IRF2907ZS-7PPBF
www..com
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
100 4.5V
10
4.5V
60s PULSE WIDTH
Tj = 25C 1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V) 10 0.1 1
60s PULSE WIDTH
Tj = 175C 10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
Gfs, Forward Transconductance (S)
200 T J = 25C 150 T J = 175C 100
ID, Drain-to-Source Current ()
100
10 T J = 175C 1
T J = 25C
50 V DS = 10V 380s PULSE WIDTH 0 0 25 50 75 100 125 150
VDS = 25V 60s PULSE WIDTH 0.1 1 2 3 4 5 6 7 8
VGS, Gate-to-Source Voltage (V)
ID,Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance vs. Drain Current
www.irf.com
3
IRF2907ZS-7PPBF
www..com
100000
C oss = C ds + C gd
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd
12.0 ID= 110A 10.0 8.0 6.0 4.0 2.0 0.0 VDS= 60V VDS= 38V VDS= 15V
C, Capacitance(pF)
10000
Ciss
Coss 1000 Crss
100 1 10 VDS, Drain-to-Source Voltage (V) 100
0
50
100
150
200
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000
10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100sec 100 1msec
ISD, Reverse Drain Current (A)
100
T J = 175C T J = 25C
10
ID, Drain-to-Source Current (A)
10 10msec 1 DC Tc = 25C Tj = 175C Single Pulse 0 1 10 100 1000
1 VGS = 0V 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V)
0.1 VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF2907ZS-7PPBF
www..com
200 Limited By Package 160
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance (Normalized)
3.0 ID = 180A 2.5 VGS = 10V
120
2.0
80
1.5
40
1.0
0 25 50 75 100 125 150 175 T C , Case Temperature (C)
0.5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (C)
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Normalized On-Resistance vs. Temperature
1
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05
0.01
0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
J
R1 R1 J 1 2
R2 R2
R3 R3 3 C 3
Ri (C/W) i (sec) 0.1072 0.000896 0.2787 0.1143 0.009380 0.121118
1
2
0.001
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-006 1E-005 0.0001 0.001 0.01 0.1
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF2907ZS-7PPBF
www..com
15V
EAS , Single Pulse Avalanche Energy (mJ)
VDS
L
DRIVER
700 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) ID 24A 34A BOTTOM 110A TOP
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy vs. Drain Current
10 V
QGS VG
4.5
QGD
VGS(th) Gate threshold Voltage (V)
Charge
4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 ID = 250A ID = 1.0mA ID = 1.0A
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
50K 12V .2F .3F
D.U.T. VGS
3mA
+ V - DS
IG
ID
Current Sampling Resistors
T J , Temperature ( C )
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage vs. Temperature
6
www.irf.com
IRF2907ZS-7PPBF
1000
www..com
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses
0.05
10
0.10
1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
200
EAR , Avalanche Energy (mJ)
150
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 110A
100
50
0 25 50 75 100 125 150 175
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
Starting T J , Junction Temperature (C)
Fig 16. Maximum Avalanche Energy vs. Temperature
www.irf.com
7
IRF2907ZS-7PPBF
www..com
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* dv/dt controlled by RG * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
*
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
V DS V GS RG 10V
Pulse Width 1 s Duty Factor 0.1 %
RD
D.U.T.
+
-V DD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF2907ZS-7PPBF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
www..com
D2Pak - 7 Pin Part Marking Information
AIR
www.irf.com
9
IRF2907ZS-7PPBF
D2Pak - 7 Pin Tape and Reel
www..com
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IRs Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/05
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF2907ZS-7PPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X