![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD -96297 IRFH5010PBF HEXFET(R) Power MOSFET VDS RDS(on) max (@VGS = 10V) 100 9.0 65 1.2 100h V m nC A PQFN 5X6 mm Qg (typical) RG (typical) ID (@Tc(Bottom) = 25C) Applications * Secondary Side Synchronous Rectification * Inverters for DC Motors * DC-DC Brick Applications Features and Benefits Features Benefits Low RDSon (< 9 m) Low Thermal Resistance to PCB (<0.5C/W) 100% Rg tested Low Profile (<0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Lower Conduction Losses Increased Power Density Increased Reliability results in Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Orderable part number IRFH5010TRPBF IRFH5010TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm Standard Pack Form Quantity Tape and Reel 4000 400 Tape and Reel Note Absolute Maximum Ratings VDS VGS ID @ TA = 25C ID @ TA = 70C ID @ TC(Bottom) = 25C ID @ TC(Bottom) = 100C IDM PD @TA = 25C PD @ TC(Bottom) = 25C TJ TSTG Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Max. 100 20 13 11 100h 70 400 3.6 250 0.029 -55 to + 150 Units V A g g c W W/C C Linear Derating Factor Operating Junction and Storage Temperature Range g Notes through are on page 8 www.irf.com 1 03/29/10 IRFH5010PBF Static @ TJ = 25C (unless otherwise specified) BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 100 --- --- 2.0 --- --- --- --- --- 206 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.11 7.5 --- -8.3 --- --- --- --- --- 65 11 4.3 20 30 24 18 1.2 9 12 27 8.6 4340 425 162 Max. Units Conditions --- V VGS = 0V, ID = 250uA --- V/C Reference to 25C, ID = 1.0mA 9.0 m VGS = 10V, ID = 50A 4.0 V VDS = VGS, ID = 150A --- mV/C VDS = 100V, VGS = 0V 20 A 250 VDS = 100V, VGS = 0V, TJ = 125C VGS = 20V 100 nA -100 VGS = -20V --- S VDS = 25V, ID = 50A 98 VDS = 50V --- --- VGS = 10V nC --- ID = 50A --- --- --- nC VDS = 16V, VGS = 0V e --- --- --- --- --- --- --- --- ns VDD = 50V, VGS = 10V ID = 50A RG=1.3 VGS = 0V VDS = 25V = 1.0MHz pF Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current d Min. --- --- Typ. --- --- Typ. --- --- Max. 227 50 Units mJ A Diode Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Max. Units 100h A 400 Conditions MOSFET symbol showing the integral reverse G S D --- --- 1.3 V --- 34 51 ns --- 256 384 nC Time is dominated by parasitic Inductance p-n junction diode. TJ = 25C, IS = 50A, VGS = 0V TJ = 25C, IF = 50A, VDD = 50V di/dt = 500A/s e eA Thermal Resistance RJC (Bottom) RJC (Top) RJA RJA (<10s) Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient f f Parameter g g Typ. --- --- --- --- Max. 0.5 15 35 22 Units C/W 2 www.irf.com IRFH5010PBF 1000 TOP VGS 15V 10V 7.00V 5.00V 4.50V 4.25V 4.00V 3.75V 1000 TOP VGS 15V 10V 7.00V 5.00V 4.50V 4.25V 4.00V 3.75V ID, Drain-to-Source Current (A) 10 BOTTOM ID, Drain-to-Source Current (A) 100 100 BOTTOM 1 3.75V 10 3.75V 0.1 60s PULSE WIDTH 0.01 0.1 1 Tj = 25C 1 10 100 0.1 1 60s PULSE WIDTH Tj = 150C 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 50A 2.0 ID, Drain-to-Source Current (A) VGS = 10V 100 T J = 150C 10 1.5 1 T J = 25C VDS = 50V 60s PULSE WIDTH 1.0 0.1 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C oss = C ds + C gd Fig 4. Normalized On-Resistance Vs. Temperature 14 ID= 37A 10000 C, Capacitance (pF) VGS, Gate-to-Source Voltage (V) C rss = C gd 12 10 8 6 4 2 0 VDS= 80V VDS= 50V VDS= 20V Ciss 1000 Coss Crss 100 10 1 10 VDS, Drain-to-Source Voltage (V) 100 0 10 20 30 40 50 60 70 80 90 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage www.irf.com 3 IRFH5010PBF 1000 10000 OPERATION IN THIS AREA LIMITED BY RDS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 T J = 150C 1000 TJ = 25C 10 100 100sec 10 1msec 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) 1 10msec Tc = 25C Tj = 150C Single Pulse 0.10 1 10 100 1000 0.1 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 120 100 ID, Drain Current (A) VGS(th) , Gate threshold Voltage (V) Fig 8. Maximum Safe Operating Area 4.5 Limited By Package 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ID = 1.0A ID = 1.0mA ID = 500A ID = 150A -75 -50 -25 0 25 50 75 100 125 150 80 60 40 20 0 25 50 75 100 125 150 T C , Case Temperature (C) T J , Temperature ( C ) Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature 1 Thermal Response ( Z thJC ) C/W Fig 10. Threshold Voltage Vs. Temperature D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 0.001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com IRFH5010PBF RDS(on), Drain-to -Source On Resistance (m ) 25 ID = 50A 20 T J = 125C 15 1000 EAS , Single Pulse Avalanche Energy (mJ) 800 ID 5.4A 11.6A BOTTOM 50A TOP 600 10 T J = 25C 400 5 200 0 2 4 6 8 10 12 14 16 18 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current V(BR)DSS 15V tp VDS L DRIVER RG 20V D.U.T IAS tp + V - DD A I AS 0.01 Fig 14a. Unclamped Inductive Test Circuit Fig 14b. Unclamped Inductive Waveforms VDS VGS RG V10V GS Pulse Width 1 s Duty Factor 0.1 RD 90% D.U.T. + VDS -VDD 10% VGS td(on) tr td(off) tf Fig 15a. Switching Time Test Circuit Fig 15b. Switching Time Waveforms www.irf.com 5 IRFH5010PBF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - - + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs Vds Vgs Id L 0 DUT 1K S VCC Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 17. Gate Charge Test Circuit Fig 18. Gate Charge Waveform 6 www.irf.com IRFH5010PBF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER ("4 or 5 digits") MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5010PBF PQFN 5x6 Outline "B" Tape and Reel Qualification information Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm Yes guidelines ) MS L1 (per JE DE C J-S T D-020D ) Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.181mH, RG = 50, IAS = 50A. Pulse width 400s; duty cycle 2%. R is measured at TJ of approximately 90C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/2010 8 www.irf.com |
Price & Availability of IRFH5010PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |