Part Number Hot Search : 
M161VP I1005RU 5KP28B S35PF PLLL9 1N5241B V0DS00 SN54LS42
Product Description
Full Text Search
 

To Download AAT2610 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
General Description
The AAT2610 is a highly integrated power management solution specifically suited for Digital Still Camera (DSC) systems, featuring seven DC-DC switching regulators for maximum operating efficiency. The input operating voltage range is 1.6 to 5.5V, making the device an ideal solution for 1-cell Li-ion batteries, 2-cell alkaline batteries, and USB and regulated AC-DC wall adapters. All seven DC-DC switching regulators feature high efficiency light load operating mode to extend battery life while in low power standby state. Three different DC-DC building blocks provide maximum design flexibility: a boost (step-up) DC-DC controller with an output voltage range of 3.0V to 5.5V and a current mode control buck (step-down) or boost (step-up) DC-DC controller with an output voltage range of 2.5V to the step-up converter (SU) output voltage and buck output range of 0.6V to VIN. Dual current mode control synchronous buck regulators provide low voltage, low noise outputs required for system logic and memory. Output voltage range is 0.6V to VIN. The Auxiliary 1 boost (stepup) is ideally suited for LCD backlight and can drive 1-6 white LEDs with 10% accuracy. PWM input controls LED dimming across the frequency range from 10% to 100% duty cycle. The integrated OVP and SCF feature protects the device from open-circuit LED conditions. The Auxiliary 2 boost (step-up) and Auxiliary 3 buckboost (inverting) output provide low noise (30mVpp) +15V and -7.5V outputs for CCD loads. An expensive transformer is not required. No external MOSFETs and low profile TQFN55-40L package are ideal to save space for DSC solution. Integrated, low RDS(ON) power MOSFETs provide output voltages from 0.6V to 16VDC and an inverting output up to -10V. The high switching frequency ensures small external filtering components. Internal compensation is provided for optimum transient performance and minimum application design effort.
Features
* Input Voltage Range 1.6 to 5.5V 1-Cell Li-ion, 2-Cell Alkaline Adapter or USB Inputs * 7 Channel up to 96% High Efficiency DC/DCs Adjustable Output 4 Channel Synchronous Rectification Light Load Mode for High Efficiency * <1A Total Quiescient Current * Current Mode Control Fast, Stable Transient Response No External Compensation Current Limit for Internal MOSFET Protection * High Frequency 1.5MHz System Clock * High Voltage Series LED Driver 1 to 6 White LEDs External Schottky Diode 10% Accuracy Current Sink Integrated OVP PWM Dimming: 1k to 30kHz, 10 to 100% Duty Cycle * Step-Up and Inverting Outputs for CCD Low Noise Outputs Transformerless Inverter Output * Flexible Sequencing Implementation Independent Enable Control 10ms Pre-Programmed Buck or Boost Delay * Integrated Soft-Start * Over-Voltage and Over-Temperature Protection * Pb-free TQFN55-40L Package * Temperature Range: -40C to +85C
Applications
* DSCs and DVCs * MP3 Players * PMP
2610.2008.11.1.1
www.analogictech.com
1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Applications
+VBATT
4.7F EN SU SUSD ENM EN SD1 EN ENL1 ENL2 SD2 (Dimming) ENL3
1 Li-ion Cell
(3.3V-4.2V)
I/O, Control
VIN PV
VSU 5V, 920mA
22F 0805
SCF
PVSU
OT
Osc
(1.5MHz)
4.7H
StepUp/ Bypass Control
2.2H LXSU
432k
59.0k
FBSU
VAUX_L1 16V, 20mA
1F/25V 0603
VSU
PVL PVM
+VBATT
1.54M 2-4WLED 59.0k
LXL1
Step-Up Control & Current Sink
StepUp/ Down Control
VM 3.3V, 150mA
LXM 3.3H 4.7F 0603
CSL1 OVL1
FBM 267k
59.0k /SEQ
VAUX_L2 15V, 20mA
4.7F/25V 0805
+VBATT
+VBATT
PVSD1 1F
4.7H LXL2 1.42M
Step-Up Control
StepDown Control
VSD1 2.5V, 200mA
LXSD1 2.5H 4.7F 0603
59.0k FBL2 FBSD1 187k
59.0k
VSU
1F PVL3
+VBATT
PVSD2 1F
VAUX_L3 -7.5V, 20mA
LXL3 4.7F/10V 0603
Step-Up Control
StepDown Control
VSD2 1.8V, 200mA
LXSD2 1.8H 4.7F 0603
118k 732k 4.7H FBSD2 59.0k
59.0k
FBL3 VREF3
1F 0603
PG PG PG PG PG SU M SD1 SD2 L GND
1. Single Cell Li-ion Battery Input, 5V Motor.
2
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
+VBATT
ENL1 ENSU ENM ENSD1 ENSD2 (Dimming) ENL2 ENL3
4.7F
VIN
2 Alk Cell
(1.6-3.3V)
I/O, Control
SUSD PVSU SCF 22F 0805 PV
VSU 5V, 800mA
OT
Osc
(1.5MHz)
4.7H
StepUp/ Bypass Control
2.2H LXSU
432k
59.0k
FBSU
VAUX_L1 16V, 20mA
VSU
PVL PVM 22F 0805
1.54M 2-4WLED 59.0k
LXL1
Step-Up Control & Current Sink
StepUp/ Down Control
2.2H LXM 267k
59.0k FBM
CSL1 OVL1
VMAIN 3.3V, 150mA
/SEQ 2.2F 0402
VAUX_L2 15V, 20mA
4.7F/25V 0805
+VBATT
PVSD1 1F
4.7H LXL2 1.42M
Step-Up Control
StepDown Control
VSD1 2.5V, 200mA
LXSD1 2.5H 4.7F 0603
59.0k FBL2 FBSD1 187k
59.0k
+VBATT
1F PVL3
PVSD2 1F
VAUX_L3 -7.5V, 20mA
LXL3 4.7F/10V 0603
Step-Up Control
StepDown Control
VSD2 1.8V, 200mA
LXSD2 1.8H 4.7F 0603
118k 732k 4.7H FBSD2 59.0k
59.0k
FBL3 VREF3
1F 0603
PGSU
PGM
PGSD1
PGSD2
PGL
GND
2. Dual Cell Alkaline Battery Input, 5V Motor.
2610.2008.11.1.1
www.analogictech.com
3
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Pin Descriptions
Number
1
Symbol
FBL2
Description
Auxiliary 2 (AUX_L2) boost converter feedback pin. This pin is high impedance when the AUX2 controller is disabled. Connect an external resistor divider between this pin and AUX2 output and GND to set the AUX2 output voltage with 0.6V. Step-down 1 (SD1) buck converter feedback pin. This pin is high impedance when the SD1 controller is disabled. Connect an external resistor divider between this pin and SD1 output and GND to set the SD1 output voltage with 0.6V. Step-down 1 (SD1) buck converter input pin. Bypass to GND plane with a 1F ceramic capacitor. Step-down 1 (SD1) buck converter switching node. Connect this pin to an external inductor. This pin is high impedance when the SD1 converter is disabled. Step-down 1 (SD1) buck converter power ground. Tie this pin to ground plane. Main (SUD) converter power ground. Tie this pin to ground plane. If is SUSD pulled high, the Main is a boost (step-up) converter and the pin functions as the Main converter switching node. In this case, connect this pin to the external inductor. If SUSD is pulled low, the Main is a buck (step-down) converter and the pin functions as the Main converter switching node. In this case, connect this pin to the external inductor. In either case, LXM is high impedance when the Main converter is disabled. If SUSD is pulled high, the Main is a boost (step-up) converter and this pin functions as the Main converter output. In this case, connect a ceramic capacitor to GND plane from this pin. If SUSD is pulled low, the Main is a buck (step-down) converter and this pin functions as the Main converter input voltage. In this case, connect this pin to the external inductor. Main (M) buck or boost converter feedback pin. This pin is high impedance when the Main controller is disabled. Connect an external resistor divider between this pin and Main output and GND to set the Main output voltage with 0.6V. Main (M) converter open-drain output sequencing pin. This pin is internally pulled low after both SD1 and SD2 converters completed soft-start and achieved output regulation. This pin can provide gate drive to external P-channel MOSFETs which disconnect the load during start-up. This pin is open-circuit during shut-down, overload or during OT trip conditions. Main converter configuration pin. Tie this pin to high to configure the Main output as a boost (step-up) converter, or tie this pin to low to configure the Main output as a buck (step-down) converter. This pin cannot be toggled during operation. Auxiliary 3 (AUX_L3) buck-boost (inverting) converter active high enable pin. The AUX_L3 output remains disabled until 2,048 clock cycles after Step-Up (SU) output has reached regulation. The pin has an internal 330k pull-down resistor. Auxiliary 2 (AUX_L2) boost converter active high enable pin. The AUX_L2 output remains disabled until 2,048 clock cycles after Step-Up (SU) output has reached regulation. The pin has an internal 330k pulldown resistor. Auxiliary 1 (AUX_L1) boost converter active high enable pin. The Main output remains disabled until 2,048 clock cycles after Step-Up (SU) output has reached regulation. The pin has an internal 330k pull-down resistor. This pin also functions as PWM input for the LED dimming feature. The input PWM frequency is logic level high and low within 1kHz to 30kHz frequency. PWM dimming input duty cycle (ON-time/TOTALtime) range is from 10% to 100%. Input voltage. Tie this pin to the input of step-up (SU). Chip ground. Tie this pin to ground plane. Power input for the PMIC. Connect this pin directly to the PVSU pin. Step-down 2 (SD2) buck converter active high enable pin. The SD2 output remains disabled until 2,048 clock cycles after Step-Up (SU) output has reached regulation. This pin has an internal 330k pull-down resistor. Step-down 1 (SD1) buck converter active high enable pin. The SD1 output remains disabled until 2,048 clock cycles after Step-Up (SU) output has reached regulation. This pin has an internal 330k pull-down resistor. Main buck or boost converter active high enable pin. However, the Main output remains disabled until 2,048 clock cycles after Step-Up (SU) output has reached regulation. This pin has an internal 330k pulldown resistor. Step-up (SU) boost converter active high enable pin. This pin has an internal 330k pull-down resistor.
2 3 4 5 6
FBSD1 PVSD1 LXSD1 PGSD1 PGM
7
LXM
8
PVM
9
FBM
10
SEQ
11
SUSD
12
ENL3
13
ENL2
14
ENL1
15 16 17 18
VIN GND PV ENSD2
19
ENSD1
20 21
ENM ENSU
4
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Pin Descriptions
Number
22
Symbol
SCF
Description
Open drain, active low, short circuit flag output. SCF goes open when overload protection or AUX_L1 open circuit occur during abnormal operation or during startup. SCF can drive P-channel MOSFETs to disconnect a given output from the load. Step-up (SU) boost converter feedback pin. This pin is high impedance when the SU controller is disabled. Connect an external resistor divider between this pin and SU output and GND to set the SU output voltage with 0.6V. Step-up (SU) boost converter input. Step-up (SU) boost converter switching node. Connect this pin to the external inductor and anode of the Schottky rectifying diode. This pin is high impedance when the SU converter is disabled. Step-up (SU) boost converter power ground. Tie this pin to ground plane. Step-down 2 (SD2) buck converter power ground pin. Tie this pin to ground plane. Step-down 2 (SD2) buck converter switching node. Connect this pin to an external inductor. This pin is high impedance when the SD2 converter is disabled. Step-down 2 (SD2) buck converter input pin. Bypass this pin to GND plane with a 1F ceramic capacitor. Step-down 2 (SD2) buck converter feedback pin. This pin is high impedance when the SD2 controller is disabled. Connect an external resistor divider between this pin and SD2 output and GND to set the SD2 output voltage with 0.6V. Auxiliary 3 (AUX_L3) buck/boost (inverting) reference voltage pin. Bypass VREF3 to GND with a 1F or greater capacitor. Connect an external resistor divider between this pin and L3 output and FBL with 0.6V. Auxiliary 3 (AUX_L3) boost converter feedback pin. The pin is high impedance when the AUX_L3 controller is disabled. Connect an external resistor divider between this pin and AUX_L3 output and VREF3 pin to set the AUX_L3 negative buck/boost (inverting) output voltage with 0V. Auxiliary 3 (AUX_L3) buck/boost (inverting) input node. Connect this pin to the input ceramic capacitor. Auxiliary 3 (AUX_L3) buck/boost (inverting) switching node. Connect this pin to the cathode of the external Schottky diode and buck/boost inductor. Power input for auxiliary (AUX_L1, AUX_L2, AUX_L3) channels' power FET driver. Tie this pin to PVSU. Auxiliary 2 (AUX_L2) boost (step-up) switching node. Connect this pin to the anode of the external Schottky diode and boost inductor. Power ground for auxiliary (AUX_L1, AUX_L2, AUX_L3) channels' power FET driver. Tie this pin to ground plane. Auxiliary 1 (AUX_L1) boost (step-up) switching node. Connect this pin to the anode of the external Schottky diode and boost inductor. Auxiliary 1 (AUX_L1) boost converter current sink pin. The pin is high impedance when the AUX_L1 controller is disabled. Connect this pin to the cathode of the bottom LED in the string to ensure DC current flow. Current level is programmed by the internal RSET resistor from 1 to 20mA. Auxiliary 1 (AUX_L1) boost (step-up) over-voltage protection pin. Connect an external resistor divider between this pin and AUX_L1 output voltage and GND to set the AUX_L1 over-voltage threshold with 0.6V. Exposed pad (bottom). Connect to ground directly beneath the package for thermal dissipation.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 EP
FBSU PVSU LXSU PGSU PGSD2 LXSD2 PVSD2 FBSD2 VREF3 FBL3 PVL3 LXL3 PVL LXL2 PGL LXL1 CSL1 OVL1
2610.2008.11.1.1
www.analogictech.com
5
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Pin Configuration
VREF3 FBL3 PVL3 LXL3 PVL LXL2 PGL LXL1 CSL1 OVL1
40 39 38 37 36 35 34 33 32 31
FBL2 FBSD1 PVSD1 LXSD1 PGSD1 PGM LXM PVM FBM SEQ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
30 29 28 27 26 25 24 23 22 21
FBSD2 PVSD2 LXSD2 PGSD2 PGSU LXSU PVSU FBSU SCF ENSU
ENM ENSD1 ENSD2 PV GND VIN ENL1 ENL2 ENL3 SUSD
Absolute Maximum Ratings1
Symbol Description
All other pins to GND/PGND Voltage from LXL1, LXL2 to GND/PGND Voltage from LXL3 to GND/PGND Operating Junction Temperature Range Maximum Soldering Temperature (at leads, 10 sec)
Value
-0.3 to 6.0 -0.3 to 30.0 -8.0 to 6.0 -40 to 150 300
Units
V V V C C
Thermal Information2
Symbol
PD JA
Description
Maximum Power Dissipation Maximum Thermal Resistance
3
Value
2.0 25.0
Units
W C/W
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time. 2. Mounted on 1.6mm thick FR4 circuit board. 3. Derate 40mW/C above 2C ambient temperature
6
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Electrical Characteristics1
Unless otherwise noted VPVSU = VPVM= VPVSD1 = VPVSD2 = 3.6V, TA =-40C to +85C. Symbol
General VIN ISHDN
Description
Operating Input Voltage Range Shutdown Supply Current Quiescient Current into PV Pin with SU Enabled Quiescient Current into PV Pin with SU/SD1/SD2 Enabled
Conditions
ILOAD Full Load (see Tables 1 and 2) EN_SU = EN_M = EN_SD1 = EN_SD2 = 0V, EN_DL1 = EN_DL2 = EN_DL3 = 0V EN_SU = 3.6V, FBSU = 1.5V (does not include switching losses) EN_SU = EN_SD1 = EN_SD2 = 3.6V, FBSU = FBSD1 = FBSD2 = 1.5V, EN_M = EN_DL1 = EN_ DL2 = EN_DL3 = 0V (does not include switching losses) EN_SU = EN_M = 3.6V, FBSU = FBSUD = 1.5V, EN_SD1 = EN_SD2 = EN_DL1 = EN_DL2 = EN_ DL3 = 0 (does not include switching losses) EN_SU = EN_DL1 = 3.6V, FBSU = FBL1 = 1.5V, EN_M = EN_SD1 = EN_SD2 = EN_DL1 = EN_DL2 = EN_DL3 = 0(does not include switching losses)
Min
1.6
Typ
Max
5.5
Units
V A A
0.01 300
10 450
600
900
A
IQ Quiescient Current into PV Pin with SU/SUD Enabled Quiescient Current into PV Pin with Oscillator Oscillator Frequency Range FOSC SU DC-DC Boost (Step-Up) Converter SU Under-Voltage Threshold VUVLO(SU) SU Under-Voltage Threshold VUVLO(SU),HYS Hysteresis Step-Up Output Voltage Range VOUT(SU) Enter Bypass Mode VIN(BP-ENTER) VIN-HYS(BP-EXIT) Exit Bypass Mode - Hysteresis Start-Up Delay of SUSD, SD1, SD2, AUX_L1, AUX_L2, AUX_ tDELAY L3 after VSU in Regulation VFBSU IMODE(SU) DMAX(SU) ILEAK(FBSU) ILEAK(PVSU) ILEAK(LXSU) RDSON ILIMIT IOFF ISTARTUP TOFF(STARTUP) FOSC(STARTUP) FBSU Reference Voltage SU Light Load Mode Current Threshold Step-Up Maximum Duty Cycle FBSU Pin Leakage Current PVSU Pin Leakage Current LXSU Pin Leakage Current N-Channel P-Channel N-Channel Current Limit P-Channel Turn-Off Current Startup Current Limit Startup Off-Time Startup Frequency
450
700
A
400
650
A
1.2 Rising edge Falling edge VIN Rising edge VIN Falling edge 3.0 4.625 100 1.6
1.5 1.8 400 4.750 112 512
1.8 2.0
MHz V mV
5.5 4.900 125
V V mV OSC Cyc
TA = 25C
0.588
0.600 200
0.612
V mA
1.6 VPVSU 5.0V, VFBSU = 0.60V VFBSU = 0.60V VLXSU = 0V, VPVSU = 5.5V VLXSU = VOUT(SU) = 5.5V
85 -100
4.1 VPVSU = 1.8V VPVSU = 1.8V VPVSU = 1.8V
95 0.01 0.1 0.1 50 130 4.8 20 750 700 200
+100 5 5
% nA A A m m A mA mA ns kHz
1. The AAT2610 is guaranteed to meet performance specifications over the -40C to +85C operating temperature range and is assured by design, characterization, and correlation with statistical process controls.
2610.2008.11.1.1
www.analogictech.com
7
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Electrical Characteristics1
Unless otherwise noted VPVSU=VPVM= VPVSD1= VPVSD2 =3.6V, TA=-40C to +85C. Symbol Description Conditions Min
3.0 1.0 0.59 1.5 0.7 0.60 1.75 0.85 200 100 80 100 -100 95 0.01 0.1 75 120 20 mA VSUSD = GND SD1/SD2 Regulation to VSEQ(L) Transition EN_SU = VPVSU, FBSU = 1.5V 0.1mA into SEQ pin 0.60 TA = 25C 0.59 0.6 100 -100 0.60 0.7 100 0.01 0.1 500 650 250 450 20 2,048 20 2,048 10,000 0.1 0.01 OSC Cyc OSC Cyc A V V V A mA % nA A m m m m mA OSC Cyc +100 5
Typ
Max
5.5 VIN 0.61
Units
V V V A A mA mA % nA A m m
Main DC-DC Buck (Step-Down) or Boost (Step-Up) Converter Main Output Step-Up Voltage Range VSUSD = VPVSU VOUT(M) VFBM Main Output Step-Down Voltage Range VSUSD = GND; VPVM must be greater than VOUT(M) TA = 25C VSUSD = VPVSU VSUSD = GND VSUSD = VPVSU VSUSD = GND 1.6 VIN 5.0V, VSUSD = VPVSU 1.6 VIN 5.0V, VSUSD = GND VFBSU = 0.6V VLXSU = VOUT(M) = 5.5V
FBM Reference Voltage Step-Up Mode Current Limit ILIMIT(M) Step-Down Mode Current Limit Step-Up Light Load Mode Current Threshold IMODE(M) Step-Down Light Load Mode Current Threshold Step-Up Maximum Duty Cycle DMAX(M) Step-Down Maximum Duty Cycle FBM Pin Leakage Current ILEAK(FBM) LXM Pin Leakage Current ILEAK(LXM) N-Channel RDSON P-Channel Step-Up Mode N-Channel Turn-Off Current IOFF(M) Step-Down Mode N-Channel Turn-Off Current Soft-Start Interval tSOFT-START Sequencing Time Delay TSEQ SEQ Pin Leakage Current ILEAK(SEQ) SEQ Low Output Voltage VSEQ(L) SD1/2 DC-DC Step-Down (Buck) Converters SD1/SD2 Step-Down Output Voltage VOUT(SD1/SD2) Range FBSD1, FBSD2 Reference Voltage VFB(SD1/SD2) P-Channel Current Limit ILIMIT(SD1/SD2) IMODE(SD1/SD2) SD1 Light Load Mode Current Threshold Maximum Duty Cycle DMAX(SD1/SD2) ILEAK(FBSD1/SD2) FBSD1, FBSD2 Pin Leakage Current ILEAK(LXSD1/SD2) LXSD1, LXSD2 Pin Leakage Current N-Channel RDSON(SD1) P-Channel N-Channel RDSON(SD2) P-Channel N-Channel Turn-Off Current IOFF Soft-Start Interval TSOFTSTART
VSUSD = VPVSU
1 0.1 VIN 0.61
1.6 VPVSU 5.0V, VSD1/2 = 0.60V VFBSD1/SD2 = 0.6V VLXSD1/SD2 = 0 to 3.6V
+100 5
1. The AAT2610 is guaranteed to meet performance specifications over the -40C to +85C operating temperature range and is assured by design, characterization, and correlation with statistical process controls.
8
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Electrical Characteristics1
Unless otherwise noted VPVSU=VPVM= VPVSD1= VPVSD2 =3.6V, TA=-40C to +85C. Symbol Description Conditions Min
5.0 TA = 25C TA = 25C TA = 25C 18.0 0.59 0.59 0.60 0.60 20.0 0.60 0.60 0.70 0.70 100 95 -100 0.01 1000 1000 2,048 0.60 0.00 1.5 100 0.01 1000 2,048 100,000 0.1 0.01 140 15 +100
Typ
Max
20.0 22.0 0.61 0.61
Units
V mA V V A A mA % nA m m OSC Cyc V V A mA nA m OSC Cyc OSC Cyc A V C C
AUX L1/L2 DC-DC Boost (Step-Up) Converters AUX_L1/L2 Step-Up Output Voltage VOUT(AUX_L1/L2) Range2 ICSL1 CSL1 Current Sink Accuracy VFBL2 FBL2 Reference Voltage VOVL1 OVL1 Reference Voltage ILIMIT(AUX_L1) N-Channel Current Limit N -Channel Current Limit ILIMIT(AUX_L2) AUX_L1/L2 Light Load Mode Current IMODE(AUX_L1/L2) Threshold Maximum Duty Cycle DMAX(L1/L2) FBL2 Pin Leakage Current ILEAK(FBL2) N-Channel RDSON(AUX_L1) N-Channel RDSON(AUX_L2) TSOFTSTART(AUX_L2) AUX_L2 Soft-Start Interval AUX L3 DC-DC Buck/Boost (Inverter) Converters VREF3 REF3 Reference Voltage VFBL3 FBL3 Inverter Reference Voltage P-Channel Current Limit ILIMIT(AUX_L3) SD1 Light Load Mode Current Threshold IMODE(AUX_L3) REF3, FBL3 Pin Leakage Current ILEAK(REF3,FBL3) P-Channel RDSON Soft-Start Interval tSOFTSTART Overload Protection tDELAY(SCF) Overload Fault Delay ILEAK(SCF) SCF Pin Leakage Current VL(SCF) SCF Low Output Voltage Thermal Protection Over-Temperature Shutdown TSD Over-Temperature Shutdown Hysteresis THYS
TA = 25C, IREF = 20A TA = 25C
0.59 -0.01
0.61 0.01
-100
+100
EN_SU = VPVSU, FBSU = 1.5V 0.1mA into SCF pin
1 0.1
1. The AAT2610 is guaranteed to meet performance specifications over the -40C to +85C operating temperature range and is assured by design, characterization, and correlation with statistical process controls. 2. The Step-Up converter operates in startup mode until this voltage is reached. Do not apply full load current during startup.
2610.2008.11.1.1
www.analogictech.com
9
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Electrical Characteristics1
Unless otherwise noted VPVSU=VPVM= VPVSD1= VPVSD2 =3.6V, TA=-40C to +85C. Symbol
Logic Inputs VL(EN_SU) VH(EN_SU) VEN_x(L), VSUSD(L) VEN_x(H), VSUSD(H) ILEAK(SUSD) RENx TEN_L1(L) TEN_L1(H) TEN_L1(DIS-L) EN_SU Logic Low Threshold EN_SU Logic High Threshold EN_x, SUSD Logic Low Threshold EN_x, SUSD Logic Low Threshold SUSD Pin Leakage Current ENx Input Impedance Disable Low Time Enable High Time Disable Low Time 1.1V 1.8V 2.5V 1.1V 1.8V 2.7V 2.7V < < < < < VPVSU VPVSU VPVSU VPVSU VPVSU VPVSU VPVSU < < < < < < < 1.8V 2.5V 5.5V 1.8V 5.5V 5.5V 5.5V 0.2 0.4 0.5 (VPVSU - 0.2) 1.6 0.5 1.6 0.1 330 Dimming state: EN low to LED Disable; 2.7V < VIN < 5V Dimming state: EN high to LED Regulation; 2.7V < VIN <5V Disables Dimming state: Softstart enabled on subsequent EN transition; 2.7V < VIN < 5V 2 2 1000 3 3 1 4 4 1200 V V V V V V V A k s s s
Description
Conditions
Min
Typ
Max
Units
1. The AAT2610 is guaranteed to meet performance specifications over the -40C to +85C operating temperature range and is assured by design, characterization, and correlation with statistical process controls.
10
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
SU Efficiency vs. Output Current
(VSU = 5V; L = 2.2H; COUT = 22F)
100 95 90 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 1
MSD Efficiency vs. Output Current
(VPVM = VBAT; VMSD= 3.3V; L = 3.3H; COUT = 4.7F)
Efficiency (%)
85 80 75 70 65 60 55 50 1 10 100 1000
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
Efficiency (%)
VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
10 100 1000
Output Current (mA)
Output Current (mA)
MSU Efficiency vs. Output Current
(VMSU = 3.3V; L = 2.2H; COUT = 10F)
100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 1 10 100 100 95 90
SD1 Efficiency vs. Output Current
(VPVSD1 = VBAT; VSD1 = 2.5V; L = 2.2H; COUT = 10F)
Efficiency (%)
Efficiency (%)
85 80 75 70 65 60 55 50 1 10 100
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V
1000
VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
1000
Output Current (mA)
Output Current (mA)
SD2 Efficiency vs. Output Current
(VPVSD2 = VBAT; VSD2 = 1.8V; L = 2.2H; COUT = 4.7F)
100 95 90 95 90
SD2 Efficiency vs. Output Current
(VSD2 = 1.2V; L = 2.2H; COUT = 4.7F)
Efficiency (%)
85 80 75 70 65 60 55 50 1 10 100
VBAT = 2.0V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
Efficiency (%)
85 80 75 70 65 60 55 50 1 10 100 1000
VBAT = 2.0V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
1000
Output Current (mA)
Output Current (mA)
2610.2008.11.1.1
www.analogictech.com
11
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
AUX1 Efficiency vs. PWM Duty Cycle
(4 WLEDs; L = 4.7H; COUT = 1F; 10kHz PWM Control)
90 80 90 85 80
AUX2 Efficiency vs. Output Current
(VAUX2 = +15V; L = 4.7H; COUT = 4.7F)
Efficiency (%)
Efficiency (%)
70 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20
75 70 65 60 55 50 45 40 1 10
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
100
LED Current (mA)
Output Current (mA)
AUX3 Efficiency vs. Output Current
(VAUX3 = -7.5V; L = 4.7H; COUT = 4.7F)
80 75
20
AUX1 PWM Duty Cycle vs. LED Current
(4 WLEDs; L = 4.7H; COUT = 1F; 10kHz PWM Control)
LED Current (mA)
Efficiency (%)
70 65 60 55 50 45 40 1
16
12
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
10 100
8
4
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
0 10 20 30 40 50 60 70 80 90 100
0
Load Current (mA)
Duty Cycle (%)
SU Load Regulation vs. Output Current
(VSU = 5V; L = 2.2H; COUT = 22F)
0.020 0.015 0.010 0.005 0.000 -0.005 -0.010 -0.015 -0.020 -0.025 -0.030 -0.035 -0.040 -0.045 -0.050 0
Main SD Load Regulation vs. Output Current
(VPVM = VBAT; VMSD = 3.3V; L = 3.3H; COUT = 4.7F)
0.05 0.04
VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
Load Regulation (%)
Load Regulation (%)
0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 0
Bypass mode
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
Dropout Mode
50 100 150 200 250 300 350 400
200
400
600
800
1000
1200
1400
1600
Load Current (mA)
Load Current (mA)
12
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
Main SU Load Regulation vs. Output Current
(VMSU = 3.3V; L = 2.2H; COUT = 10F)
0.05 0.04
SD1 Load Regulation vs. Output Current
(VPVSD1 = VBAT; VSD1 = 2.5V: L = 2.2H; COUT = 10F)
0.010 0.008
Load Regulation (%)
Load Regulation (%)
0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 0 50 100 150 200 250 300 350 400
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V
0.006 0.004 0.002 0.000 -0.002 -0.004 -0.006 -0.008 -0.010 0 50 100 150 200 250 300
VBAT = 3.3V VBAT = 3.6V VBAT = 3.8V VBAT = 4.2V VBAT = 5.0V
350
400
Load Current (mA)
Load Current (mA)
SD2 Load Regulation vs. Output Current
(VPVSD2 = VBAT; VSD2 = 1.8V: L = 2.2H; COUT = 4.7F)
0.010 0.008
SD2 Load Regulation vs. Output Current
(VSD2 = 1.2V: L = 2.2H; COUT = 4.7F)
0.010 0.008
Load Regulation (%)
0.006 0.004 0.002 0.000 -0.002 -0.004 -0.006 -0.008 -0.010 0 50 100 150 200 250 300
Load Regulation (%)
VBAT = 2.4V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
0.006 0.004 0.002 0.000 -0.002 -0.004 -0.006 -0.008 -0.010 0 50 100 150 200 250 300
VBAT = 2.4V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
350
400
350
400
Load Current (mA)
Load Current (mA)
AUX2 Load Regulation vs. Output Current
(VAUX2 = +15V; L = 4.7H; COUT = 4.7F)
0.010 0.008
AUX3 Load Regulation vs. Output Current
(VAUX3 = -7.5V; L = 4.7H; COUT = 4.7F)
3.0
Load Regulation (%)
Load Regulation (%)
0.006 0.004 0.002 0.000 -0.002 -0.004 -0.006 -0.008 -0.010 0 10 20 30 40 50 60 70
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
2.0 1.0 0.0 -1.0 -2.0 -3.0
VBAT = 1.8V VBAT = 2.4V VBAT = 2.7V VBAT = 3.0V VBAT = 3.6V VBAT = 4.2V VBAT = 5.0V
80
90
100
0
10
100
Load Current (mA)
Load Current (mA)
2610.2008.11.1.1
www.analogictech.com
13
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
SU Output Ripple
(VBAT = 3.6V; VSU = 5V; COUT = 22F; 10mA Load)
SU Output Ripple
(VBAT = 3.6V; VSU = 5V; L = 2.2H; COUT = 22F; 200mA Load) LXSU (5V/div) 0 IINDUCTOR (200mA/div)
0
LXSU (5V/div) IINDUCTOR (500mA/div) VSU (AC) (50mV/div)
0
0
0
VSU (AC) 0 (10mV/div)
Time (10s/div)
Time (400ns/div)
Main SU Output Ripple
(VBAT = 2.4V; VMSU = 3.3V; L = 2.2H; COUT = 10F; 10mA Load) LXM (2V/div)
0
Main SU Output Ripple
(VBAT = 2.4V; VMSU = 3.3V; L = 2.2H; COUT = 10F; 200mA Load) LXM (5V/div) IINDUCTOR (200mA/div)
0
0
IINDUCTOR (500mA/div)
0
VMSU (AC) (20mV/div)
0
VMSU (20mV/div)
0
Time (4s/div)
Time (400ns/div)
Main SD Output Ripple
(VPVM = VBAT = 4.2V; VMSD = 3.3V; L = 3.3H; COUT = 4.7F; 10mA Load) LXM (2V/div)
0
Main SD Output Ripple
(VPVM = VBAT = 4.2V; VMSD = 3.3V; L = 3.3H; COUT = 4.7F; 200mA Load) LXM (2V/div)
0
IINDUCTOR (200mA/div) 0 VMSD (AC) (20mV/div)
0
IINDUCTOR (200mA/div) VMSD (AC) (10mV/div)
0
0
Time (4s/div)
Time (4s/div)
14
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
SD Output Ripple
(VPSD2 = VBAT = 3.6V; VSD2 = 1.8V; L = 2.2H; COUT = 4.7F; 10mA Load) LX (2V/div)
0
SD Output Ripple
(VPVSD2 = VBAT = 3.6V; VSD2 = 1.8V; L = 2.2H; COUT = 4.7F; 200mA Load)
LXSD2 (2V/div)
0
IINDUCTOR (200mA/div)
0
VSD2 (AC) (20mV/div)
0
IINDUCTOR (200mA/div)
0
VSD2 (AC) (20mV/div)
0
Time (2s/div)
Time (800ns/div)
AUX1 Output Ripple
(VBAT = 3.6V; COUT = 1F; L = 4.7H; 4 WLED with 20mA Load) LXL1 (10V/div) IINDUCTOR (200mA/div)
0
AUX2 Output Ripple
(VBAT = 3.6V; VAUX2 = 15V; COUT = 4.7F/25V; L = 4.7H; 20mA Load) LXL2 (10V/div) IINDUCTOR (200mA/div)
0
0
0
VAUX1 (AC) (100mV/div)
0
VAUX2 (AC) (20mV/div)
0
Time (400ns/div)
Time (400ns/div)
AUX3 Output Ripple
(VBAT = 3.6V; VAUX3 = -7.5V; COUT = 4.7F/10V; L = 4.7H; 20mA Load) LXL3 (10V/div) IINDUCTOR (100mA/div)
0 0
SU Channel Load Transient Response
(VBAT = 3.6V; VSU = 5V; L = 2.2H; COUT = 22F; Transient Slew Rate 0.1A/s)
VSU (AC) (200mV/div)
500mA
VAUX3 (AC) (10mV/div)
0
IOUT (200mA/div)
200mA
Time (400ns/div)
Time (40s/div)
2610.2008.11.1.1
www.analogictech.com
15
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
Main SD Load Transient Response
(VBAT = VPVM = 3.6V; VMSD = 3.3V; L = 3.3H; COUT = 4.7F; Transient Slew Rate = 0.1A/s) VMSD (50mV/div) VMSD (50mV/div)
SD1 Load Transient Response
(VBAT = VPVSD1 = 3.6V; VSD1 = 2.5V; L = 2.2H; COUT = 10F; Transient Slew Rate = 0.1A/s)
200mA
200mA
IOUT (100mA/div)
100mA
IOUT (100mA/div)
100mA
Time (40s/div)
Time (40s/div)
SD2 Load Transient Response
(VBAT = VPVSD2 = 3.6V; VSD2 = 1.8V; L = 2.2H; COUT = 4.7F; Transient Slew Rate = 0.1A/s) VSD2 (50mV/div)
AUX2 Load Transient Response
(VBAT = 3.6V; VAUX2 = 15V; L = 4.7H; COUT = 4.7F/25V; Transient Slew Rate = 0.1A/s) VAUX2 (200mV/div)
200mA
20mA
IOUT (100mA/div)
100mA
IOUT (10mA/div)
1mA
Time (40s/div)
Time (40s/div)
AUX3 Load Transient Response
(VBAT = VPVL3 = 3.6V; VAUX3 = -7.5V; L = 4.7H; COUT = 4.7F/10V; Transient Slew Rate = 0.1A/s) SU Load Current (mA) VAUX3 (200mV/div)
20mA
Mininum Start-up Voltage vs. Load Current
(VSU = 5V)
2000 1800 1600 1400 1200 1000 800 600 400 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
IOUT (10mA/div)
1mA
Time (40s/div)
Battery Voltage (V)
16
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
SU Start-up
(VBAT = 3.6V; VSU = 5V; COUT = 22F; 1A Load) EN (5V/div) IIN (2A/div) VSU (5V/div) LXSU (5V/div)
Line Transient Response
(VBAT = 3.6V to 4.2V; VSU = 5V; L = 2.2H; COUT = 22F; 200mA Load) VBAT (2V/div)
0
0
0
0
0
VSU 0 (100mV/div)
Time (200s/div)
Time (1ms/div)
SU Start-up Sequence
(VBAT = 3.6V; All Seven Channels Enabled; VSU = 5V; SU = 10mA Load) EN 0 (5V/div) LX (5V/div) VSU (5V/div) IIN (1A/div)
0
AUX1, AUX2, AUX3 Start-up Sequence
(VBAT = 3.6V; AUX1 = 4 WLEDs; VSU = 5V; VAUX2 = 15V; VAUX3 = -7.5V; AUX2, AUX3 = 10mA Load) EN (5V/div) VAUX1 (5V/div) VAUX2 (5V/div) VAUX3 (5V/div)
0
0
0
0 0
0
Time (200s/div)
Time (400s/div)
MSD, SD1, SD2 Startup Sequence
(VBAT = 3.6V; VSU = 5V; VMSD = 3.3V; VSD2 = 1.8V; 10mA Load) EN (5V/div) VSD1 (2V/div) VMSD (2V/div) VSD2 (2V/div)
0
MSU, SD1, SD2 Startup Sequence
(VBAT = 1.8V; VSU = 5V; VMSU = 3.3V; VSD1 = 2.5V; PVSD1 = PVSD2 = PVSU; 10mA Load) EN (2V/div) VMSU (2V/div) VSD1 (2V/div) VSD2 (2V/div)
0
0
0
0
0
0
0
Time (400s/div)
Time (400s/div)
2610.2008.11.1.1
www.analogictech.com
17
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Typical Characteristics
Reference Voltage vs. Temperature
0.604
Switching Frequency vs. Temperature
1.70 1.66
Reference Voltage (V)
0.603 0.602 0.601 0.600 0.599 0.598 0.597 0.596 1.8
Frequency (MHz)
1.62 1.58 1.54 1.50 1.46 1.42 1.38 1.34
-40C 25C 85C
2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0
1.30 -40
-20
0
20
40
60
80
Temperature (C)
Temperature (C)
Shutdown Current vs. Input Voltage
0.20 1.6 1.4
Input Current vs. Input Voltage
(Only SU Enabled, VSU = 5V, L = 2.2H, COUT = 22F)
-40C 25C 85C
Shutdown Current (uA)
0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4
Input Current (mA)
1.2 1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-40C 25C 85C
5.0
5.5
Input Voltage (V)
Battery Voltage (V)
18
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Functional Block Diagram
ENL1 ENSU ENM ENSD1 ENSD2 (Dimming) ENL2 ENL3
I/O, Control
SUSD VIN PV PVSU SCF
OT
Osc
(1.5MHz)
StepUp/ Bypass Control
LXSU
PVL
FBSU PVM
LXL1
Step-Up Control & Current Sink
StepUp/ Down Control
LXM
CSL1 OVL1
FBM SEQ PVSD1
LXL2
Step-Up Control
StepDown Control
LXSD1
FBL2
FBSD1 PVSD2
PVL3
Step-Up Control
StepDown Control
LXSD2
LXL3 FBSD2 FBL3 VREF3
PGSU
PGM
PGSD1
PGSD2
PGL
GND
2610.2008.11.1.1
www.analogictech.com
19
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Functional Description
The AAT2610 PMIC is targeted for single cell Li-ion battery or dual cell Alkaline battery applications. It includes seven integrated step-up and step-down converters, including one synchronous step-up converter (SU), two synchronous step-down converters (SD1, SD2), one synchronous step-up or step-down converter (Main), two non-synchronous step-up converters (AUX1, AUX2) and one non-synchronous buck-boost (inverting) converter (AUX3). The SU converter is the key channel. Its output powers all internal control and reference circuits when the output voltage is above 2.7V. The AUX1 converter is specially designed for 1 to 6 white LED serial backlight applications. Its current sink pin (CSL1) is suitable to control WLED current to up to 20mA. AUX3 is a transformerless inverting converter which controls the internal P-channel MOSFET to regulate negative voltage. The AAT2610 uses a fixed-frequency peak current control architecture. Light load mode is used to enhance light load efficiency. Compensation is integrated to reduce the number of external components and achieve excellent transient response and load and line regulation. The ideal 1.5MHz switching frequency allows the use of smaller output filter components for improved power density, reduced external component size, and optimized output voltage ripple. The output voltages can be programmed by an external divider. The AAT2610 has seven separate enable pins to control each converter's startup. A 1.4ms startup delay is employed to guarantee that the key SU converter is already in regulation and the internal control and the reference have been normally biased before the other six converters start up.
Start-Up
The AAT2610's major control circuitries adopt power from the SU converter output and do not function at less than 2.7V. To ensure the PMIC can start up at VIN as low as 1.8V, the step-up converter employs a startup oscillator with a typical 200kHz frequency. The startup oscillator drives the internal N-channel MOSFET at LXSU until the SU converter output voltage reaches 2.7V, at which point the current-mode PWM circuitry takes over. A startup current limit (750mA) and NMOSFET off time (700ns) decrease the startup inrush current. At low input voltages, the AAT2610 may have difficulty starting up with heavy loads.
Under-Voltage Lockout
Independent UVLO (Under-Voltage Lockout) circuitry guarantees the sufficient input power and proper operation of all internal circuitry. When input voltage at VIN rises above 1.8V, the AAT2610 leaves UVLO status and enters the startup process. Once in regulation, the VIN power can be as low as 1.6V before the AAT2610 enters UVLO status.
Bypass Mode
When the SU converter input voltage increases above the bypass mode threshold (typically 4.75V), the step-up converter enters "bypass" mode, which automatically connects the input to the output. In this mode, P-channel synchronous MOSFET is always ON and N-channel MOSFET is always off. The output voltage follows input voltage in the mode and overload protection is disabled.
Synchronous Step-Up / Step-Down DC to DC Converter
The AAT2610 has one synchronous step-up/step-down DC-DC converter which is ideally designed for 2AA/Li-ion applications. The SUSD pin is used to set the operation mode. When SUSD is set to logic high, the step-up converter setting is selected. N-channel switch transistor current is sensed for current loop control to regulate the output over the complete load range; when SUSD is pulled low, the step-down converter type is set and the P-channel switch transistor current is sampled for the current control loop. In both converter types, soft-start is employed to suppress the startup inrush current and eliminate the output voltage overshoot. In shutdown with the enable pin (ENM) pulled low, if the step-down converter is selected, the converter is forced into a non-switching state and the output voltage drops to zero. When the step-up converter is selected, the output voltage is equal to the input voltage minus a voltage
2610.2008.11.1.1
Synchronous Step-Up DC to DC Converter
The AAT2610 has one synchronous step-up DC-DC converter. It utilizes internal power MOSFETs to achieve high efficiency over the full load current range. The external feedback can program the output voltage between 3.0V to 5.5V. Its "bypass" mode automatically connects the input to the output when the input voltage is higher than the bypass mode threshold. In shutdown, the enable pin (ENSU) is pulled low, the SU converter output is equal to the input voltage minus a voltage drop across the parasitical body diode, and all other channels are shut down regardless of their enable setting.
20
www.analogictech.com
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
drop across the parasitical body diode. If true load disconnection is required, an external PMOSFET controlled by SEQ can be adopted.
Light Load Mode and Normal PWM Control
The AAT2610 uses light load mode to enhance the efficiency at light load. In light load mode, if the error amplifier output signal is lower than a given level at a certain clock point, the switch pulse is skipped to reduce dominant switching losses. In normal PWM mode to the buck converter, the current through the P-channel (high side) is sensed for current loop control. The P-channel current limit is used to prevent internal power PMOSFET overstress or damage by the high power. To the boost converter, the current though the N-channel (low side) is sensed for the control loop and its current limit also protects the main MOSFET. The error amplifier programs the current mode loop for the necessary peak switch current to force a constant output voltage for all load and line conditions. The internal fixed slope compensation is employed to eliminate the sub-harmonic oscillation and keep regulation stable when the duty cycle is over 50%.
Synchronous Step-Down DC to DC Converter
The AAT2610 has two synchronous step-down DC-DC converters. Their output voltages can be programmed from 0.6V to VIN by an external resistor divider. At dropout, the converter's duty cycle equals 100% and the output voltage tracks the input voltage minus the voltage drop across the P-channel MOSFET. At low input supply voltage, the RDS(ON) of the P-channel MOSFET increases, and the efficiency of the converter decreases. The two step-down converters adopt soft-start to eliminate output voltage overshoot when the enable or input voltage is applied. When the ENSD1 and ENSD2 are pulled low, the outputs of the two SD converters are down to zero and its shutdown current is below 1A.
Non-Synchronous Step-Up and Buck/ Boost (Inverting) DC to DC Converters
Two non-synchronous step-up converters are targeted for LCD backlight and CCD positive loads. The controllers regulate the output voltage by modulating the pulse width of the internal NMOSFET. External schottky diode and power inductor are required to set up the boost. The output voltage can be programmed from 5V to 20V by external divider. Auxiliary 1 is ideally designed for driving typical 4 serial white LEDs. The maximum current flowing through the WLED string is sensed at CSL1 and set to 20mA by the internal ballast resistor with 10% accuracy. The industry standard PWM (Pulse Width Modulation) controlling technology is adopted to program the WLED current. Applying a 10% ~100% duty cycle PWM signal with the frequency range 1kHz to 30kHz at ENL1 can get 2mA to 20mA WLED current. If an open circuit occurs, the internal over-voltage protection circuit prevents damage to the converter within 67ms, then shuts down all channels. Auxiliary 2 is designed for +15V CCD bias. Soft-start is adopted to eliminate the output voltage overshoot and decrease the effect on the input voltage. Auxiliary 3 is non-synchronous buck-boost (inverting) DC to DC converter which is targeted for negative CCD loads with low noise. Soft-start is adopted to limit the inrush current at startup.
Fault Protection
Short-Circuit and Overload Protection
When any of the converters' output voltage is lower than the programmed value for a certain period of time (100,000 clock cycles, typically 66.7ms), the central control circuits treat it as an overload situation; all seven channels will be turned off and SCF will be pulled low until the IC is restarted either by SU enable pin (ENSU) reset or re-application of the input voltage. During overload period, the peak current limit prevents the main switch (NMOSFET of step-up converter and PMOSFET of step-down converter) from overstress and damage, and also avoids saturation of the external inductor. For synchronous step-up (SU) channels, overload protection function is disabled in "bypass" mode.
Over-Temperature Protection
Thermal protection completely disables power MOSFET switching when internal power dissipation becomes excessive. Only reference and internal clock are still active in this condition. Once the over-temperature condition is removed, the output voltages automatically recover. The junction over-temperature threshold is 140C with 15C of hysteresis.
2610.2008.11.1.1
www.analogictech.com
21
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Application Information
Setting the Output Voltage
Step-Down Converter
An external resistor divider is used to program the stepdown converter's output voltage from 0.6V to VIN. Resistors R1 and R2 in Figure 1 program the output to regulate at voltages higher than 0.6V. To limit the bias current required for the external feedback resistor string while maintaining good noise immunity, the suggested value for R2 is 59k. Although a larger value will further reduce quiescent current, it will also increase the impedance of the feedback node, making it more sensitive to external noise and interference. Table 1 summarizes the resistor values for various output voltages with R2 set to 59k. The AAT2610 has 3 step-down converters: SD1, SD2 and Main SD. The external resistor sets the output voltage according to the following equations: Table 1 shows the resistor selection for different output voltage settings. 1% accuracy metal-film resistors are strongly recommended to get accurate output voltages. VOUT (V)
1.2 1.5 1.8 2.5 3.0 3.3
R2 = 59k R1 (k)
59 88.7 118 187 237 267
Table 1: Resistor Select for Step-Down Converter Output Voltage Setting.
Step-Up Converter
Similar to the step-down converter, the step-up regulators also use an external resistor divider to program the output voltage. The AAT2610 has 4 step-up converters: SU, Main SU, AUX1 and AUX2. The equation for external resistors setting the output voltage is same as for the step-down converter. Figure 2 shows the synchronous (SU and Main SU) and non-synchronous (AUX1 and AUX2) step-up converter application connections. Table 2 shows resistor selection for different output voltage settings. 1% accuracy metal-film resistors are strongly recommended to get accurate output voltages.
R1 VOUT = 0.6V * 1 + R2 VOUT R1 = 0.6V -1 * R2
AAT2610 Step-Down Converter
L1 LX VIN PV C1 FB R1 187k R2 59k
VOUT 2.5V C2
PG
Figure 1: Step-Down Converter with Output Voltage Programmed by External Resistor Divider.
22
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
AAT2610 Synchronous Step-Up Converter
VIN C1 L1 LX FB PV R1 432 k R2 59k
PG
VOUT 5V C2
AAT2610 Non-Synchronous Step-Up Converter
LX
VIN C1 L1 D1 R1 1.43M R2 59k VOUT 15V C2
FB
PG
(a) Synchronous step-up converter
(b) Non-synchronous step-up converter
Figure 2: Step-Up Converter with Output Voltage Programmed by External Resistor Divider.
VOUT (V)
3.3 3.8 4.2 5.0 15
R2 = 59k R1 (k)
267 316 357 432 1420
AAT2610 Inverting converter
PVL3 C1 VIN L1 VOUT -7.5V D1 R1 732k R2 59k REF C3 C2
LXL3
Table 2: Resistor Select for Step-up Converter Output Voltage Setting.
FBL3
Buck-Boost (Inverting) Converter
The AAT2610 has one inverting converter, AUX3. Figure 3 shows an AUX3 application circuit. Its programmed output voltage can be set by the following equations:
-0.6V VOUT = R2 * R1 VOUT R1 = -0.6V * R2
Figure 3: Buck/Boost (Inverting) Converter with Output Voltage Programmed by External Resistor Divider.
Inductor Selection
The AAT2610 can utilize small surface mount inductors due to its fast 1.5MHz switching frequency. Optimized inductor values for each channel keeps the seven channels stable, and achieves reduced output voltage ripple at smaller output capacitor size. See Table 3 for recommended inductors for each channel. A greater inductance value will allow greater output current capability by reducing inductor ripple current. Increasing the inductance above 4.7H will increase size to get enough saturation current rating. The following equations show the minimum saturation current of the selected inductors.
2610.2008.11.1.1
www.analogictech.com
23
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Inductance (H)
2.2 2.5 2.5 2.2 1.8 3.3 4.7 4.7 2.2 4.7 2.2 3.3 4.7 2.2 3.3 4.7
Manufacturer
Part Number
CDRH4D22/HP CDRH8D28 CDRH2D09
Max DC Current (A)
3.2 4.5 0.53 0.60 0.65 0.50 1.0 0.75 1.6 1.2 1.0 0.81 0.80 1.6 1.2 1.0
DCR (m)
35.4 12 120 115 105 139 135 190 48 110 149 195 246 76 120 180
Size (mm) LxWxH
4.5x4.5x2.4 8.3x8.3x3 3.2x3.2x1.0 3.2x3.2x1.0 3.2x3.2x1.0 3.2x3.2x1.0 3.2x3.2x1.55 3.2x3.2x1.2 3.2x3.2x2.0 3.2x3.2x2.0 3.1x3.1x1.0 3.1x3.1x1.0 3.1x3.1x1.2 3.2x2.5x1.55 3.2x2.5x1.55 3.2x2.5x1.55
Type
shielded shielded shielded shielded shielded shielded shielded shielded shielded shielded shielded shielded shielded unshielded unshielded unshielded
Suit for Channel
SU SU Main SD, SD1, SD2 Main SD, SD1, SD2 SD2 Main SU AUX1, AUX2, AUX3 Main SD, SD1, SD2 AUX1, AUX2, AUX3 Main SD, SD1, SD2 Main SU, SD1, SD2 AUX1, AUX2, AUX3 Main SD, SD1, SD2 Main SU, SD1, SD2 AUX1, AUX2, AUX3
Sumida
Cooper
Murata
CDRH2D09C CDRH2D14 CDRH2D11/HP CDRH2D18/HP CDRH2D18/HP SD3110 SD3110 SD3112 LQH32PN2R2NN0 LQH32PN3R3NN0 LQH32PN4R7NN0
Table 3: Suggested Inductor Selection Information.
To step-up converter,
IL_SAT >
Among it,
VIN * D IOUT_MAX + 1-D 2*f*L
VIN D=1- V OUT
To step-down converter,
selected output capacitors, not only calculating the output capacitor minimum values are necessary according to the equations, but the actual capacitance must be carefully considered to get expected output voltage ripple. X5R and X7R dielectric materials of ceramic capacitors are preferred for their ability to maintain capacitance over wide voltage and temperature ranges. To step-up converter,
COUT (VIN - VOUT) * D 2*f*L
To step-down converter,
D * IOUT VOUT * f
IL_SAT > IOUT_MAX +
Among it,
VOUT D= V IN
COUT
VOUT * (1 - D) 8 * f2 * L * VOUT
Input and Output Capacitor Selection
Low ESR (equivalent series resistance) capacitors should be used to minimize output voltage ripple. Multilayer ceramic capacitors are an excellent choice as they have extremely low ESR and are available in small footprints. The following equations show the minimum capacitance under the required output voltage ripple for step-up and step-down converters. In actual application, capacitance usually decreases a lot as its DC bias increases. So when
For example, to step-up converter, when VIN = 3.6V, IOUT = 900mA, and f = 1.5MHz, output ripple requires below 30mV. According to the equation above, the calculated COUT should be higher than 5.6F. If use Sumida 22F/6.3V 0805 ceramic capacitor, its capacitance at 5V DC bias is 8.0F which can meet the ripple requirements. Input capacitors for input decoupling should be located as close as possible to the device to get better input power filtering effect. Select 1F to 4.7F X5R or X7R ceramic capacitors for the inputs. Table 4 shows suggested capacitor part numbers.
24
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Output Diode
A Schottky diode is suitable in the three non-synchronous step-up channels for its low forward voltage and fast recovery time. 20V rated Schottky diodes are recommended for outputs less than 10V, while 30V rated Schottky diodes are recommended for outputs greater than 10V. Table 5 shows suggested diode part numbers. The power dissipation for the synchronous buck channel in CCM (Continuous Conduction Mode) can be calculated by the following equation:
VINBUCK VINBUCK PSyn-BUCK = IOUTBUCK2 * RDS(ON)P * V + RDS(ON)N * 1 - V OUTBUCK OUTBUCK
Where: PSyn-BUCK = Synchronous Buck Channel Power Dissipation IOUTBUCK = Synchronous Buck Channel Output Current VOUTBUCK = Synchronous Buck Channel Output Voltage VINBUCK = Synchronous Buck Channel Input Voltage RDS(ON)x = Synchronous Buck Channel PMOS or NMOS Drain-Source On Resistance The power dissipation for the synchronous boost channel in CCM can be calculated by the following equation:
VINBOOST VINBOOST PSyn-BOOST = IINBOOST2 * RDS(ON)P * V + RDS(ON)N * 1 - V OUTBOOST OUTBOOST
Using SEQ for Power Sequence
Power sequence delay is designed to connect the loads to Main channel output after its normal startup. Use the SEQ output signal to control an external PMOSFET connected between Main output and loads. The SEQ output is high impedance lasted for 10ms when startup, then pulled low after both the SD1 and SD2 converters completed soft-start and achieved output regulation. When SD1 and SD2 are disabled, SEQ is also pulled low after 10ms when Main channel achieves regulation.
Using SCF for Full-Load Startup
SCF goes high (high impedance, open drain) when overload protection occurs. Under normal operation, SCF pulls low. It can be used to drive a P-channel MOSFET switch that turns off the load of a selected supply in the event of an overload. Or, it can remove the load until the supply reaches regulation, effectively allowing full load startup.
Where: PSyn-BOOST = Synchronous Boost Channel Power Dissipation IINBOOST = Synchronous Boost Channel Input Current VOUTBOOST = Synchronous Boost Channel Output Voltage VINBOOST = Synchronous Boost Channel Input Voltage RDS(ON)x = Synchronous Boost Channel PMOS or NMOS Drain-Source On Resistance The power dissipation for the non-synchronous boost channel can be calculated by the following equation:
Thermal Considerations
Thermal design is an important aspect of power management IC applications and PCB layout. The AAT2610 TQFN55-40L package can provide up to 2W of power dissipation when it is properly soldered onto a printed circuit board with thermal vias. The package has a maximum thermal resistance of 25C/W. The maximum power dissipation in a given ambient condition can be calculated:
VINBOOST PNonsyn-BOOST = IINBOOST2 * RDS(ON)N * 1 - V OUTBOOST
Where: PNonsyn-BOOST = Non-Synchronous Boost Channel Power Dissipation IINBOOST = Non-Synchronous Boost Channel Input Current VOUTBOOST = Non-Synchronous Boost Channel Output Voltage VINBOOST = Non-Synchronous Boost Channel Input Voltage RDS(ON)N = Non-Synchronous Boost Channel internal NMOS Drain-Source On Resistance
PD(MAX) =
Where:
(TJ(MAX) - TA) JA
PD(MAX) = Maximum Power Dissipation (W) JA = Package Thermal Resistance (C/W) TJ(MAX) = Maximum Device Junction Temperature (C) [150C] TA = Ambient Temperature (C)
2610.2008.11.1.1
www.analogictech.com
25
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
The power dissipation for the inverting channel in CCM can be calculated by the following equation:
VOUT-BUCKBOOST PNonsyn-BUCKBOOST = IIN-BUCKBOOST2 * RDS(ON)P * V IN-BUCKBOOST - VOUT-BUCKBOOST
3.
Where: PNonsyn-BUCKBOOST = Non-Synchronous Buck/Boost Channel Power Dissipation IIN-BUCKBOOST = Non-Synchronous Buck/Boost Channel Input Current VOUT-BUCKBOOST = Non-Synchronous Buck/Boost Channel Output Voltage VIN-BUCKBOOST = Non-Synchronous Buck/Boost Channel Input Voltage RDS(ON)P = Non-Synchronous Buck/Boost Channel internal PMOS Drain-Source On Resistance 4. 5.
6.
Layout Guidance
When laying out the PC board, the following layout guideline should be followed to ensure proper operation of the AAT2610: 1. The exposed pad (EP) must be reliably soldered to the GND plane for better power dissipation. A PGND pad below EP is required. The power traces, including the GND trace, the LX trace and the IN trace should be kept short, direct and wide to allow large current flow. Each inductor of the seven channels should be connected to the LX
7.
2.
pins as short as possible. Use several VIA pads when routing between layers to decrease the conduction resistance. The input filter capacitor of each channel should connect as closely as possible to IN (Pins 3, 8, 15, 29, 33 and 35) and GND (Pins 5, 6, 26, 27 and 37) to get good power filtering. Keep the switching node, LX (Pins 4, 7, 25, 29, 34, 36 and 38), away from the sensitive FB node. The feedback trace should be separate from any power trace and connect as closely as possible to the load point. Sensing along a high-current load trace will degrade DC load regulation. The external feedback resistors should be placed as closely as possible to the FB pin (Pin 1, 2, 9, 23, 30, 32 and 40) to minimize the length of the high impedance feedback trace. It is recommended to connect the external feedback resistor divider to the signal ground (Pin 16). The signal ground and power ground should be connected at a single point to alleviate the power ground noise affecting the feedback voltage. The resistance of the trace from the load return to PGND should be kept to a minimum. This will help to minimize any error in DC regulation due to differences in the potential of the internal signal ground and the power ground.
Figure 4 and 5 show the AAT2610 evaluation board layout with 4 layers.
26
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Manufacturer Value (F)
1 1 Murata 3.3 4.7 4.7 10 22
Voltage (V)
25 10 10 25 6.3 6.3 6.3
Case Size
0603 0603 0603 0805 0603 0805 0805
Part Number
GRM188R61E105K GRM185R61A105K GRM188R61A335K GRM21BR61E475K GRM188R60J475K GRM219R60J106KE19 GRM21BR60J226M
Channel / Capacitor Position
AUX1 / output SD1, SD2, AUX1, AUX2, AUX3 / input AUX3 / output AUX2 / output SU, Main / input Main SD, SD1, SD2 / output Main SU, SD1, SD2 SU, Main SU / output
Table 4: Suggested Input and Output Capacitor Selection Information. NonRepetitive Peak Surge Current (A)
5.5 5.5 4 4.2 1.0
Manufacturer
ON Semi Diodes Zetex Central Semi
Part Number
MBR0530T MBR0520LT BAT42W ZHCS350 CMDSH2-3
Rated Forward Current (A)
0.5 0.5 0.2 0.35 0.2
Rated Voltage (V)
30 20 30 40 30
Thermal Resistance (RJA, C/W)
206 206 500 330 500
Package
SOD-123 SOD-123 SOD-123 SOD-523 SOD-323
Table 5: Suggested Schottky Diode Selection Information.
OVL1=(1+R501/R502)*0.6 VAUX1 R503 C502 0 1uF/25V R501 1.54M R502 59k AUX1 PVSU R505 0 VBAT R506 0 L5 4.7uH C501 4.7uF D5 MBR0530
D501
C503 4.7uF OVL1
U1 AAT2610
PVSU 35 LXL1 38 CSL1 39 40 PVL LXL1 CSL1 OVL1 SCF 22
SCF VBAT C102 1uF 15 25 17 24 23 LXSU PVSU C104 27pF VSU=(1+R101/R102)*0.6 R101 432k R102 59k C103A 22uF C103B 22uF VSU +5V L1 2.2uH C101 4.7uF C 10uF R104 SCF VBAT
D502
D503
VAUX2 +15V C602A 10uF/16V
D6 R601 10uF/16V 1.42M R602 59k C602B PVSU R603 0 VBAT C603 R604 0 56pF for Li-ion /6.8pF for 2AA L6 4.7uH C601 4.7uF
MBR0530
VIN LXSU PV PVSU FBSU 36 1
D504
LXL2 FBL2
Main Channel Step-up: place C204, L2SU, R2U1, C201AB, R2U2, R2U3 Main Channel Step-down: place R2D1, C201A, L2SD, C202, R2D2
VBAT R2D1 VBAT 0
L2SU D505 2 D506 1 R504 0 CSL1 WLEDR507 D7 MBR0530 C702B 10uF/16V L7 4.7uH PVSU JENSU JENM FBL3 R702 59k VREF3 C703 1uF JENSD1 JENSD2 JENL1 JENL2 JENL3 PVSU R2U3 0 21 20 19 18 14 13 12 11 ENSU ENM ENSD1 ENSD2 ENL1 ENL2 ENL3 SUSD /SEQ VAUX2=1+R601/R602)*0.6 VBAT PVSU R703 0 2.2uH R2U1 0 PVL3 LXL3 FBL3 VREF3 LXM PVM FBM SEQ 7 8 9 10 C204 4.7uF VM C202 22uF R201 267k
VAUX3=-0.6*(R701/R702) VAUX3 -7.5V AUX3 R701 C702A 732k 10uF/16V
C701 R704 0 PVL3 4.7uF 33 34 32 FBL3 VREF3 31
L2SD 3.3uH R2U2 0 C201B 22uF for MSU only VM=(1+R3/R4)*0.6 R303 0
VM +3.3V
C704 3.9pF for Li-ion /1.5pF for 2AA
C201A 22uF for MSU /4.7uF for MSD
C203 56pF for MSD/82pF for MSU R202 59k
VBAT PVSU GND
C301 4.7uF PVSD1 LXSD1 FBSD1 3 4 2
R304 0
L3 2.2uH
R301 187k R302 59k R403 0 VBAT R404 PVSU 0
C302 10uF
VSD1 +2.5V
GND GND M1 M2 M3 M4 GND GND GND
VSD1=(1+R301/R302)*0.6
R2D2 0 C401 4.7uF PVSD2 LXSD2 FBSD2 29 28 30
SUSD=PVSU: Main channel is set to boost SUSD=GND: Main channel is set to buck 26 6 5 27 37 16 41 PGSU PGM PGSD1 PGSD2 PGL GND EP
PGND SGND
L4 2.2uH
R401 118k R402 59k
C402 4.7uF
VSD2 +1.8V
VSD2=(1+R401/R402)*0.6
GND
SGND
Figure 4: AAT2610 Evaluation Board Schematic.
2610.2008.11.1.1
www.analogictech.com
27
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
(a) Top Layer
(b) Internal GND Layer
(c) Internal Signal Layer
(d) Bottom Layer
Figure 5: AAT2610 Evaluation Board PCB Layout.
28
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Designation
IC Device U1 Capacitor C C101 C102, C703 C103A, C103B, C202 C104 C201A, C301, C401, C402, C501, C503, C601, C701 C203, C603 C302 C303, C403 C502 C602A, C602B, C702A, C702B C704 Inductor L1 L2SD L3, L4 L5, L6, L7 Resistor R2D1, R2D2, R303 R403, R503, R504, R506, R604, R703 R101 R102, R202, R302 R402, R502, R602, R702 R201 R301 R401 R501 R601 R701 Other D501, D502, D503, D504 D5, D6, D7 T494B106M010AS GRM21BR61C475K GRM185R61A105K GRM21BR60J226M GRM1885C1H270J GRM188R60J475K GRM1885C1H560J GRM188R60J106M GRM1885C1H100J GRM188R61E105K GRM21BR61C106K GRM1885C1H3R9D CDRH4D22/HP-2R2NC CDRH2D14-3R3NC CDRH2D18/HPNP-2R2NC CDRH2D14 NP-4R7NC RC0603FR-070RL RC0603FR-07432KL RC0603FR-0759KL RC0603FR-07267KL RC0603FR-07187KL RC0603FR-07118KL RC0603FR-071M54L RC0402FR-071M42L RC0603FR-07732KL RS-0805 MBR0530 CAP TAN 10F B 10V 20% CAP Ceramic 4.7F 0805 X5R 16V 10% CAP Ceramic 1F 0603 X5R 10V 10% CAP Ceramic 22F 0805 X5R 6.3V 20% CAP Ceramic 27pF 0603 C0G 50V 5% CAP Ceramic 4.7F 0603 X5R 6.3V 10% CAP Ceramic 56pF 0603 C0G 50V 5% CAP Ceramic 10F 0603 X5R 6.3V 20% CAP Ceramic 10pF 0603 C0G 50V 5% CAP Ceramic 1F 0603 X5R 25V 10% CAP Ceramic 10F 0805 X5R 16V 10% CAP Ceramic 3.9pF 0603 C0G 50V 0.5pF Power Power Power Power Inductor Inductor Inductor Inductor 2.2H 3.3H 2.2H 4.7H 3.2A 1.2A 1.6A 1.0A SMD SMD SMD SMD Murata KEMET AAT2610IIC Seven-Channel High Efficiency Power Management Unit AnalogicTech
Part Number
Description
Manufacturer
Sumida
RES 0 1/10W 1% 0603 SMD RES 432K 1/10W 1% 0603 SMD RES 59K 1/10W 1% 0603 SMD RES 267K 1/10W 1% 0603 SMD RES 187K 1/10W 1% 0603 SMD RES 118K 1/10W 1% 0603 SMD RES 1.54M 1/10W 1% 0603 SMD RES 1.42M 1/16W 1% 0402 SMD RES 732K 1/10W 1% 0603 SMD 20mA White LED 0805 Diode Schottky 0.5A 30V SOD-123 Yageo
Realstar International Rectifier
Table 6: AAT2610 Li-ion Application Demo Board Bill of Materials (BOM).
2610.2008.11.1.1
www.analogictech.com
29
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Designation
IC Device U1 Capacitor C C101 C102, C703 C103A, C201A, C201B, C302 C203 C204, C301, C401, C402, C501, C503, C601, C701 C303 C403 C502 C602A,C602B, C702A, C702B C603 C704 Inductor L1 L2SU, L3, L4 L5, L6, L7 Resistor R2U1, R2U2, R2U3 R303, R404, R503, R504, R506, R604, R704 R101 R102, R202, R301, R302, R402, R502, R602 R201 R401 R501 R601 R701 R702 Other D501, D502, D503, D504 D5, D6, D7 T494B106M010AS GRM21BR61C475K GRM185R61A105K GRM21BR60J226M GRM1885C1H820J GRM188R60J475K GRM1885C1H150J GRM1885C1H5R6D GRM21BR61E475KA GRM21BR61C106K GRM1885C1H6R8D GRM1885C1H1R5D CDRH4D22/HP-2R2NC CDRH2D18/HPNP-2R2NC CDRH2D14 NP-4R7NC CDRH2D18/HP-100 CAP TAN 10F B 10V 20% CAP Ceramic 4.7F 0805 X5R 16V 10% CAP Ceramic 1F 0603 X5R 10V 10% CAP Ceramic 22F 0805 X5R 6.3V 20% CAP Ceramic 82pF 0603 C0G 50V 5% CAP Ceramic 4.7F 0603 X5R 6.3V 10% CAP Ceramic 15pF 0603 C0G 50V 5% CAP Ceramic 5.6pF 0603 C0G 50V 0.5pF CAP Ceramic 4.7F 0805 X5R 25V 10% CAP Ceramic 10F 0805 X5R 16V 10% CAP Ceramic 6.8pF 0603 C0G 50V 0.5pF CAP Ceramic 1.5pF 0603 C0G 50V 0.5pF Power Inductor 2.2H 3.2A SMD Power Inductor 2.2H 1.6A SMD Power Inductor 4.7H 1.0A SMD Power Inductor 10H 0.85A SMD Murata KEMET AAT2610IIC Seven-Channel High Efficiency Power Management Unit AnalogicTech
Part Number
Description
Manufacturer
Sumida
RC0603FR-070RL RC0603FR-07432KL RC0603FR-0759KL RC0603FR-07267KL RC0603FR-07187KL RC0603FR-071M54L RC0603FR-071M2L RC0603FR-07732KL RC0603FR-0751KL RS-0805 MBR0530
RES 0 1/10W 1% 0603 SMD RES 432K1/10W 1% 0603 SMD RES 59K1/10W 1% 0603 SMD RES 267K1/10W 1% 0603 SMD RES 187K 1/10W 1% 0603 SMD RES 1.54M 1/10W 1% 0603 SMD RES 1.2M 1/10W 1% 0603 SMD RES 732K 1/10W 1% 0603 SMD RES 51K 1/10W 1% 0603 SMD 20mA White LED 0805 Diode Schottky 0.5A 30V SOD-123 Yageo
Realstar International Rectifier
Table 7: AAT2610 2AA Application Demo Board Bill of Material (BOM).
30
www.analogictech.com
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Additional Applications
The auxiliary AUX1 channel can drive higher current levels by adding an external resistor at the CSL1 pin. As an example, a 220 is connected between CSL1 and GND to get a maximum 25mA led current as shown in Figure 6; a 73 is used to get maximum 35mA led current as shown in Figure 7.
VIN
30
Load Current (mA)
AAT2610 AUX1 Channel
LXL1
L1 4.7H 38 D1
C1 1F
25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 90 100
OVL1
40
R1 1.54M
C2 1F
25mA
D1 D2
R2 59k
D3 D4
PGL
37
CSL1 ENL1
39
R3 220
VIN = 3.3V VIN = 5V
14
PWM Signal 1kHz
PWM Duty (%)
Figure 6: AUX1 Channel Application Example Driving 4 WLEDs with Maximum 25mA Led Current.
VIN
40
LED Current (mA)
AAT2610 AUX1 Channel
LXL1
L1 4.7H 38 D1
C1 1F
35 30 25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 90 100
OVL1
40
R1 1.54M
C2 1F
35mA
D1 D2
R2 59k
D3 D4
PGL
37
CSL1 ENL1
39 14
R3 73
VIN = 3.3V VIN = 5V
PWM Signal 1kHz
PWM Duty (%)
Figure 7: AUX1 Channel Application Example of Driving 4 WLEDs with Maximum 35mA Led Current.
2610.2008.11.1.1
www.analogictech.com
31
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Ordering Information
Output Voltage
Adj. 0.6V
Package
TQFN55-40L
Marking1
3GXYY
Part Number(Tape & Reel)2
AAT2610IIC
All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at http://www.analogictech.com/about/quality.aspx.
Package Information
TQFN55-40L3
Pin 1 Dot by Marking 0.380 0.050 Pin 1 Identification Chamfer 0.300 x 45 0.200 0.050 3.600 0.050
5.000 0.050
3.600 0.050
0.450 0.050 5.000 0.050
Top View
Bottom View
0.750 0.050 0.203 REF + 0.100 0.000 - 0.000
Side View
All dimensions in millimeters.
1. XYY = assembly and date code. 2. Sample stock is generally held on part numbers listed in BOLD. 3. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.
32
www.analogictech.com
0.400 BSC
2610.2008.11.1.1
PRODUCT DATASHEET
AAT2610
7-Channel PMU for Digital Still Cameras
Advanced Analogic Technologies, Inc. 3230 Scott Boulevard, Santa Clara, CA 95054 Phone (408) 737-4600 Fax (408) 737-4611
(c) Advanced Analogic Technologies, Inc. AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Except as provided in AnalogicTech's terms and conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.
2610.2008.11.1.1
www.analogictech.com
33


▲Up To Search▲   

 
Price & Availability of AAT2610

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X