![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
VND600PEP-E DOUBLE CHANNEL HIGH SIDE DRIVER Table 1. General Features TYPE VND600PEP-E (*) Per each channel Figure 1. Package Ilim 25A VCC 36V RDS(on) 30m (*) DC SHORT CIRCUIT CURRENT: 25A CMOS COMPATIBLE INPUTS PROPORTIONAL LOAD CURRENT SENSE UNDERVOLTAGE AND OVERVOLTAGE SHUT-DOWN OVERVOLTAGE CLAMP THERMAL SHUT-DOWN CURRENT LIMITATION VERY LOW STAND-BY POWER DISSIPATION PROTECTION AGAINST: LOSS OF GROUND AND LOSS OF VCC REVERSE BATTERY PROTECTION (**) IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE DESCRIPTION The VND600PEP-E is a monolithic device made using STMicroelectronics VIPower M0-3 technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). PowerSSO-24 This device has two channels in high side configuration; each channel has an analog sense output on which the sensing current is proportional (according to a known ratio) to the corresponding load current. Built-in thermal shut-down and outputs current limitation protect the chip from over temperature and short circuit. Device turns off in case of ground pin disconnection. Table 2. Order Codes Package PowerSSO-24 Note: (**) See application schematic at page 9 Tube VND600PEP-E Tape and Reel VND600PEPTR-E Rev. 5 May 2005 1/19 This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice. VND600PEP-E Figure 2. Block Diagram VCC OVERVOLTAGE VCC CLAMP UNDERVOLTAGE PwCLAMP 1 DRIVER 1 INPUT 1 LOGIC INPUT 2 GND DRIVER 2 ILIM1 Vdslim1 IOUT1 K Ot1 OUTPUT 1 CURRENT SENSE 1 OUTPUT 2 Ot2 PwCLAMP 2 Ot1 ILIM2 Vdslim2 IOUT2 OVERTEMP. 1 OVERTEMP. 2 Ot2 K CURRENT SENSE 2 Table 3. Absolute Maximum Ratings Symbol VCC -VCC - IGND IOUT IR IIN VCSENSE DC supply voltage Reverse supply voltage DC reverse ground pin current Output current Reverse output current Input current Current sense maximum voltage Electrostatic Discharge (Human R=1.5K; C=100pF) VESD - INPUT - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy EMAX Ptot Tj Tc TSTG (L=0.13mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=40A) Power dissipation at Tc=25C Junction operating temperature Case operating temperature Storage temperature 146 96 Internally limited -40 to 150 -55 to 150 mJ W C C C Body Model: 4000 2000 5000 5000 V V V V Parameter Value 41 -0.3 -200 Internally limited -21 +/- 10 -3 +15 Unit V V mA A A mA V V 2/19 VND600PEP-E Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins VCC GND NC INPUT2 NC INPUT1 NC C.SENSE1 NC C.SENSE2 NC VCC OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT1 TAB = VCC Connection / Pin Current Sense Floating Through 1K To Ground resistor N.C. X X Output X Input X Through 10K resistor Figure 4. Current and Voltage Conventions IS VCC IIN1 INPUT1 VIN1 CURRENT SENSE 1 IIN2 VIN2 INPUT2 IOUT2 OUTPUT2 IOUT1 OUTPUT1 ISENSE1 VSENSE1 VOUT1 VF1 (*) VCC VOUT2 ISENSE2 VSENSE2 CURRENT SENSE 2 GROUND IGND (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data Symbol Rthj-case (1) Rthj-case (2) Rthj-amb Parameter Thermal resistance junction-case Thermal resistance junction-case Thermal resistance junction-ambient (MAX) (MAX) (MAX) Value 1.8 1.3 54 (*) 39 (**) Unit C/W C/W C/W Note: (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35m thick). Note: (**) When mounted on a standard single-sided FR-4 board with 8cm 2 of Cu (at least 35m thick). Note: (1) one channel ON - (2) two channels ON 3/19 VND600PEP-E ELECTRICAL CHARACTERISTICS (8V Tj=25C On state; VIN=5V; VCC=13V; IOUT=0A; RSENSE=3.9k IL(off1) IL(off3) IL(off4) Off State Output Current Off State Output Current Off State Output Current VIN=VOUT=VSENSE=0V VIN=VOUT=VSENSE=0V; VCC=13V; Tj =125C VIN=VOUT=VSENSE=0V; VCC=13V; Tj =25C Note: 1. Vclamp and VOV are correlated. Typical difference is 5V. Note: (**) Per device. Table 6. Switching (VCC =13V) Symbol td(on) td(off) (dVOUT/ dt)on (dVOUT/ dt)off Parameter Turn-on delay time Turn-on delay time Turn-on voltage slope Test Conditions RL=2.6 (see Figure 5) RL=2.6 (see Figure 5) RL=2.6 (see Figure 5) Min. Typ. 30 30 See relative diagram See relative diagram Max. Unit s s V/s Turn-off voltage slope RL=2.6 (see Figure 5) V/s Table 7. VCC - Output Diode Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=2.6A; Tj=150C Min Typ Max 0.6 Unit V 4/19 VND600PEP-E ELECTRICAL CHARACTERISTICS (continued) Table 8. Logic Input (Channels 1,2) Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input low level voltage Low level input current Input high level voltage High level input current Input hysteresis voltage Input clamp voltage IIN=1mA IIN=-1mA VIN=3.25V 0.5 6 6.8 -0.7 8 VIN=1.25V 20 3.25 10 65 Test Conditions Min. Typ. Max. 1.25 Unit V A V A V V V Table 9. Current Sense (9VVCC16V) (see Figure 8) Symbol K1 Parameter IOUT/ISENSE Test Conditions IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= 40C...150C IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= 40C...150C IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40C Tj=25C...150C dK2/K2 Current Sense Ratio Drift IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40C...150C IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40C Tj=25C...150C dK3/K3 Current Sense Ratio Drift Max analog sense output voltage Analog sense output voltage in overtemperature condition Analog sense output impedance in overtemperature condition Current sense delay response IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40C...150C VCC=5.5V; IOUT1,2=2.5A; RSENSE=10k VCC>8V, IOUT1,2=5A; RSENSE=10k VCC=13V; RSENSE=3.9k Min 3300 Typ 4400 Max 6000 Unit dK1/K1 Current Sense Ratio Drift -10 +10 % K2 IOUT/ISENSE 3800 3950 -6 4400 4400 5400 5200 +6 % K3 IOUT/ISENSE 3800 3950 -6 2 4 4400 4400 4900 4700 +6 % V V VSENSE1,2 VSENSEH 5.5 V RVSENSEH VCC=13V; Tj>TTSD; All Channels Open 400 tDSENSE to 90% ISENSE (see note 2) 500 s Note: 2. Current sense signal delay after positive input slope 5/19 VND600PEP-E ELECTRICAL CHARACTERISTICS (continued) Table 10. Protections (See note 3) Symbol Ilim TTSD TR THYST Vdemag VON Parameter DC short circuit current Thermal shut-down temperature Thermal reset temperature Thermal hysteresis Turn-off output voltage clamp Output voltage drop limitation IOUT=2A; VIN=0V; L=6mH Test Conditions VCC=13V 5.5V Note: 3. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. Figure 5. Switching Characteristics (Resistive load RL=2.6) VOUT 80% dVOUT/dt(on) tr ISENSE 90% 10% 90% dVOUT/dt(off) tf t INPUT tDSENSE t td(off) td(on) t 6/19 VND600PEP-E Table 11. Truth Table (per channel) CONDITIONS Normal operation INPUT L H L H L H L H L Short circuit to GND H H Short circuit to VCC Negative output voltage clamp L H L OUTPUT L H L L L L L L L L L H H L SENSE 0 Nominal 0 VSENSEH 0 0 0 0 0 (Tj Overtemperature Undervoltage Overvoltage Table 12. Electrical Transient Requirements ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2 I C C C C C C IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 7/19 VND600PEP-E Figure 6. Waveforms NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VUSD VUSDhyst VCC INPUTn LOAD CURRENTn SENSEn VCC < VOV VCC > VOV SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn ISENSE= VSENSEH RSENSE TTSD TR 8/19 VND600PEP-E Figure 7. Application Schematic +5V Rprot INPUT1 VCC Dld C Rprot Rprot CURRENT SENSE1 INPUT2 OUTPUT1 Rprot CURRENT SENSE2 GND OUTPUT2 RSENSE1 RSENSE2 VGND RGND DGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. C I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k. 9/19 VND600PEP-E Figure 8. IOUT/ISENSE versus IOUT IOUT/ISENSE 6500 6000 5500 5000 4500 typical value max.Tj=25...150C max.Tj=-40C 4000 3500 3000 min.Tj=25...150C min.Tj=-40C 0 2 4 6 8 IOUT (A) 10 12 14 16 10/19 VND600PEP-E Figure 9. Off State Output Current IL(off1) (A) 2 1.75 Figure 10. High Level Input Current lih (A) 8 7 Vcc=36V 1.5 1.25 1 0.75 0.5 0.25 0 -50 -25 0 25 50 75 100 125 150 175 6 5 4 3 2 1 0 -50 -25 Vin=3.25V 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Figure 11. Input Clamp Voltage Vicl (V) 8 7.75 Figure 13. Input High Level Vih (V) Vih (V) 83.6 73.4 lin=1mA 7.5 7.25 7 6.75 6.5 6.25 6 -50 -25 0 25 50 75 100 125 150 175 63.2 53 42.8 32.6 22.4 2.2 1 0 2 -25 -50-50 -25 00 25 25 50 50 75 75 100 100 125 125 150 150 175 175 Tc (C) Tc (C) Tc (C) Figure 12. Input Low Level Vil (V) 2.75 2.5 2.25 2 1.75 Figure 14. Input Hysteresis Voltage Vhyst (V) 1.5 1.4 1.3 1.2 1.1 1 1.5 0.9 1.25 0.8 1 0.75 0.5 -50 -25 0 25 50 75 100 125 150 175 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) 11/19 VND600PEP-E Figure 15. Overvoltage Shutdown Vov (V) 50 47.5 45 42.5 40 37.5 35 32.5 30 -50 -25 0 25 50 75 100 125 150 175 Figure 18. ILIM Vs Tcase Ilim (A) 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Figure 16. Turn-on Voltage Slope dVout/dt (on) (V/ms) 600 550 Figure 19. Turn-off Voltage Slope dVout/dt (off) (V/ms) 550 500 Rl=2.6 Ohm 500 Rl=2.6 Ohm 450 400 450 400 350 300 250 350 300 250 200 150 100 200 150 -50 -25 0 25 50 75 100 125 150 175 50 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Figure 17. On State Resistance Vs Tcase Ron (mOhm) 80 70 60 50 40 30 20 Figure 20. On State Resistance Vs VCC Ron (mOhm) 100 90 Iout=5A Vcc=13V 80 70 60 Tc= 150C 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175 10 0 0 5 10 15 20 25 30 35 40 Tc= 25C Tc= -40C Tc (C) Vcc (V) 12/19 VND600PEP-E PowerSSO-24 Thermal Data Figure 21. PowerSSO-24 PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: from minimum pad lay-out to 8cm2). Figure 22. Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb(C/W) 55 50 45 40 35 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 13/19 VND600PEP-E Figure 23. Maximum turn off current versus load inductance ILMAX (A) 100 A B C 10 1 0.01 0.1 L(mH) 1 10 A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. Demagnetization Demagnetization t 14/19 VND600PEP-E Figure 24. PowerSSO-24 Thermal Impedance Junction Ambient Single Pulse ZTH (C/W) 100 Footprint 8 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 Time (s) 1 10 100 1000 Figure 25. Thermal Fitting Model of a Double Channel HSD in PowerSSO-24 Pulse Calculation Formula Z TH = R TH + Z THtp ( 1 - ) where = tp T Table 13. Thermal Parameter Area/island (cm2) R1=R7 (C/W) R2=R8 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1=C7 (W.s/C) C2=C8 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) Footprint 0.05 0.3 0.9 5 13.5 37 0.001 0.005 0.025 0.08 0.7 3 8 22 5 15/19 VND600PEP-E PACKAGE MECHANICAL Table 14. PowerSSO-24TM Mechanical Data Symbol A A2 a1 b c D E e e3 G G1 H h L N X Y 4.1 6.5 0.55 10.1 millimeters Min 2.15 2.15 0 0.33 0.23 10.10 7.4 0.8 8.8 0.1 0.06 10.5 0.4 0.85 10deg 4.7 7.1 Typ Max 2.47 2.40 0.075 0.51 0.32 10.50 7.6 Figure 26. PowerSSO-24TM Package Dimensions 16/19 VND600PEP-E Figure 27. PowerSSO-24 Tube Shipment (No Suffix) C B Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1) All dimensions are in mm. 49 1225 532 3.5 13.8 0.6 A Figure 28. Tape And Reel Shipment (Suffix "TR") REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 24.4 100 30.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing All dimensions are in mm. Start Top cover tape No components 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min Components No components W P0 ( 0.1) P D ( 0.05) D1 (min) F ( 0.1) K (max) P1 ( 0.1) 24 4 12 1.55 1.5 11.5 2.85 2 End 17/19 VND600PEP-E REVISION HISTORY Table 15. Revision History Date Nov. 2004 Dec. 2004 Mar. 2005 Revision 1 2 3 - First Issue. - IL(off2) removal. - Maximum Switching Energy insertion; - Thermal data insertion; - Maximum turn off current versus load inductance; - Thermal Impedance Junction Ambient Single Pulse curve insertion. - Configuration diagram modification - Shipment data insertion - Minor changes Description of Changes Apr. 2005 May 2005 4 5 18/19 VND600PEP-E Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19 |
Price & Availability of VND600PEP-E
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |