![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
ADJD-S311-CR999 Miniature Surface Mount RGB Digital Color Sensor Data Sheet Description The ADJD-S311-CR999 is a cost effective, 4 channels (RGB+CLEAR)digitaloutputsensorinminiaturesurfacemount package with a mere size of 2.2 x 2.2 x 0.76mm. It is a CMOS IC with integrated RGB filters and analogto-digitalconverterfrontend.Thisdeviceisdesignedto cater for wide dynamic range of illumination level and is ideal for applications like portable or mobile devices, which demand higher integration, smaller size and low power consumption. Sensitivity control is performed by theserialinterfaceandcanbeoptimizedindividuallyfor thedifferentcolorchannel.Thesensorcanalsobeused inconjunctionwithawhiteLEDforreflectivecolormanagement. Features * FullyintegratedRGB+cleardigitalcolorsensor * 10bitresolutionperchanneloutput * Builtinoscillator/selectableexternalclock * Lowsupplyvoltage(VDD)2.5V * DigitalI/Ovia2-wireserialinterface * Adjustablesensitivityfordifferentlevelsof illumination * Lowpowermode(sleepmode) * Independentgainselectionforeachchannel * 0Cto70Coperatingtemperature * Industry'ssmallestformfactor -CSP2.2x2.2x0.76mm * Leadfreepackage Applications * Generalcolordetectionandmeasurement * Mobileappliancessuchasmobilephones,PDAs,MP3 players,etc. * Consumerappliances * Portablemedicalequipments * Portablecolordetector/reader General Specifications Feature Interface Supply Value 00kHz serial interface .6V digital (nominal), .6V analog (nominal) Powering the Device No voltage must be applied to IO's during power-up and power-down ramp time VDDD / V DDA 0V t VDD_RAMP ESD Protection Diode Turn-On During Power-Up and Power-Down A particular power-up and power-down sequence must be used to prevent any ESD diode from turning on inadvertently.Thefigureabovedescribesthesequence.In general, AVDD and DVDD should power-up and powerdown together to prevent ESD diodes from turning on inadvertently. During this period, no voltage should be appliedtotheIO'sforthesamereason. Ground Connection AGNDandDGNDmustbothbesetto0Vandpreferably star-connected to a central power source as shown in theapplicationdiagram.Apotentialdifferencebetween AGND and DGND may cause the ESD diodes to turn on inadvertently. Electrical Specifications Absolute Maximum Ratings (Notes 1 & 2) Parameter Storage temperature Digital supply voltage, DVDD to DVSS Analog supply voltage, AVDD to AVSS Input voltage Solder Reflow Peak temperature Human Body Model ESD rating Symbol TSTG_ABS VDDD_ABS VDDA_ABS VIN_ABS TL_ABS ESDHBM_ABS Minimum -40 .5 .5 .5 Maximum 85 3.6 3.6 3.6 45 Units C V V V C kV All pins, human body model per JESD-A4-B All I/O pins Notes Recommended Operating Conditions Parameter Free air operating temperature Digital supply voltage, DVDD to DVSS Analog supply voltage, AVDD to AVSS Output current load high Output current load low Input voltage high level (Note 4) Input voltage low level (Note 4) Symbol TA VDDD VDDA IOH IOL VIH VIL 0.7VDDD 0 Minimum 0 .5 .5 Typical 5 .6 .6 Maximum 70 3.6 3.6 3 3 VDDD 0.3VDDD Units C V V mA mA V V DC Electrical Specifications OverRecommendedOperatingConditions(unlessotherwisespecified) Parameter Output voltage high level (Note 5) Output voltage low level (Note 6) Supply current (Note 7) Sleep-mode supply current (Note 7) Input leakage current Symbol VOH VOL IDD_STATIC IDD_SLP ILEAK Conditions IOH = 3mA IOH = 3mA (Note 8) (Note 8) -0 Minimum VDDD-0.8 Typical (Note 3) VDDD-0.4 0. 3.8 0 0.4 5 Maximum Units V V mA uA uA AC Electrical Specifications Parameter Internal clock frequency External clock frequency -wire interface frequency Symbol f_CLK_int f_CLK_ext f_wire 6 00 Conditions Minimum Typical (Note 3) 6 40 Maximum Units MHz MHz kHz Optical Specification Parameter Dark offset Symbol VD Conditions Ee = 0 Minimum Typical (Note 3) 0 Maximum Units LSB 3 Minimum sensitivity (note 3) Parameter Irradiance Responsivity Symbol Re Conditions lP = 460 nm, B Refer Note 9 lP = 54 nm, G Refer Note 0 lP = 645 nm, R Refer Note lP = 645 nm, Clear Refer Note Minimum Typical (Note 3) 5 78 54 64 Maximum Units LSB/ (mWcm-) Maximum sensitivity (note 3) Parameter Irradiance Responsivity Symbol Re Conditions lP = 460 nm, B Refer Note 9 lP = 54 nm, G Refer Note 0 lP = 645 nm, R Refer Note lP = 645 nm, Clear Refer Note Minimum Typical (Note 3) 3796 475 688 6590 Maximum Units LSB/ (mWcm-) Saturation Irradiance for minimum sensitivity (note 12) Parameter Saturation Irradiance Symbol Conditions lP = 460 nm, B Refer Note 9 lP = 54 nm, G Refer Note 0 lP = 645 nm, R Refer Note lP = 645 nm, Clear Refer Note Minimum Typical (Note 3) 6.73 5.74 4.03 3.87 Maximum Units mW/cm Saturation irradiance for maximum sensitivity (note 12) Parameter Saturation Irradiance Symbol Conditions lP = 460 nm, B Refer Note 9 lP = 54 nm, G Refer Note 0 lP = 645 nm, R Refer Note lP = 645 nm, Clear Refer Note Minimum Typical (Note 3) 0.7 0. 0.6 0.6 Maximum Units mW/cm Notes 1. The"Absolute Maximum Ratings" are those values beyond which damage to the device may occur. The device should not be operated at these limits. The parametric values defined in the"Electrical Specifications" table are not guaranteed at the absolute maximum ratings. The "RecommendedOperatingConditions"tablewilldefinetheconditionsforactualdeviceoperation. 2. Unlessotherwisespecified,allvoltagesarereferencedtoground. 3. Specifiedatroomtemperature(25C)andVDDD=VDDA=2.5V. 4. AppliestoallDIpins. 5. Appliestoalldigitaloutputpins.SDASLVgotri-statewhenoutputlogichigh.MinimumVOHdependsonthepull-upresistorvalue. 4 Notes:(continued) 6. Appliestoalldigitaloutputanddigitalinput-outputpins. 7. Referstototaldevicecurrentconsumption. 8. Outputandbidirectionalpinsarenotloaded. 9. Testconditionisbluelightofpeakwavelength(lP)460nmandspectralhalfwidth(l1/2)25nm. 10.Testconditionisgreenlightofpeakwavelength(lP)542nmandspectralhalfwidth(l1/2)35nm 11.Testconditionisredlightofpeakwavelength(lP)645nmandspectralhalfwidth(l1/2)20nm 12.Saturationirradiance=(MSB)/(Irradianceresponsivity) 1 Relative sensitivity 0.8 0.6 0.4 0.2 400 420 440 460 480 500 Spectral Response 520 540 560 580 600 620 640 660 680 Wavelength (nm) Figure 1. Typical spectral response when the gains for all the color channels are set at equal. Serial Interface Timing Information Parameter SCL clock frequency (Repeated) START condition hold time Data hold time SCL clock low period SCL clock high period Repeated START condition setup time Data setup time STOP condition setup time Bus free time between START and STOP conditions Symbol fscl tHD:STA tHD:DAT tLOW tHIGH tSU:STA tSU:DAT tSU:STO tBUF Minimum 0 4 0 4.7 4.0 4.7 50 4.0 4.7 Maximum 00 3.45 Units kHz s s s s s ns s s tHD:STA tHIGH tSU:DAT tSU:STA 700 0 tBUF SDA SCL S tLOW tHD:DAT Sr tHD:STA P tSU:STO S Figure 2. Serial Interface Bus Timing Waveforms 5 Serial Interface Reference Description TheprogramminginterfacetotheADJD-S311isa2-wireserialbus.Thebusconsistsofaserialclock(SCL)andaserial data(SDA)line.TheSDAlineisbi-directionalonADJD-S311andmustbeconnectedthroughapull-upresistortothe positivepowersupply.Whenthebusisfree,bothlinesareHIGH. The2-wireserialbusonADJD-S311requiresonedevicetoactasamasterwhileallotherdevicesmustbeslaves.A masterisadevicethatinitiatesadatatransferonthebus,generatestheclocksignalandterminatesthedatatransfer whileadeviceaddressedbythemasteriscalledaslave.Slavesareidentifiedbyuniquedeviceaddresses. Bothmasterandslavecanactasatransmitterorareceiverbutthemastercontrolsthedirectionfordatatransfer.A transmitterisadevicethatsendsdatatothebusandareceiverisadevicethatreceivesdatafromthebus. TheADJD-S311serialbusinterfacealwaysoperatesasaslavetransceiverwithadatatransferrateofupto100kbit/s. START/STOP Condition The master initiates and terminates all serial data transfers.To begin a serial data transfer, the master must send a uniquesignaltothebuscalledaSTARTcondition.ThisisdefinedasaHIGHtoLOWtransitionontheSDAlinewhile SCLisHIGH. ThemasterterminatestheserialdatatransferbysendinganotheruniquesignaltothebuscalledaSTOPcondition. ThisisdefinedasaLOWtoHIGHtransitionontheSDAlinewhileSCLisHIGH. ThebusisconsideredtobebusyafteraSTART(S)condition.ItwillbeconsideredfreeacertaintimeaftertheSTOP(P) condition.ThebusstaysbusyifarepeatedSTART(Sr)issentinsteadofaSTOPcondition. TheSTARTandrepeatedSTARTconditionsarefunctionallyidentical.Seefigure3. SDA SCL S START condition P STOP condition Figure 3. START/STOP Condition Data Transfer ThemasterinitiatesdatatransferafteraSTARTcondition.Dataistransferredinbitswiththemastergeneratingone clockpulseforeachbitsent.Foradatabittobevalid,theSDAdatalinemustbestableduringtheHIGHperiodofthe SCLclockline.OnlyduringtheLOWperiodoftheSCLclocklinecantheSDAdatalinechangestatetoeitherHIGHor LOW. SDA SCL Data valid Data change Figure 4. Data Bit Transfer 6 TheSCLclocklinesynchronizestheserialdatatransmissionontheSDAdataline.Itisalwaysgeneratedbythemaster. ThefrequencyoftheSCLclocklinemayvarythroughoutthetransmissionaslongasitstillmeetstheminimumtiming requirements. ThemasterbydefaultdrivestheSDAdataline.TheslavedrivestheSDAdatalineonlywhensendinganacknowledge bitafterthemasterwritesdatatotheslaveorwhenthemasterrequeststheslavetosenddata. TheSDAdatalinedrivenbythemastermaybeimplementedonthenegativeedgeoftheSCLclockline.Themaster maysampledatadrivenbytheslaveonthepositiveedgeoftheSCLclockline.Figureshowsanexampleofamaster implementationandhowtheSCLclocklineandSDAdatalinecanbesynchronized. P SDA MSB LSB ACK MSB LSB NO ACK 9 Sr Sr or P SCL S or Sr 1 2 8 9 1 2 8 STARTorrepeated STARTcondition STOPorrepeated STARTcondition Figure 5. Data Byte Transfer SDAdatasampledonthe positiveedgeofSCL SDA SCL SDAdatadrivenonthe negativeedgeofSCL Figure 6. Data Bit Synchronization Acompletedatatransferis8-bitslongor1-byte.Eachbyteissentmostsignificantbit(MSB)firstfollowedbyanacknowledgeornotacknowledgebit.Eachdatatransfercansendanunlimitednumberofbytes(dependingonthedata format). Acknowledge/Not acknowledge Thereceivermustalwaysacknowledgeeachbytesentinadatatransfer.Inthecaseoftheslave-receiverandmastertransmitter,iftheslave-receiverdoesnotsendanacknowledgebit,themaster-transmittercaneitherSTOPthetransfer orgeneratearepeatedSTARTtostartanewtransfer. SDApulledLOW byreceiver SDA (SLAVE-RECEIVER) SDA Acknowledge (MASTER-TRANSMITTER) LSB SDAleftHIGH bytransmitter 9 Acknowledge clockpulse SCL (MASTER) 8 Figure 7. Slave-Receiver Acknowledge 7 Inthecaseofthemaster-receiverandslave-transmitter,themastergeneratesanotacknowledgetosignaltheendof thedatatransfertotheslave-transmitter.ThemastercanthensendaSTOPorrepeatedSTARTconditiontobegina newdatatransfer. Inallcases,themastergeneratestheacknowledgeornotacknowledgeSCLclockpulse. (SLAVE-TRANSMITTER) SDA LSB SDAleftHIGH bytransmitter P SDAleftHIGH byreceiver Not acknowledge 9 Acknowledge clockpulse Sr SDA (MASTER-RECEIVER) SCL (MASTER) 8 STOPorrepeated STARTcondition Figure 8. Master-Receiver Acknowledge Addressing Eachslavedeviceontheserialbusneedstohaveauniqueaddress.Thisisthefirstbytethatissentbythemaster-transmitteraftertheSTARTcondition.Theaddressisdefinedasthefirstsevenbitsofthefirstbyte. Theeighthbitorleastsignificantbit(LSB)determinesthedirectionofdatatransfer.A`one'intheLSBofthefirstbyte indicatesthatthemasterwillreaddatafromtheaddressedslave(master-receiverandslave-transmitter).A`zero'inthis positionindicatesthatthemasterwillwritedatatotheaddressedslave(master-transmitterandslave-receiver). Adevicewhoseaddressmatchestheaddresssentbythemasterwillrespondwithanacknowledgeforthefirstbyte andsetitselfupasaslave-transmitterorslave-receiverdependingontheLSBofthefirstbyte. TheslaveaddressonADJD-S311is0x74(7-bits). MSB A6 1 A5 1 A4 1 A3 0 A2 1 A1 0 A0 0 LSB R/W Slaveaddress Figure 9. Slave Addressing 8 Data format ADJD-S311usesaregister-basedprogrammingarchitecture.Eachregisterhasauniqueaddressandcontrolsaspecific functioninsidethechip. To write to a register, the master first generates a START condition.Then it sends the slave address for the device it wantstocommunicatewith.Theleastsignificantbit(LSB)oftheslaveaddressmustindicatethatthemasterwantsto writetotheslave.Theaddresseddevicewillthenacknowledgethemaster. The master writes the register address it wants to access and waits for the slave to acknowledge.The master then writesthenewregisterdata.Once theslaveacknowledges, themaster generates aSTOPcondition toendthe data transfer. Startcondition S Masterwillwritedata A D7 D6 D5 D4 D3 D2 D1 D0 A Stopcondition D7 D6 D5 D4 D3 D2 D1 D0 A P A6 A5 A4 A3 A2 A1 A0 W Mastersends slaveaddress Masterwrites registeraddress Slaveacknowledge Masterwrites registerdata Slaveacknowledge Slaveacknowledge Figure 10. Register Byte Write Protocol Toreadfromaregister,themasterfirstgeneratesaSTARTcondition.Thenitsendstheslaveaddressforthedeviceit wantstocommunicatewith.Theleastsignificantbit(LSB)oftheslaveaddressmustindicatethatthemasterwantsto writetotheslave.Theaddresseddevicewillthenacknowledgethemaster. The master writes the register address it wants to access and waits for the slave to acknowledge.The master then generatesarepeatedSTARTconditionandresendstheslaveaddresssentpreviously.Theleastsignificantbit(LSB)of theslaveaddressmustindicatethatthemasterwantstoreadfromtheslave.Theaddresseddevicewillthenacknowledgethemaster. Themasterreadstheregisterdatasentbytheslaveandsendsanoacknowledgesignaltostopreading.Themaster thengeneratesaSTOPconditiontoendthedatatransfer. Startcondition S Masterwillwritedata A Repeatedstart condition A Sr Masterwillreaddata A Stopcondition A P A6 A5 A4 A3 A2 A1 A0 W D7 D6 D5 D4 D3 D2 D1 D0 A6 A5 A4 A3 A2 A1 A0 R D7 D6 D5 D4 D3 D2 D1 D0 Mastersends slaveaddress Masterwrites registeraddress Slaveacknowledge Slaveacknowledge Mastersends slaveaddress Masterreads registerdata Slaveacknowledge Masternot acknowledge Figure 11. Register Byte Read Protocol 9 Application Diagram HOST SYSTEM SLEEP CLK_IO DVDD 10k 10k 10k 10k RESET SDASLV SCKSLV HOST SYSTEM RESET SDASLV SCKSLV AVDD AGND DGND DVDD Voltage Regulator Voltage Regulator Figure 12. typical Application Diagram Star connectedground High Level Description Thesensorneedstobeconfiguredbeforeitcanbeused. The gain selection needs to be set for optimum performance depending on light levels.The flowcharts below describethedifferentproceduresrequired. Sensor operation flowchart Sensor Operation Sensor gain optimization flowchart Sensor Gain Optimization Hardware reset Select sensor gain setting Hardware reset Acquire and trim offset Select sensor gain setting Acquire sensor reading Acquire sensor output Stop Sensor output optimum? Yes Stop No * Pleaserefertoapplicationnoteformoredetailedinformation. 0 Detail Description A hardware reset (by asserting XRST) should be performedbeforestartinganyoperation. Setup Value for Number of Integration Time Slot Thefollowingvaluecanbewrittentoeachoftheintegration time registers to adjust the gain of the sensor.The defaultvalueafterresetfortheseregistersis00H.These registerscontrolthenumberofintegrationtimeselected foreachchannel.Theintegrationtimeslotcanbevaried from 00H to FFFH. More integration time slot will give highersensitivity. Sensor Gain Settings Thesensorgaincanbeadjustedbyvaryingthenumber of capacitors and integration time slot of the sensor manuallythroughthefollowingregisters. Address (Hex) Register 6 7 8 9 A C E 0 CAP_RED CAP_GREEN CAP_BLUE CAP_CLEAR INT_RED INT_GREEN INT_BLUE INT_CLEAR Description Number of red channel capacitors Number of green channel capacitors Number of blue channel capacitors Number of clear channel capacitors Number of red channel integration time slots Number of green channel integration time slots Number of blue channel integration time slots Number of clear channel integration time slots Setup Value for Number of Capacitor The following value can be written to each of the capacitor registers to adjust the gain of the sensor.The defaultvalueafterresetfortheseregistersis0FH.These registers control the number of capacitors selected for each channel. The maximum selectable capacitor is 16 with the registers starting from 0 (i.e. 0 to 15). Less capacitorwillgivehighersensitivity. Value (Hex) 00 0 0 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Number of Capacitor 3 4 5 6 7 8 9 0 3 4 5 6 Sensor ADC Output Registers To obtain sensor ADC value,`01' Hex must be written to CTRLregister.Then,readthevaluefromCTRLregister.If valueis00H,canreadsensoroutputfromdataregister. Address (Hex) 00 40 4 4 43 44 45 46 47 Register CTRL DATA_RED_LO DATA_RED_HI DATA_GREEN_LO DATA_GREEN_HI DATA_BLUE_LO DATA_BLUE_HI DATA_CLEAR_LO DATA_CLEAR_HI Description Control register Red channel ADC data - low byte Red channel ADC data - high byte Green channel ADC data - low byte Green channel ADC data - high byte Blue channel ADC data - low byte Blue channel ADC data - high byte Clear channel ADC data - low byte Clear channel ADC data - high byte * Pleaserefertoapplicationnoteformoredetailedinformation. * Pleaserefertoapplicationnoteformoredetailedinformation. Mechanical Drawing Note: 1. Dimensionsareinmilimeters(mm) 2. Standardtolerances(unlessotherwisespecified) a.Lineartolerance=+/-0.1mm b.Angulartolerance=+/-1 Pin Configuration A B C DVDD CLKIO DGND SCKSLV SDASLV RESET 3 AVDD SLEEP AGND Dimensions Description Package Body Dimension X Package Body Dimension Y Package Height Ball Diameter Total Pin Count Nominal (um) 00 00 760 50 9 Pin Information Pin A A A3 B B B3 C C C3 Name DVDD SCKSLV AVDD CLKIO SDASLV SLEEP DGND RESET AGND Type Power Input Power Input Input/Output Input Ground Input Power Description Digital power pin Serial interface clock pin Analog power pin External clock input Bidirectional data pin. A pull-up resistor should be tied to SDASLV because it goes tri-state to output logic When SLEEP = , the device goes into sleep mode. In sleep mode, all analog circuits are powered down and the clock signal is gated away from the core logic resulting in very low current consumption. Tie to digital ground Global, asynchronous, active-low system reset. When asserted low, XRST resets all registers. Minimum reset pulse low is us and must be provided by external circuitry. Tie to analog ground Recommended Underfill Type and Characteristic * HenkelFP4548 * Lowmoistureabsorption * LowCTE * Underfillupto70-85%ofheight Recommended stencil design * Stencilthickness 5mils * Stenciltype NiElectroforming * StencilApertureType Square * StencilAperture * AdditionalFeature 310um Roundedsquareedge 310um Height 70~85% Underfill PCB Recommended PCB land pad design * NiAuflashovercopperpad * PadDiameter(C)=0.20mm * NSMDDiameter(D)=0.25~0.30mm NSMD 560um After soldering or mounting precaution PleaseensurethatallsolderedorreflowedCSPpackage thatismountedonthePCBisnotexposedtocompressionorloadingforcedirectlyperpendiculartotheflattop surface. Precaution: Excessiveloadingforcedirectlyperpendiculartotheflat topsurfacemaycausepre-maturefailure. LoadingForce PCB 3 Recommended Reflow Profile ItisrecommendedthatHenkelPb-freesolderpasteLF310beusedforsolderingADJD-S311-CR999.Belowistherecommendedreflowprofile. 240 5C 217~220 C Delta-Flux max. 2 C/sec. Delta-Cooling max. 2 C/sec. T-peak T-reflow TEMPERATURE T-max. T-min. 180C 160C Delta-Ramp max. 2 C/sec. 100 ~ 140 sec. t-comp t-pre 90 ~ 120 sec. t-reflow TIME Recommendations for Handling and Storage of ADJD-S311-CR999 ThisproductisqualifiedasMoistureSensitiveLevel3perJedecJ-STD-020.Precautionswhenhandlingthismoisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 HandlingOfMoistureSensitiveSurfaceMountDevicesfordetails. A. Storage before use * Unopenedmoisturebarrierbag(MBB)canbestoredat30Cand90%RHorlessformaximum1year * ItisnotrecommendedtoopentheMBBpriortoassembly(e.g.forIQC) * It should also be sealed with a moisture absorbent material (Silica Gel) and an indicator card (cobalt chloride) to indicatethemoisturewithinthebag B. Control after opening the MBB * Thehumidityindicatorcard(HIC)shallbereadimmediatelyuponopeningofMBB * The components must be kept at <30C/60%RH at all time and all high temperature related process including soldering,curingorreworkneedtobecompletedwithin168hrs C. Control for unfinished reel * Foranyunusedcomponents,theyneedtobestoredinsealedMBBwithdesiccantordesiccatorat<5%RH D. Control of assembled boards * IfthePCBsolderedwiththecomponentsistobesubjectedtootherhightemperatureprocesses,thePCBneedto bestoredinsealedMBBwithdesiccantordesiccatorat<5%RHtoensurenocomponentshaveexceededtheirfloor lifeof168hrs E. Baking is required if: * "10%"or"15%"HICindicatorturnspink * Thecomponentsareexposedtoconditionof>30C/60%RHatanytime. * Thecomponentsfloorlifeexceeded168hrs * Recommendedbakingcondition(incomponentform):125Cfor24hrs 4 Package Tape and Reel Dimensions Reel Dimensions 65 R10.65 45 +1.5* 12.4 - 0.0 R5.2 45 55.0 0.5 178.0 0.5 176.0 EMBOSSED RIBS RAISED: 0.25 mm WIDTH: 1.25 mm BACK VIEW 512 18.0 MAX.* Notes: 1.*Measureathubarea. 2.Allflangeedgestoberounded. Carrier Tape Dimensions (E1)1.750.10 (F)5.500.05 (P0)4.000.10 1.50 + 0.10 - 0.00 (P2)2.000.10 (T)0.300.05 (W)12.000.10 1.50 Min R0.50 (P1)8.000.10 (B0)2.600.10 (K0)0.900.10 (A0)2.600.10 Notes: 1.AOandBOmeasuredat0.3mmabovebaseofpocket 2.10pitchescumulativetoleranceis0.2mm 3.Dimensionsareinmillimeters(mm) 5 FN SENSOR SAMPLE DATA OFFSET DATA 6 WIDTH 2 3 N/A N/A N/A N/A N/A INT_RED[7:0] INT_RED[11:8] INT_GREEN[7:0] INT_GREEN[11:8] INT_BLUE[7:0] INT_BLUE[11:8] INT_CLEAR[7:0] INT_CLEAR[11:8] DATA_RED[7:0] N/A DATA_GREEN[7:0] N/A DATA_BLUE[7:0] N/A DATA_CLEAR[7:0] N/A SIGN_RED SIGN_GREEN SIGN_BLUE SIGN_CLEAR OFFSET_RED[6:0] OFFSET_GREEN[6:0] OFFSET_BLUE[6:0] OFFSET_CLEAR[6:0] sign = 1 is -ve DATA_CLEAR[9:8] DATA_BLUE[9:8] DATA_GREEN[9:8] 11/10-bit data DATA_RED[9:8] CAP_CLEAR[3:0] CAP_BLUE[3:0] CAP_GREEN[3:0] CAP_RED[3:0] 4 4 4 4 8 8 8 8 8 8 8 8 8 3 8 3 8 3 8 3 8 8 8 8 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R 0 NUMBER R/W 0 NUMBER R/W 0 NUMBER R/W 0 NUMBER R/W 0 NUMBER R/W 0 NUMBER R/W 0 NUMBER R/W 0 NUMBER R/W 15 NUMBER R/W 15 NUMBER R/W 15 NUMBER R/W 15 NUMBER R/W 0 BITS R/W EXTCLK SLEEP TOFS 0 BITS R/W N/A GOFS GSSR RESET (DEC) TYPE ACCESS B7 B6 B5 B4 B3 B2 B1 B0 NOTES Appendix A: Sensor Register List ADD (DEC) ADD (HEX) MNEMONIC 0 0 CTRL 1 1 CONFIG 6 6 CAP_RED 7 7 CAP_GREEN 8 8 CAP_BLUE 9 9 CAP_CLEAR 10 A INT_RED_LO 11 B INT_RED_HI 12 C INT_GREEN_LO 13 D INT_GREEN_HI 14 E INT_BLUE_LO 15 F INT_BLUE_HI 16 10 INT_CLEAR_LO 17 11 INT_CLEAR_HI 64 40 DATA_RED_LO 65 41 DATA_RED_HI 66 42 DATA_GREEN_LO 67 43 DATA_GREEN_HI 68 44 DATA_BLUE_LO 69 45 DATA_BLUE_HI 70 46 DATA_CLEAR_LO 71 47 DATA_CLEAR_HI 72 48 OFFSET_RED 73 49 OFFSET_GREEN 74 4A OFFSET_BLUE 75 4B OFFSET_CLEAR Appendix A: Sensor Register List 1)CTRL:ControlRegister B7 B6 B5 N/A B4 B3 B2 B1 GOFS B0 GSSR N/A GSSR GOFS Notavailable. Getsensorreading.Activehighandautomaticallycleared.Resultisstoredinregisters64-71(DEC) Getoffsetreading.Activehighandautomaticallycleared.Resultisstoredinregisters72-75(DEC) 2)CONFIG:ConfigurationRegister B7 B6 B5 N/A B4 B3 B2 EXTCLK B1 SLEEP B0 TOFS N/A EXTCLK SLEEP TOFS Notavailable. Externalclockmode.Activehigh. Sleepmode.Activehighandexternalclockmodeonly.Automaticallyclearedifotherwise. Trimoffsetmode.Activehigh. 3)CAP_RED:CapacitorSettingsRegisterforRedChannel B7 B6 N/A N/A CAP_RED Notavailable. Numberofredchannelcapacitors. B5 B4 B3 B2 B1 CAP_RED[3:0] B0 4)CAP_GREEN:CapacitorSettingsRegisterforGreenChannel B7 B6 N/A N/A CAP_GREEN Notavailable. Numberofgreenchannelcapacitors. B5 B4 B3 B2 B1 B0 CAP_GREEN[3:0] 5)CAP_BLUE:CapacitorSettingsRegisterforBlueChannel B7 B6 N/A N/A CAP_BLUE Notavailable. Numberofbluechannelcapacitors. B5 B4 B3 B2 B1 B0 CAP_BLUE[3:0] 6)CAP_CLEAR:CapacitorSettingsRegisterforClearChannel B7 B6 N/A N/A CAP_CLEAR Notavailable. Numberofclearchannelcapacitors. B5 B4 B3 B2 B1 B0 CAP_CLEAR[3:0] 7 7)INT_RED:IntegrationTimeSlotSettingRegisterforRedChannel B7 B6 B5 B4 INT_RED[7:0] B7 B6 N/A INT_RED Number of red channel integration time slots. B5 B4 B3 B2 INT_RED[11:8] B1 B0 B3 B2 B1 B0 8)INT_GREEN:IntegrationTimeSlotSettingRegisterforGreenChannel B7 B6 B5 B4 B3 B2 B1 B0 INT_GREEN[7:0] B7 B6 N/A INT_GREEN Number of green channel integration time slots. B5 B4 B3 B2 B1 B0 INT_GREEN[11:8] 9)INT_BLUE:IntegrationTimeSlotSettingRegisterforBlueChannel B7 B6 B5 B4 INT_BLUE[7:0] B7 B6 N/A INT_BLUE Number of blue channel integration time slots. B5 B4 B3 B2 B1 B0 B3 B2 B1 B0 INT_BLUE[11:8] 10)INT_CLEAR:IntegrationTimeSlotSettingRegisterforClearChannel B7 B6 B5 B4 B3 B2 B1 B0 INT_CLEAR[7:0] B7 B6 N/A INT_CLEAR Number of clear channel integration time slots. B5 B4 B3 B2 B1 B0 INT_CLEAR[11:8] 11)DATA_RED_LO:LowByteRegisterofRedChannelSensorADCReading B7 B6 B5 B4 B3 B2 B1 B0 DATA_RED[7:0] DATA_RED RedchannelADCdata. 8 12)DATA_RED_HI:HighByteRegisterofRedChannelSensorADCReading B7 B6 B5 N/A N/A DATA_RED Not available. Red channel ADC data. B4 B3 B2 B1 B0 DATA_RED[9:8] 13)DATA_GREEN_LO:LowByteRegisterofGreenChannelSensorADCReading B7 B6 B5 B4 B3 B2 B1 B0 DATA_GREEN[7:0] DATA_GREEN GreenchannelADCdata. 14)DATA_GREEN_HI:HighByteRegisterofGreenChannelSensorADCReading B7 B6 B5 N/A N/A DATA_GREEN Not available. Green channel ADC data. B4 B3 B2 B1 B0 DATA_GREEN[9:8] 15)DATA_BLUE_LO:LowByteRegisterofBlueChannelSensorADCReading B7 B6 B5 B4 B3 B2 B1 B0 DATA_BLUE[7:0] DATA_BLUE BluechannelADCdata. 16)DATA_BLUE_HI:HighByteRegisterofBlueChannelSensorADCReading B7 B6 B5 N/A N/A DATA_BLUE Not available. Blue channel ADC data. B4 B3 B2 B1 B0 DATA_BLUE[9:8] 17)DATA_CLEAR_LO:LowByteRegisterofClearChannelSensorADCReading B7 B6 B5 B4 B3 B2 B1 B0 DATA_CLEAR[7:0] DATA_CLEAR ClearchannelADCdata. 18)DATA_CLEAR_HI:HighByteRegisterofClearChannelSensorADCReading B7 B6 B5 N/A N/A DATA_CLEAR Not available. Clear channel ADC data. B4 B3 B2 B1 B0 DATA_CLEAR[9:8] 9 19)OFFSET_RED:OffsetDataRegisterforRedChannel B7 SIGN_RED SIGN_RED OFFSET_RED Signbit.0=POSITIVE,1=NEGATIVE. RedchannelADCoffsetdata. B6 B5 B4 B3 OFFSET_RED[6:0] B2 B1 B0 20)OFFSET_GREEN:OffsetDataRegisterforGreenChannel B7 SIGN_GREEN SIGN_GREEN Signbit.0=POSITIVE,1=NEGATIVE. B6 B5 B4 B3 OFFSET_GREEN[6:0] B2 B1 B0 OFFSET_GREEN GreenchannelADCoffsetdata. 21)OFFSET_BLUE:OffsetDataRegisterforBlueChannel B7 SIGN_BLUE SIGN_BLUE Signbit.0=POSITIVE,1=NEGATIVE. B6 B5 B4 B3 OFFSET_BLUE[6:0] B2 B1 B0 OFFSET_BLUE BluechannelADCoffsetdata. 22)OFFSET_CLEAR:OffsetDataRegisterforClearChannel B7 SIGN_CLEAR SIGN_CLEAR Signbit.0=POSITIVE,1=NEGATIVE. B6 B5 B4 B3 OFFSET_CLEAR[6:0] B2 B1 B0 OFFSET_CLEAR ClearchannelADCoffsetdata. For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright (c) 007 Avago Technologies Limited. All rights reserved. AV0-09EN - July 30, 007 |
Price & Availability of ADJD-S311-CR999
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |