![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DATA SHEET MOS FIELD EFFECT TRANSISTOR NP22N055HHE, NP22N055IHE SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE DESCRIPTION These products are N-channel MOS Field Effect Transistors designed for high current switching applications. ORDERING INFORMATION PART NUMBER NP22N055HHE NP22N055IHE PACKAGE TO-251 TO-252 FEATURES * Channel temperature 175 degree rated * Super low on-state resistance RDS(on)1 = 39 m MAX. (VGS = 10 V, ID = 11 A) * Low Ciss : Ciss = 590 pF TYP. * Built-in gate protection diode (TO-251) ABSOLUTE MAXIMUM RATINGS (TA = 25C) Drain to Source Voltage Gate to Source Voltage Drain Current (DC) Drain Current (Pulse) Note1 VDSS VGSS ID(DC) ID(pulse) PT PT IAS EAS Tch Tstg 55 20 22 55 1.2 45 13 / 5 16 / 25 175 -55 to +175 V V A A W W A mJ C C (TO-252) Total Power Dissipation (TA = 25C) Total Power Dissipation (TC = 25C) Single Avalanche Current Single Avalanche Energy Channel Temperature Storage Temperature Note2 Note2 Notes 1. PW 10 s, Duty cycle 1 % 2. Starting Tch = 25C, RG = 25 , VGS = 20 V0 V (See Figure 4.) THERMAL RESISTANCE Channel to Case Channel to Ambient Rth(ch-C) Rth(ch-A) 3.33 125 C/W C/W The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. D14135EJ3V0DS00 (3rd edition) Date Published March 2001 NS CP(K) Printed in Japan The mark 5 shows major revised points. (c) 1999 NP22N055HHE, NP22N055IHE ELECTRICAL CHARACTERISTICS (TA = 25 C) CHARACTERISTICS Drain to Source On-state Resistance Gate to Source Threshold Voltage Forward Transfer Admittance Drain Leakage Current Gate to Source Leakage Current Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain Charge Body Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge SYMBOL RDS(on) VGS(th) | yfs | IDSS IGSS Ciss Coss Crss td(on) tr td(off) tf QG QGS QGD VF(S-D) trr Qrr IF = 22 A, VGS = 0 V IF = 22 A, VGS = 0 V, di/dt = 100A/s ID = 22 A, VDD = 44 V, VGS = 10 V ID = 11 A, VGS(on) = 10 V, VDD = 28 V, RG = 1 TEST CONDITIONS VGS = 10 V, ID = 11 A VDS = VGS, ID = 250 A VDS = 10 V, ID = 11 A VDS = 55 V, VGS = 0 V VGS = 20 V, VDS = 0 V VDS = 25 V, VGS = 0 V, f = 1 MHz 590 110 52 11 6.0 25 6.6 12 3 5 1.0 35 42 2.0 4 MIN. TYP. 30 3.0 8 10 10 890 170 94 24 15 49 17 18 MAX. 39 4.0 UNIT m V S A A pF pF pF ns ns ns ns nC nC nC V ns nC TEST CIRCUIT 1 AVALANCHE CAPABILITY D.U.T. RG = 25 PG. VGS = 20 0 V 50 TEST CIRCUIT 2 SWITCHING TIME D.U.T. L VDD PG. RG VGS RL VDD VDS 90 % 90 % 10 % 10 % VGS Wave Form 0 10 % VGS(on) 90 % BVDSS IAS ID VDD VDS VGS 0 = 1 s Duty Cycle 1 % VDS VDS Wave Form 0 td(on) ton tr td(off) toff tf Starting Tch TEST CIRCUIT 3 GATE CHARGE D.U.T. IG = 2 mA PG. 50 RL VDD 2 Data Sheet D14135EJ3V0DS NP22N055HHE, NP22N055IHE TYPICAL CHARACTERISTICS (TA = 25 C) Figure1. DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA 70 Figure2. TOTAL POWER DISSIPATION vs. CASE TEMPERATURE dT - Percentage of Rated Power - % PT - Total Power Dissipation - W 100 80 60 40 20 0 60 50 40 30 20 10 0 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 TC - Case Temperature - C TC - Case Temperature - C 5 Figure3. FORWARD BIAS SAFE OPERATING AREA 1000 Single Pulse Avalanche Energy - mJ 30 25 20 Figure4. SINGLE AVALANCHE ENERGY DERATING FACTOR 25 mJ ID - Drain Current - A 100 d ite V) Lim 0 n) = 1 o S( S RD t VG (a ID(DC) ID(pulse) Po DC Lim wer ite Dis d sip ati PW 1m on 10 =1 0 0 s 10 s s 16 mJ 15 10 5 0 25 IAS = 5 A 13 A 1 TC = 25C Single Pulse 0.1 0.1 1 50 75 100 125 150 175 10 100 Starting Tch - Starting Channel Temperature - C VDS - Drain to Source Voltage - V Figure5. TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH 1000 rth(t) - Transient Thermal Resistance - C/W 100 Rth(ch-A) = 125 C/W 10 Rth(ch-C) = 3.33 C/W 1 0.1 Single Pulse TC = 25C 100 1m 10 m 100 m 1 10 100 1000 0.01 10 PW - Pulse Width - s Data Sheet D14135EJ3V0DS 3 NP22N055HHE, NP22N055IHE Figure6. FORWARD TRANSFER CHARACTERISTICS 100 Pulsed 60 50 Figure7. DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE Pulsed VGS =10 V ID - Drain Current - A 10 ID - Drain Current - A 40 30 20 10 1 0.1 TA = -40C 25C 75C 150C 175C 0.01 1.0 VDS = 10 V 2.0 3.0 4.0 5.0 VGS - Gate to Source Voltage - V 6.0 0 0 1 2 3 4 VDS - Drain to Source Voltage - V 100 Pulsed VDS = 10 V RDS(on) - Drain to Source On-state Resistance - m Figure8. FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT | yfs | - Forward Transfer Admittance - S Figure9. DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE 80 Pulsed 70 60 50 40 30 20 10 0 0 5 10 15 20 ID = 11 A 10 1 TA = 175C 75C 25C -40C 0.1 0.01 0.01 0.1 1 10 100 ID - Drain Current - A VGS - Gate to Source Voltage - V RDS(on) - Drain to Source On-state Resistance - m 80 70 60 50 40 30 20 10 0 0.1 1 10 VGS = 10 V Pulsed VGS(th) - Gate to Source Threshold Voltage - V Figure10. DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT Figure11. GATE TO SOURCE THRESHOLD VOLTAGE vs. CHANNEL TEMPERATURE 4.0 VDS = VGS ID = 250 A 3.0 2.0 1.0 0 100 -50 0 50 100 150 ID - Drain Current - A Tch - Channel Temperature - C 4 Data Sheet D14135EJ3V0DS NP22N055HHE, NP22N055IHE RDS(on) - Drain to Source On-state Resistance - m Figure12. DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 90 Figure13. SOURCE TO DRAIN DIODE FORWARD VOLTAGE 100 Pulsed VGS = 10 V 10 VGS = 0 V 1 70 60 50 40 30 20 10 0 -50 0 50 100 ID = 11 A 150 VGS = 10 V ISD - Diode Forward Current - A 80 0.1 0.01 0 0.5 1.0 1.5 Tch - Channel Temperature - C VSD - Source to Drain Voltage - V Ciss, Coss, Crss - Capacitance - pF td(on), tr, td(off), tf - Switching Time - ns Figure14. CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE 10000 VGS = 0 V f = 1 MHz Figure15. SWITCHING CHARACTERISTICS 1000 1000 100 tf td(off) td(on) Ciss 100 Coss Crss 10 tr 10 0.1 1 10 100 1 0.1 1 10 100 VDS - Drain to Source Voltage - V ID - Drain Current - A Figure16. REVERSE RECOVERY TIME vs. DRAIN CURRENT 1000 Figure17. DYNAMIC INPUT/OUTPUT CHARACTERISTICS 80 16 14 60 VDD = 44 V 28 V 11 V 12 VGS 10 8 6 20 VDS ID = 22 A 0 0 2 4 6 8 10 12 14 16 4 2 VDS - Drain to Source Voltage - V trr - Reverse Recovery Time - ns 100 40 10 1 0.1 1.0 10 100 QG - Gate Charge - nC IF - Drain Current - A VGS - Gate to Source Voltage - V di/dt = 100 A/s VGS = 0 V Data Sheet D14135EJ3V0DS 5 NP22N055HHE, NP22N055IHE PACKAGE DRAWINGS (Unit: mm) 1)TO-251 (MP-3) 6.50.2 5.00.2 1.5+0.2 -0.1 2)TO-252 (MP-3Z) 2.30.2 0.50.1 6.50.2 5.00.2 1.5+0.2 -0.1 2.30.2 0.50.1 1.60.2 5.50.2 13.7 MIN. 4.3 MAX. 0.8 TYP. 0.5+0.2 -0.1 2.3 TYP. 2.3 TYP. 0.75 TYP. 0.5+0.2 -0.1 2.3 TYP. 2.3 TYP. 0.8 TYP. EQUIVALENT CIRCUIT Drain Gate Body Diode Gate Protection Diode Source Remark 1. These products are an electrostatic sensitive device. Please handle with caution. 2. The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device. 6 Data Sheet D14135EJ3V0DS 0.7 TYP. 1.10.2 2.0 MIN. 1.10.2 7.0 MIN. 0.9 MAX. 10.0 MAX. 0.8 MAX. 1.0 MIN. 1.8 TYP. 5.50.2 NP22N055HHE, NP22N055IHE [MEMO] Data Sheet D14135EJ3V0DS 7 NP22N055HHE, NP22N055IHE * The information in this document is current as of March, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. * No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. * NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. * Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. * While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. * NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4 |
Price & Availability of NP22N055IHE
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |