Part Number Hot Search : 
R1610 M1601 KSP94 LTC1321 4V24T 2SC4102R UC3RIC 74V1T86C
Product Description
Full Text Search
 

To Download SLVU006A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Universal Operational Amplifier Evaluation Module
User's Guide
March 1999
Mixed-Signal Products
SLVU006A
IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.
Copyright (c) 1999, Texas Instruments Incorporated
Preface
Related Documentation From Texas Instruments
J J
Amplifiers, Comparators, and Special Functions Data Book (literature number SLYD011). This data book contains data sheets and other information on the TI operational amplifiers that can be used with this evaluation module. Power Supply Circuits Data Book (literature number SLVD002). This data book contains data sheets and other information on the TI shunt regulators that can be used with this evaluation module.
FCC Warning
This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.
Trademarks
TI is a trademark of Texas Instruments Incorporated.
Chapter Title--Attribute Reference
iii
iv
Running Title--Attribute Reference
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Physical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Area 100 - SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Area 200 - TSSOP or MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Area 300 - SOT23-5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Area 400 - SOT23-5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Schematic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Sallen-Key Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Sallen-Key High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Inverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Noninverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Two Operational Amplifier Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 3-1 3-1 3-2 3-3 3-5 3-6 3-7 3-9
2
3
Chapter Title--Attribute Reference
v
Running Title--Attribute Reference
Figures
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 3-1 3-2 3-3 3-4 3-5 3-6 Area 100 Schematic - SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Area 200 Schematic - TSSOP and MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLV22X1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Area 300 Schematic - SOT23-5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLV2771 and TLV2461 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Area 400 Schematic - SOT23-5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Operational Amplifier EVM Board Component Placement . . . . . . . . . . . . . . . . . Universal Operational Amplifier EVM Board Layout Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Operational Amplifier EVM Board Layout Bottom . . . . . . . . . . . . . . . . . . . . . . . . . Sallen-Key Low-Pass Filter with Dual Supply Using Area 100 . . . . . . . . . . . . . . . . . . . . . . . Sallen-Key High-Pass Filter with Single Supply Using Area 200 . . . . . . . . . . . . . . . . . . . . . Inverting Amplifier with Dual Supply Using Area 300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noninverting Amplifier with Single Supply Using Area 400 . . . . . . . . . . . . . . . . . . . . . . . . . . Two Operational Amplifier Instrumentation Amplifier with Single Supply . . . . . . . . . . . . . . Single Operational Amplifier Differential Amplifier with Single Supply . . . . . . . . . . . . . . . . . 2-3 2-4 2-5 2-5 2-6 2-6 2-7 2-8 2-9 3-2 3-4 3-5 3-6 3-8 3-9
vi
Chapter 1
Introduction
This User's Guide describes a universal operational amplifier (op amp) evaluation module (EVM) that simplifies evaluation of surface-mount op amp.
Topic
1.1 1.2
Page
Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Introduction
1-1
Design Features
1.1 Design Features
The evaluation module board design allows many different circuits to be constructed easily and quickly. The board has four separate circuit development areas that can be snapped apart and separated. Areas 100 and 200 are for dual op amps in the SOIC and TSSOP/MSOP packages. Areas 300 and 400 are for SOT23-5 single operational amplifier packages. A few possible circuits are listed below:
J J J J J J J J J J J
Voltage Follower Noninverting Amplifier Inverting Amplifier Simple or Algebraic Summing Amplifier Difference Amplifier Current-to-Voltage Converter Voltage-to-Current Converter Integrator/Low-Pass Filter Differentiator/High-Pass Filter Instrumentation Amplifier Sallen-Key Filter
The EVM PCB is of two-layer construction, with a ground plane on the solder side. Circuit performance should be comparable to final production designs.
1.2 Power Requirements
The devices and designs that are used dictate the input power requirements. Three input terminals are provided for each area of the board: Vx+ GNDx Vx- Positive input power for area x00 i.e., V1+ area 100 Ground reference for area x00 i.e., GND2 area 200 Negative input power for area x00 i.e., V4- area 400
Each area has four bypass capacitors, two for the positive supply, and two for the negative supply. Each supply should have a 1-F to 10-F capacitor for low frequency bypassing and a 0.01-F to 0.1-F capacitor for high frequency bypassing. When using single supply circuits, the negative supply is shorted to ground by bridging Cx02 or Cx06, and power input is between Vx+ and GNDx. The voltage reference circuitry is provided for single supply applications that require a reference voltage to be generated.
1-2
Introduction
Chapter 2
Evaluation Module Layout
This chapter describes and shows the universal op amp EVM board layout and the relationships between the four areas.
Topic
2.1 2.2 2.3 2.4 2.5 2.6 2.7
Page
Physical Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Area 100 - SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Area 200 - TSSOP or MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Area 300 - SOT23-5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Area 400 - SOT23-5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Evaluation Module Layout
2-1
Physical Considerations
2.1 Physical Considerations
The EVM board has four circuit development areas. If a specific area is desired, it can be separated from the others by breaking along the score lines. The circuit layout in each area supports an op amp package, voltage reference, and ancillary devices. The op amp package is unique to each area as described in the following paragraphs. The voltage reference and supporting devices are the same for all areas. Surface-mount or through-hole devices can be used for all capacitors and resistors on the board. The voltage reference can be either surface mount or through hole. If surfacemount is desired, the TLV431ACDBV5 or TLV431AIDBV5 adjustable shunt regulators can be used. If through hole is desired, then the TLV431ACLP, TLV431AILP, TL431CLP, TL431ACLP, TL431ILP or TL431AILP adjustable shunt regulators can be used. Refer to Texas Instruments' Power Supply Circuits Data Book (literature number SLVD002) for details on usage of these shunt regulators. Each passive component, resistor and capacitor, has a surface-mount 1206 foot print with through holes at 0.2 spacing on the outside of the 1206 pads. Therefore, either surface-mount or through-hole parts can be used.
2-2
Evaluation Module Layout
Area 100 - SOIC
2.2 Area 100 - SOIC
Area 100 uses 1xx reference designators, and is compatible with dual op amps in 8-pin SOIC packages. Most dual op amps are available in this package. This surface-mount package is designated by a D suffix in TI part numbers as in TLV2422CD, TLV2342ID, TLV2252ID, etc. Refer to Figure 2-1 for a schematic.
Figure 2-1. Area 100 Schematic - SOIC
R118 V1+ R106 V1+ C104 GND1 C109 V1- Power Supply Bypass V1- C111 C110 A104+ C103 A102- A103+ R109 A101- R107 R108 R119 2 C112 C105
R105 V1+ 8 - 4 V1- R117 1 U101a A1OUT 1/2 Dual OP Amp
3+
C106
V1+ R112 R114 VREF1 R103 B101- R115 R R116 B104+ C U102 A B102- B103+ R110 R102 R101 R111 6 C107
C102
R104
- 5+
7 U101b
B1OUT 1/2 Dual OP Amp
Voltage Reference
R113 C108
C101
Evaluation Module Layout
2-3
Area 200 - TSSOP or MSOP
2.3 Area 200 - TSSOP or MSOP
Area 200 uses 2xx reference designators, and is compatible with dual op amps in an 8-pin TSSOP or MSOP package. The TSSOP package is designated by a PW suffix in TI part numbers as in TLV2422CPWLE, TLV2342IPWLE, TLV2252AIPWLE, etc. The MSOP package is designated by a DGK suffix in TI part numbers as in TLV2462CDGK. Refer to Figure 2-2 for a schematic.
Figure 2-2. Area 200 Schematic - TSSOP and MSOP
R218 V2+ R206 V2+ C204 GND2 C209 V1- Power Supply Bypass V2- C211 C210 A204+ C203 A202- A203+ R209 A201- R207 R208 R219 2 C212 C205
R205 V2+ 8 - 4 V2- R217 1 U201a A2OUT 1/2 Dual OP Amp
3+
C206
V2+ R212 R214 VREF2 B201- R215 R R216 B204+ C U202 A B202- B203+ R210 R202 R201 R211 6 5 R203 C207
C202
R204
- +
7 U201b
B2OUT 1/2 Dual OP Amp
Voltage Reference
R213 C208
C201
2-4
Evaluation Module Layout
Area 300 - SOT23-5A
2.4 Area 300 - SOT23-5A
Area 300 uses 3xx reference designators, and is compatible with single op amps in the 5-pin SOT-23 package with the pinout used for the TLV22X1 as shown in Figure 2-3. This surface-mount package is designated by a DBV suffix in TI part numbers as in TLV2211CDBV, TLV2221CDBV, TLV2361CDBV, TLV2231IDBV, etc. Note: other parts like TLV2771CDBV, TLV2711CDBV, TLV2461CDBV, etc., follow different pin-out schemes, which are not compatible with this layout. See Figure 2-4 for a schematic.
Figure 2-3. TLV22X1 Device Pinout
IN+ VDD-/GND IN- 1 2 3 4 OUT 5 VDD+
Figure 2-4. Area 300 Schematic - SOT23-5A
R318 V3+ R306 V3+ C304 GND3 C309 V3- Power Supply Bypass V3- C311 C310 304+ C303 302- 303+ R309 301- R307 R308 R319 3 C312 C305
R305 V3+ 5 - 2 V3- R317 4 U301 3OUT
1+
V3+ R314 VREF3 R315 R R316
C306
C U302 A
Voltage Reference
Evaluation Module Layout
2-5
Area 400 - SOT23-5B
2.5 Area 400 - SOT23-5B
Area 400 uses 4xx reference designators, and is compatible with single op amps in the 5-pin SOT-23 package with the pinout used for the TLV2271CDBV and TLV2461CDBV as shown in Figure 2-5. This surface-mount package is designated by a DBV suffix in TI part numbers as in TLV2771CDBV and TLV2461CDBV. Note: earlier parts like TLV2221CDBV, TLV2231IDBV, TLV2361CDB, and TLV2711CDBV, etc., follow a different pin-out scheme, which is not compatible with this layout. Refer to Figure 2-6 for a schematic.
Figure 2-5. TLV2771 and TLV2461 Device Pinout
OUT VDD-/GND IN+
1 2 3
5
VDD+
4
IN-
Figure 2-6. Area 400 Schematic - SOT23-5B
R418 V4+ R406 V4+ C404 GND4 C409 V4- Power Supply Bypass V4- C411 C410 404+ C403 402- 403+ R409 401- R407 R408 R419 4 C412 C405
R405 V4+ 5 - 2 V4- R417 1 U401 4OUT
3+
V4+ R414 VREF4 R415 R R416
C406
C U402 A
Voltage Reference
2-6
Evaluation Module Layout
Component Placement
2.6 Component Placement
Figure 2-7 shows component placement for the EVM board.
Figure 2-7. Universal Operational Amplifier EVM Board Component Placement
Area 100 - SOIC UNIVERSAL OP AMP EVM SOIC SLOP120-1 1998 R101 C101 B104+ B103+ B102- B101- B1OUT V1+ VREF1 GND1 V1- A1OUT A101- A102- A103+ A104+ C105 R105 R106 R107 C106 R108 R109 U101 R102 R103 R104 C102 C103 C104 U102 R115 R116 C109 C110 C111 R117 R118 C112 R119 R214 C208 R213 R212 C207 R211 R210 R110 R111 C107 R112 R113 C108 R114 Area 200 - TSSOP/MSOP UNIVERSAL OP AMP EVM TSSOP/MSOP SLOP120-2 1998 R219 C212 R218 R217 C211 C210 C209 R216 R215 U202 C204 C203 C202 R204 R203 R202 C201 R201 U201 R209 R208 C206 R207 R206 R205 C205 A204+ A203+ A202- A201- A2OUT V2- VREF2 GND2 V2+ B2OUT B201- B202- B203+ B204+
Score Line
R318
R306
C312 301-
R307 302-
R305 3OUT
UNIVERSAL OP AMP EVM SOT23-5A SLOP120-3 1998 Area 300 - SOT23-5A Score Line
C305 V3-
C310 GND3
C309 V3+
C304
C306
C303
R319
R308
R309
C311
R317
R406
C412
R418
R407
R405
C405
C403
C404
C409
C410
C406
R419
R408
R409
C411
R417
U401
U301
R314
R315
R316
R414
R415
R416
303+
304+
403+
404+
VREF3
VREF4
401-
402-
GND4
V4+
4OUT
V4-
U302
U402
UNIVERSAL OP AMP EVM SOT23-5B SLOP120-4 1998 Area 400 - SOT23-5B
Evaluation Module Layout
2-7
Board Layout
2.7 Board Layout
Figures 2-8 and 2-9 show the EVM top and bottom board layouts, respectively.
Figure 2-8. Universal Operational Amplifier EVM Board Layout Top
2-8
Evaluation Module Layout
Board Layout
Figure 2-9. Universal Operational Amplifier EVM Board Layout Bottom
Evaluation Module Layout
2-9
2-10
Evaluation Module Layout
Chapter 3
Example Circuits
This chapter shows and discusses several example circuits that can be constructed using the universal operational amplifier EVM. The circuits are all classic designs that can be found in most operational amplifier design books.
Topic
3.1 3.2 3.3 3.4 3.5 3.6 3.7
Page
Schematic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Sallen-Key Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Sallen-Key High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Inverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Noninverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Two Operational Amplifier Instrumentation Amplifiers . . . . . . . . . . . 3-7 Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.1 Schematic Conventions
Figures 3-1 through 3-6 show schematics for a sampling of circuits that can be constructed on the Universal Operational Amplifier EVM. The components that are placed on the board are shown in bold and unused components are blanked out. Jumpers and other changes are noted. These examples are only a few of the many circuits that can be built on the EVM.
Example Circuits
3-1
Sallen-Key Low-Pass Filter
3.2 Sallen-Key Low-Pass Filter
Figure 3-1 shows area 100 equipped with a dual operational amplifier configured as a second-order Sallen-Key low-pass filter using dual-power supplies. Basic set up is done by proper choice of resistors R and mR, and capacitors C and nC. The transfer function is: V OUT V IN
+
1 - f fo
1 2
) j Q f fo
Where: fo And Q
+ 2p
1 m n RC
+ mm n )1
R118 C105 R105 R106 C112 Jumper V1+ 2 R119 R - 8 1 4 V1- fo = R117 C111 Q= 1 2 mn RC mn m+1 U101a A1OUT 1/2 Dual OP Amp
Vout Vin = 1 1- (f/fo)2 + (j/Q)(f/fo)
Figure 3-1. Sallen-Key Low-Pass Filter with Dual Supply Using Area 100
V1+ V1+ C104 0.1 F GND1 C109 0.1 F C110 1 F C103 1 F A101- R107 A102- A103+ A104+ R109 Power Supply Bypass V1- + Vin - R108 mR
3+
V1-
C106 nC V1+ R112 R101 VREF1 R103 B101- R114 R R115 B104+ Jumper Not Used R113 C U102 A B102- B103+ R101 R110 R102 R111 6 C107 R104 Jumper C102
- 5+
7 U101b
B1OUT 1/2 Dual OP Amp
Voltage Reference Not Used
C108
C101
3-2
Example Circuits
Sallen-Key High-Pass Filter
3.3 Sallen-Key High-Pass Filter
Figure 3-2 shows area 200 equipped with a dual operational amplifier configured as a second-order Sallen-Key high-pass filter using single-supply power input. Basic setup is done by proper choice of resistors R and mR, and capacitors C and nC. Note that capacitors should be used for components R210 and R211, and a resistor for C201. The transfer function for the circuit as shown is:
V OUT Where: fo And Q
+ VIN + 2p
1
) j Q f fo -
- f fo
2
f fo
2
) VREF2
1 m n RC
+ nm n )1
The TL431 adjustable precision shunt regulator, configured as shown, provides a low impedance reference for the circuit at about 1/2 V2+ in a 5 V system. Another option is to adjust resistors R215 and R216 for the desired VREF2 voltage. The formula for calculating VREF2 is: VREF2
+ 2.50 V R215 ) R216 R216
Example Circuits
3-3
Sallen-Key High-Pass Filter
Figure 3-2. Sallen-Key High-Pass Filter with Single Supply Using Area 200
R218 V2+ R206 V2+ C204 0.1 F Jumper GND2 C209 C203 1 F C210 A204+ Jumper A201- R207 A202- A203+ R209 R208 R219 C212 Jumper V2+ 8 2 - 1 3+ U201a 4 V2- C205 R205
A2OUT 1/2 Dual OP Amp Not Used
V1-
Power Supply Bypass
V2- C211
R217
C206
R212 VREF2 = 2.5 V V2+ R214
2.2 k
C202 R204
R203
C207 Jumper
VOUT = VIN
B201- R202 B202- B204+ R201 mR R210 R211
-(f/fo)2 1+(j/Q)(f/fo) - (f/fo)2 + VREF2
6 5
- +
7 U201b
B2OUT 1/2 Dual OP Amp 1 2 mn RC mn m+1
Jumper
R215 R R216
C A U202 TL431ACLP
B203+ C + Vin - nC C208 R213
fo = Q=
Jumper B204 + to VREF2 Voltage Reference
C201 R
3-4
Example Circuits
Inverting Amplifier
3.4 Inverting Amplifier
Figure 3-3 shows area 300 equipped with a single operational amplifier configured as an inverting amplifier using dual power supplies. Note the pinout for the operational amplifier in area 300 follows the TLV2211 type pinout. Basic setup is done by choice of input and feedback resistors. The transfer function for the circuit as shown is: V OUT
+ -VIN R305 R307
To cancel the effects of input bias current, set R317 = R305 || R307, or use a 0 jumper for R317 if the operational amplifier is a low input bias operational amplifier.
Figure 3-3. Inverting Amplifier with Dual Supply Using Area 300
R318 V3+ R306 V3+ C304 0.1 F GND3 C309 0.1 F C310 1 F C303 1 F 301- V3+ R307 302- 303+ R309 + 304+ Vin Power Supply Bypass V3- - C311 R317 R308 R319 3 - 5 4 2 V3- U301 R317 = R305 II R307, or Short if Using Low Input Bias Op Amp 3OUT C312 C305
R305 R305 VOUT = -VIN R307
1+
V3-
V3+ R314 VREF3
C306
R315 R R316
C U302 A
Voltage Reference Not Used
Example Circuits
3-5
Noninverting Amplifier
3.5 Noninverting Amplifier
Figure 3-4 shows area 400 equipped with a single operational amplifier configured as a noninverting amplifier with single supply power input. Note the pinout for the operational amplifier in area 400 follows the TLV2771 type pinout. Basic setup is done by choice of input and feedback resistors. The transfer function for the circuit as shown is: V OUT
+ VIN 1 ) R405 ) VREF4 R407
Note that the input signal must be referenced to VREF4. To cancel the effects of input bias current, set R409 = R405 || R407, or use a 0 jumper for R409 if the operational amplifier is a low input bias operational amplifier. The TL431 adjustable precision shunt regulator, configured as shown, provides a low impedance reference for the circuit at about 1/2 V4+ in a 3 V system. Another option is to adjust resistors R415 and R416 for the desired VREF4 voltage. The formula for calculating VREF4 is: VREF4
+ 1.24 V R415 ) R416 R416
R418 C405 R405 V4+ R407 R408 R409 404+ V4- R419 5 4 4 2 U401 4OUT - 3+
Figure 3-4. Non-Inverting Amplifier with Single Supply Using Area 400
V4+ V4+ C404 0.1 F Jumper GND4 C403 1 F C410 R406 401- Jumper 402 - to VREF4 C409 402- 403+ Power Supply Bypass V4- C412
VOUT = VIN +1
(
R405 R407
) + VREF4
V4-
V4+ R414 2.2 k VREF4 = 1.24 V Jumper
+ Vin -
C411
R417
C406 R415 C R R416 U402 = TLV431ACDBV5 A Input Signal With Reference to VREF4 R409 = R405 II R407, or Short if Using Low Input Bias Op Amp
Voltage Reference
3-6
Example Circuits
Two Operational Amplifier Instrumentation Amplifier
3.6 Two Operational Amplifier Instrumentation Amplifier
Figure 3-5 shows area 200 equipped with a dual operational amplifier configured as a two-operational-amplifier instrumentation amplifier using a voltage reference and single power supply. Basic setup is done by choice of input and feedback resistors. The transfer function for the circuit as shown is: V Where R205 = R202 and R206 = R204 To cancel the effects of input bias current, set R209 = R205 || R207 and set R210 = R202 ||R204, or use a 0 jumper for R209 and R210 if the operational amplifier is a low input bias operational amplifier. The TLV431 adjustable precision shunt regulator, configured as shown, provides a low impedance reference for the circuit at about 1/2 V2+ in a 3 V system. Another option is to adjust resistors R215 and R216 for the desired VREF2 voltage. The formula for calculating VREF2 is: VREF2 OUT
+ VIN 1 ) 2R205 ) R205 ) VREF2 R207 R206
+ 1.24 V R215 ) R216 R216
Example Circuits
3-7
Two Operational Amplifier Instrumentation Amplifier
Figure 3-5. Two Operational Amplifier Instrumentation Amplifier with Single Supply Using Area 200
R218 C205 Jumper A201 - to B2OUT
R205 R209 = R205- II R207 or Short if Using Low Input Bias Op Amp V2+ A203+ V2+ C204 0.1 F Jumper GND2 C203 1 F Jumper A202- to B201- C211 R217 R209 A204+ R206 A201- Jumper R207 A202- R208 R219 2 V2+ - 8 1 4 V2- R205 = R202 R206 = R204 U201a A2OUT 1/2 Dual OP Amp C212 VOUT = Vin
(1+ 2R205 R207
R205 + R206
)+ VREF2
3+
C209
C210
V1-
+ Power Supply Bypass V2- - R212 V2+ Jumper VREF2 to B202- R203 B201- Jumper R202 R215 C R R216 U202 A TL431ACDBV5 B204+ R210 B202- B203+ R201 R211 Jumper 6 5 - + C207 Vin
C206
C202 R204
R214 2.2 k VREF2 = 1.24 V Jumper
7 U201b
B2OUT 1/2 Dual OP Amp
Voltage Reference
R210 = R202 II R204 or Short if Using Low Input Bias Op Amp
R213 C208
C201
3-8
Example Circuits
Differential Amplifier
3.7 Differential Amplifier
Figure 3-6 shows area 300 equipped with a single operational amplifier configured as a differential amplifier using a voltage reference and single power supply. Basic setup is done by choice of input and feedback resistors. The transfer function for the circuit as shown is: V Where R305 R307 OUT
+ VIN
R305 R307
) VREF3
+ R309 R308
The TLV431 adjustable precision shunt regulator, configured as shown, provides a low impedance reference for the circuit at about 1/2 V3+ in a 3 V system. Another option is to adjust resistors R315 and R316 for the desired VREF3 voltage. The formula for calculating VREF3 is: VREF3
+ 1.24 V R315 ) R316 R316
Figure 3-6. Single Operational Amplifier Differential Amplifier with Single Supply Using Area 300
R318 V3+ R306 V3+ C304 0.1 F
Jumper
C305 R305
C312 V3+ R305 Vout = Vin R307 4 2 U301 3OUT
301- C303 1 F + 302- Vin 303+ - 304+ R307 R308 R309 R319 Jumper 3 5
(
) + VREF3
GND3
- 1+
C310
V3- Power Supply Bypass V3+ R314
2.2 k
V3- R305 R309 = R307 R308 C311 R317
V3-
VREF3 = 1.24 V R315 R R316
C306
C A U302 TL431ACDBV5
Jumper 304+ to VREF3
Voltage Reference
Example Circuits
3-9
3-10
Example Circuits


▲Up To Search▲   

 
Price & Availability of SLVU006A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X