![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SN74LVCZ16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES277B - JUNE 1999 - REVISED MARCH 2000 D D D D D D D D D Member of the Texas Instruments Widebus TM Family EPICTM (Enhanced-Performance Implanted CMOS) Submicron Process Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25C Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25C Ioff and Power-Up 3-State Support Hot Insertion Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC) Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages DGG OR DL PACKAGE (TOP VIEW) description This 16-bit buffer/driver is designed for 3-V to 3.6-V VCC operation. 1OE 1Y1 1Y2 GND 1Y3 1Y4 VCC 2Y1 2Y2 GND 2Y3 2Y4 3Y1 3Y2 GND 3Y3 3Y4 VCC 4Y1 4Y2 GND 4Y3 4Y4 4OE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 2OE 1A1 1A2 GND 1A3 1A4 VCC 2A1 2A2 GND 2A3 2A4 3A1 3A2 GND 3A3 3A4 VCC 4A1 4A2 GND 4A3 4A4 3OE The SN74LVCZ16244A is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. When VCC is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The SN74LVCZ16244A is characterized for operation from -40C to 85C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC and Widebus are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright (c) 2000, Texas Instruments Incorporated POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 SN74LVCZ16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES277B - JUNE 1999 - REVISED MARCH 2000 FUNCTION TABLE (each 4-bit buffer) INPUTS OE L L H A H L X OUTPUT Y H L Z logic symbol 1OE 2OE 3OE 4OE 1A1 1A2 1A3 1A4 2A1 2A2 2A3 2A4 3A1 3A2 3A3 3A4 4A1 4A2 4A3 4A4 24 47 46 44 43 41 40 38 37 36 35 33 32 30 29 27 26 1 4 1 3 1 2 1 48 25 EN1 EN2 EN3 EN4 1 1 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 1Y1 1Y2 1Y3 1Y4 2Y1 2Y2 2Y3 2Y4 3Y1 3Y2 3Y3 3Y4 4Y1 4Y2 4Y3 4Y4 This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. 2 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74LVCZ16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES277B - JUNE 1999 - REVISED MARCH 2000 logic diagram (positive logic) 1OE 1 3OE 2 25 1A1 47 1Y1 3A1 36 13 3Y1 1A2 46 3 1Y2 3A2 35 14 3Y2 1A3 44 5 1Y3 3A3 33 16 3Y3 1A4 43 6 1Y4 3A4 32 17 3Y4 2OE 48 4OE 8 24 2A1 41 2Y1 4A1 30 19 4Y1 2A2 40 9 2Y2 4A2 29 20 4Y2 2A3 38 11 2Y3 4A3 27 22 4Y3 2A4 37 12 2Y4 4A4 26 23 4Y4 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Voltage range applied to any output in the high-impedance or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Voltage range applied to any output in the high or low state, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA Package thermal impedance, JA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70C/W DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The value of VCC is provided in the recommended operating conditions table. 3. The package thermal impedance is calculated in accordance with JESD 51. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 3 SN74LVCZ16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES277B - JUNE 1999 - REVISED MARCH 2000 recommended operating conditions (see Note 4) MIN VCC VIH VIL VI VO IOH IOL t/v t/VCC TA Supply voltage High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Input transition rise or fall rate Power-up ramp rate Operating free-air temperature 150 -40 85 High or low state 3-state VCC = 3 V VCC = 3 V VCC = 3 V to 3.6 V VCC = 3 V to 3.6 V 3 2 0.8 0 0 0 5.5 VCC 5.5 -24 24 10 MAX 3.6 UNIT V V V V V mA mA ns/V s/V C NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VOH IOH = -100 A IOH = -12 mA IOH = -24 mA IOL = 100 A VOL II Ioff IOZ IOZPU IOZPD ICC ICC Ci IOL = 12 mA IOL = 24 mA VI = 0 to 5.5 V VI or VO = 5.5 V VO = 0 to 5.5 V VO = 0.5 to 2.5 V, VO = 0.5 to 2.5 V, VI = VCC or GND 3.6 V VI 5.5 V One input at VCC - 0.6 V, VI = VCC or GND OE = don't care OE = don't care IO = 0 Other inputs at VCC or GND TEST CONDITIONS VCC 3 V to 3.6 V 3V 3V 3 V to 3.6 V 3V 3V 3.6 V 0 3.6 V 0 to 1.5 V 1.5 V to 0 36V 3.6 3 V to 3.6 V 3.3 V 3.3 V 4.5 6 MIN VCC-0.2 2.4 2.2 0.2 0.4 0.55 5 5 5 5 5 100 100 100 A A A A A A A pF pF V TYP MAX UNIT V Co VO = VCC or GND All typical values are at VCC = 3.3 V, TA = 25C. This applies in the disabled state only. switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) PARAMETER tpd ten tdis FROM (INPUT) A or B OE OE TO (OUTPUT) B or A A or B A or B VCC = 3.3 V 0.3 V MIN 1.1 1 1.8 MAX 4.1 4.6 5.8 ns ns ns UNIT 4 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SN74LVCZ16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES277B - JUNE 1999 - REVISED MARCH 2000 operating characteristics, TA = 25C PARAMETER Cpd Power dissipation capacitance per buffer/driver Outputs enabled Outputs disabled TEST CONDITIONS f = 10 MHz TYP 32 5.5 UNIT pF POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 5 SN74LVCZ16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES277B - JUNE 1999 - REVISED MARCH 2000 PARAMETER MEASUREMENT INFORMATION VCC = 3.3 V 0.3 V 2 x VCC From Output Under Test CL = 30 pF (see Note A) 500 S1 Open GND 500 TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC GND LOAD CIRCUIT tw VCC Timing Input VCC VCC/2 0V tsu th VCC VCC/2 VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 0V Input VCC/2 VCC/2 0V VOLTAGE WAVEFORMS PULSE DURATION Data Input Output Control (low-level enabling) tPZL VCC VCC/2 VCC/2 0V tPLZ VCC VCC/2 tPZH VOL + 0.3 V VOL tPHZ VOH VOH - 0.3 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VCC Input VCC/2 VCC/2 0V tPLH tPHL VOH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VCC/2 VOL Output Waveform 1 S1 at 2 x VCC (see Note B) Output Waveform 2 S1 at GND (see Note B) VCC/2 NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright (c) 2000, Texas Instruments Incorporated |
Price & Availability of SCES277B
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |