![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
M68AW512D 8 Mbit (512K x16) 3.0V Asynchronous SRAM FEATURES SUMMARY s SUPPLY VOLTAGE: 2.7 to 3.6V s s s s s s Figure 1. Packages 512K x 16 bits SRAM with OUTPUT ENABLE EQUAL CYCLE and ACCESS TIMES: 55, 70ns LOW STANDBY CURRENT LOW VCC DATA RETENTION: 1.5V TRI-STATE COMMON I/O AUTOMATIC POWER DOWN TFBGA48 (ZB) 8 x 10 mm BGA November 2002 1/18 M68AW512D TABLE OF CONTENTS SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 MAXIMUM RATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . 9 Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . . . 9 Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 10. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 11. Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 12. UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . 14 Table 9. Low VCC Data Retention Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline . . . . . . . . . . . . 15 TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . . . . . . . . 15 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 11. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2/18 M68AW512D SUMMARY DESCRIPTION The M68AW512D is an 8 Mbit (8,388,608 bit) CMOS SRAM, organized as 524,288 words by 16 bits. The device features fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. It requires a single 2.7 to 3.6V supply. This device has a Chip Select pin (E2) for easy memory expansion; when it is active (E2 high) the device has an automatic power-down feature, reducing the power consumption by over 99%. The M68AW512D is available in TFBGA48 (0.75 mm ball pitch) package. Figure 2. Logic Diagram Table 1. Signal Names A0-A18 DQ0-DQ15 Address Inputs Data Input/Output Chip Enable Chip Select Output Enable Write Enable Upper Byte Enable Input Lower Byte Enable Input Supply Voltage Ground Not Connected Don't Use as Internally Connected VCC E1 19 A0-A18 W E1 E2 G UB LB M68AW512D 16 DQ0-DQ15 E2 G W UB LB VCC VSS NC DU VSS AI04800b 3/18 M68AW512D Figure 3. TFBGA Connections (Top view through package) 1 2 3 4 5 6 A LB G A0 A1 A2 E2 B DQ8 UB A3 A4 E1 DQ0 C DQ9 DQ10 A5 A6 DQ1 DQ2 D VSS DQ11 A17 A7 DQ3 VCC E VCC DQ12 VSS A16 DQ4 VSS F DQ14 DQ13 A14 A15 DQ5 DQ6 G DQ15 NC A12 A13 W DQ7 H A18 A8 A9 A10 A11 DU AI03960 4/18 M68AW512D Figure 4. Block Diagram A18 ROW DECODER A8 MEMORY ARRAY DQ15 UB (8) I/O CIRCUITS COLUMN DECODER DQ0 E1 E2 UB LB Ex LB (8) A0 (8) A7 W UB (8) LB G AI05452 MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not imTable 2. Absolute Maximum Ratings Symbol TA TSTG VCC VIO (1) PD Parameter Ambient Operating Temperature Storage Temperature Supply Voltage Input or Output Voltage Power Dissipation plied. Exposure to Absolute Maximum Rating conditions for periods greater than 1 sec may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Value -55 to 125 -65 to 150 -0.5 to 4.6 -0.5 to VCC +0.5 1 Unit C C V V W Note: 1. Up to a maximum operating VCC of 3.6V only. 5/18 M68AW512D DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure- ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 3. Operating and AC Measurement Conditions Parameter VCC Supply Voltage Range 1 Ambient Operating Temperature Range 6 Load Capacitance (CL) Output Circuit Protection Resistance (R1) Load Resistance (R2) Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages Output Transition Timing Ref. Voltages -40 to 85C 30pF 3.0k 3.1k 1ns/V 0 to VCC VCC/2 VRL = 0.3VCC; VRH = 0.7VCC M68AW512D 2.7 to 3.6V 0 to 70C Figure 5. AC Measurement I/O Waveform Figure 6. AC Measurement Load Circuit VCC I/O Timing Reference Voltage R1 VCC VCC/2 0V DEVICE UNDER TEST CL Output Transition Timing Reference Voltage VCC 0.7VCC 0.3VCC AI04831 OUT R2 0V CL includes probe and 1 TTLcapacitance AI05832 6/18 M68AW512D Table 4. Capacitance Symbol CIN COUT Parameter(1,2) Input Capacitance on all pins (except DQ) Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 8 10 Unit pF pF Note: 1. Sampled only, not 100% tested. 2. At TA = 25C, f = 1 MHz, VCC = 3.0V. Table 5. DC Characteristics Symbol ICC1 (1,2) ICC2 (3) Parameter Operating Supply Current Test Condition VCC = 3.6V, f = 1/tAVAV, IOUT = 0mA 70ns 55ns Min Typ Max 35 40 4 Unit mA mA mA Operating Supply Current VCC = 3.6V, f = 1MHz, IOUT = 0mA VCC = 3.6V, f = 0, E1 VCC -0.2V or E2 0.2V or LB=UB VCC -0.2V 0V VIN VCC 0V VOUT VCC (4) -1 -1 2.2 -0.3 IOH = -1.0mA IOL = 2.1mA 2.4 1 ISB ILI ILO VIH VIL VOH VOL Note: 1. 2. 3. 4. Standby Supply Current CMOS Input Leakage Current Output Leakage Current Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage 20 1 1 VCC + 0.3 0.6 A A A V V V 0.4 V Average AC current, cycling at tAVAV minimum. E1 = V IL AND E2 = VIH, LB OR/AND UB = VIL, V IN = V IL OR VIH. E1 0.2V AND E2 VCC -0.2V, LB OR/AND UB 0.2V, VIN 0.2V OR VIN VCC -0.2V. Output disabled. 7/18 M68AW512D OPERATION The M68AW512D has a Chip Enable power down feature which invokes an automatic standby mode whenever Chip Enable is de-asserted (E1 = High) or Chip Select is asserted (E2 = Low), or UB/LB are de-asserted (UB/LB = High). An Output Enable (G) signal provides a high speed tri-state conTable 6. Operating Modes Operation Deselected Deselected Deselected Lower Byte Read Lower Byte Write Output Disabled Upper Byte Read Upper Byte Write Word Read Word Write Note: 1. X = VIH or VIL. trol, allowing fast read/write cycles to be achieved with the common I/O data bus. Operational modes are determined by device control inputs W, E1, LB and UB as summarized in the Operating Modes table (see Table 6). E1 VIH X X VIL VIL VIL VIL VIL VIL VIL E2 X VIL X VIH VIH VIH VIH VIH VIH VIH W X X X VIH VIL VIH VIH VIL VIH VIL G X X X VIL X VIH VIL X VIL X LB X X VIH VIL VIL X VIH VIH VIL VIL UB X X VIH VIH VIH X VIL VIL VIL VIL DQ0-DQ7 Hi-Z Hi-Z Hi-Z Data Output Data Input Hi-Z Hi-Z Hi-Z Data Output Data Input DQ8-DQ15 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Data Output Data Input Data Output Data Input Power Standby (ISB) Standby (ISB) Standby (ISB) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Active (ICC) Read Mode The M68AW512D, when Chip Select (E2) is High, is in the read mode whenever Write Enable (W) is High with Output Enable (G) Low, and Chip Enable (E1) is asserted. This provides access to data from eight or sixteen, depending on the status of the signal UB and LB, of the 8,388,608 locations in the static memory array, specified by the 19 address inputs. Valid data will be available at the eight or sixteen output pins within tAVQV after the last stable address, providing G is Low and E1 is Low and E2 is High. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (tELQV, tGLQV or t BLQV) rather than the address. Data out may be indeterminate at tELQX, tGLQX and tBLQX, but data lines will always be valid at tAVQV. Figure 7. Address Controlled, Read Mode AC Waveforms tAVAV A0-A18 tAVQV VALID tAXQX DQ0-DQ7 and/or DQ8-DQ15 DATA VALID AI05839 Note: E1 = Low, E2 = High, G = Low, W = High, UB = Low and/or LB = Low. 8/18 M68AW512D Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms tAVAV A0-A18 tAVQV tELQV E1 VALID tAXQX tEHQZ E2 tELQX tGLQV G tGLQX DQ0-DQ15 tBLQV UB, LB tBLQX AI05981 tGHQZ VALID tBHQZ Note: Write Enable (W) = High Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms E1, UB, LB E2 ICC ISB tPU 50% AI05497 tPD 9/18 M68AW512D Table 7. Read and Standby Mode AC Characteristics M68AW512D Symbol tAVAV tAVQV tAXQX (1) tBHQZ (2,3,4) tBLQV tBLQX (1) tEHQZ (2,3,4) tELQV tELQX (1) tGHQZ (2,3,4) tGLQV tGLQX (1) tPD (4) tPU (4) Read Cycle Time Address Valid to Output Valid Data hold from address change Upper/Lower Byte Enable High to Output Hi-Z Upper/Lower Byte Enable Low to Output Valid Upper/Lower Byte Enable Low to Output Transition Chip Enable High to Output Hi-Z Chip Enable Low to Output Valid Chip Enable Low to Output Transition Output Enable High to Output Hi-Z Output Enable Low to Output Valid Output Enable Low to Output Transition Chip Enable or UB/LB High to Power Down Chip Enable or UB/LB Low to Power Up Parameter 55 Min Max Min Max Max Min Max Max Min Max Max Min Max Min 55 55 5 20 55 5 20 55 5 20 25 5 0 55 70 70 70 5 25 70 5 25 70 5 25 35 5 0 70 ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC. 2. At any given temperature and voltage condition, t GHQZ is less than tGLQX , tBHQZ is less than tBLQX and t EHQZ is less than tELQX for any given device. 3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 4. Testested initially and after any design or process changes that may affect these parameters. 10/18 M68AW512D Write Mode The M68AW512D, when Chip Select (E2) is High, is in the Write Mode whenever the W and E1 are Low. Either the Chip Enable Input (E1) or the Write Enable input (W) must be de-asserted during Address transitions for subsequent write cycles. When E1 or W is Low, and UB or LB is Low, write cycle begins on the W or E1 falling edge. When E1 and W are Low, and UB = LB = High, write cycle begins on the first falling edge of UB or LB. Therefore, address setup time is referenced to Write Enable, Chip Enables and UB/LB as t AVWL, tAVEL and tAVBL respectively, and is determined by the latter occurring falling edge. The Write cycle can be terminated by the earlier rising edge of E1, W, UB and LB. If the Output is enabled (E1 = Low, E2 = High, G = Low, LB or UB = Low), then W will return the outputs to high impedance within tWLQZ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data input must be valid for t DVWH before the rising edge of Write Enable, or for tDVEH before the rising edge of E1 or for t DVBH before the rising edge of UB/LB, whichever occurs first, and remain valid for t WHDX, tEHDX and tBHDX respectively. Figure 10. Write Enable Controlled, Write AC Waveforms tAVAV A0-A18 VALID tAVWH tAVEL E1 tELWH tWHAX E2 tWLWH tAVWL W tWLQZ tWHDX DQ0-DQ15 DATA INPUT tDVWH tBLBH UB, LB AI05982 tWHQX Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied. 11/18 M68AW512D Figure 11. Chip Enable Controlled, Write AC Waveforms tAVAV A0-A18 VALID tAVEH tAVEL E1 tELEH tEHAX E2 tAVWL W tEHDX DQ0-DQ15 DATA INPUT tDVEH tBLBH UB, LB AI05983 tWLEH Figure 12. UB/LB Controlled, Write AC Waveforms tAVAV A0-A18 VALID tAVBH E1 tBHAX E2 tAVWL W tWLQZ DQ0-DQ15 DATA (1) tBHDX DATA INPUT tDVBH tAVBL UB, LB AI05984 tWLBH tBLBH Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied. 12/18 M68AW512D Table 8. Write Mode AC Characteristics M68AW512D Symbol tAVAV tAVBH tAVBL tAVEH tAVEL tAVWH tAVWL tBHAX tBHDX tBLBH tBLEH tBLWH tDVBH tDVEH tDVWH tEHAX tEHDX tELBH tELEH tELWH tWHAX tWHDX tWHQX (1) Parameter 55 Write Cycle Time Address Valid to LB, UB High Addess Valid to LB, UB Low Address Valid to Chip Enable High Address valid to Chip Enable Low Address Valid to Write Enable High Address Valid to Write Enable Low LB, UB High to Address Transition LB, UB High to Input Transition LB, UB Low to LB, UB High LB, UB Low to Chip Enable High LB, UB Low to Write Enable High Input Valid to LB, UB High Input Valid to Chip Enable High Input Valid to Write Enable High Chip Enable High to Address Transition Chip enable High to Input Transition Chip Enable Low to LB, UB High Chip Enable Low to Chip Enable High Chip Enable Low to Write Enable High Write Enable High to Address Transition Write Enable High to Input Transition Write Enable High to Output Transition Write Enable Low to LB, UB High Write Enable Low to Chip Enable High Write Enable Low to Output Hi-Z Write Enable Low to Write Enable High Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Max Min 55 45 0 45 0 45 0 0 0 45 45 45 25 25 25 0 0 45 45 45 0 0 5 45 45 20 40 70 70 60 0 60 0 60 0 0 0 60 60 60 30 30 30 0 0 60 60 60 0 0 5 60 60 20 50 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns tWLBH tWLEH tWLQZ (1,2,3) tWLWH Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device. 2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 3. Testested initially and after any design or process changes that may affect these parameters. 13/18 M68AW512D Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms DATA RETENTION MODE 3.6V VCC 2.7V VDR > 1.5V tCDR E1 VDR - 0.2V or UB = LB VDR - 0.2V E1 or UB/LB tR AI05985 Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms DATA RETENTION MODE 3.6V VCC 2.7V VDR > 1.5V tCDR E2 < 0.2V E2 tR AI05986B Table 9. Low V CC Data Retention Characteristics Symbol ICCDR (1) Parameter Supply Current (Data Retention) Test Condition VCC = 1.5V, E1 VCC -0.2V or E2 0.2V or UB = LB VCC -0.2V, f=0 0 tAVAV E1 VCC -0.2V or E2 0.2V or UB = LB VCC -0.2V, f = 0 1.5 Min Typ 5 Max 10 Unit A Chip Deselected to Data tCDR (1,2) Retention Time tR (2) VDR (1) Operation Recovery Time Supply Voltage (Data Retention) ns ns V Note: 1. All other Inputs at V IH VCC -0.2V or VIL 0.2V. 2. Tested initially and after any design or process that may affect these parameters. tAVAV is Read cycle time. 3. No input may exceed VCC +0.2V. 14/18 M68AW512D PACKAGE MECHANICAL Figure 15. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline D FD FE SD D1 E E1 SE ddd BALL "A1" A e b A1 A2 BGA-Z28 Note: Drawing is not to scale. Table 10. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data Symbol A A1 A2 b D D1 ddd E E1 e FD FE SD SE 10.000 5.250 0.750 2.125 2.375 0.375 0.375 9.900 - - - - - - 8.000 3.750 0.350 7.900 - 0.260 0.900 0.450 8.100 - 0.100 10.100 - - - - - - 0.3937 0.2067 0.0295 0.0837 0.0935 0.0148 0.0148 0.3898 - - - - - - 0.3150 0.1476 0.0138 0.3110 - millimeters Typ Min Max 1.200 0.0102 0.0354 0.0177 0.3189 - 0.0039 0.3976 - - - - - - Typ inches Min Max 0.0472 15/18 M68AW512D PART NUMBERING Table 11. Ordering Information Scheme Example: Device Type M68 Mode A = Asynchronous Operating Voltage W = 2.7 to 3.6V Array Organization 512 = 8 Mbit (512K x16) Option 1 D = 2 Chip Enable; Write and Standby from UB and LB Option 2 L = L-Die N = N-Die Speed Class 55 = 55ns 70 = 70ns Package ZB = TFBGA48: 0.75 mm pitch Operative Temperature 1 = 0 to 70 C 6 = -40 to 85 C Shipping T = Tape & Reel Packing M68AW512 D L 55 ZB 6 T For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you. 16/18 M68AW512D REVISION HISTORY Table 12. Document Revision History Date July 2001 06-Feb-2002 14-Mar-2002 Version -01 -02 -03 First Issue 70ns Speed Class added, Commercial Temperature Range added Document status moved to Datasheet Tables 6, 7 and 9 clarified Figures 8, 9, 10, 11 and 12 clarified Block Diagram clarified (Figure 4) ISB clarified (Table 5) ICCDR clarified (Table 9) Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 04 equals 4.0). Part number modified. Figure 14, E2 Controlled, Low VCC Data Retention AC Waveforms, corrected. Revision Details 17-Jun-2002 -04 09-Oct-2002 4.1 25-Nov-2002 4.2 17/18 M68AW512D Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners. (c) 2002 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 18/18 |
Price & Availability of 8155
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |