Part Number Hot Search : 
SMAJ40 C122M 2SK20 RGF20KA 152M3 30CTQ035 DL4933 D471K
Product Description
Full Text Search
 

To Download 1957 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 9.780
IRGP430U
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
G E C
UltraFast IGBT
VCES = 500V VCE(sat) 3.0V
@VGE = 15V, IC = 15A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.
TO -2 4 7 AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C I CM ILM VGE EARV PD @ T C = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
500 25 15 50 50 20 10 100 42 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
---------------------
Typ.
-----0.24 -----6 (0.21)
Max.
1.2 -----40 ------
Units
C/W g (oz)
IRGP430U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter Min. Collector-to-Emitter Breakdown Voltage 500 Emitter-to-Collector Breakdown Voltage 20 V(BR)CES /T J Temperature Coeff. of Breakdown Voltage---VCE(on) Collector-to-Emitter Saturation Voltage ---------VGE(th) Gate Threshold Voltage 3.0 V GE(th)/TJ Temperature Coeff. of Threshold Voltage ---gfe Forward Transconductance 2.3 Zero Gate Voltage Collector Current ---ICES ---IGES Gate-to-Emitter Leakage Current ---V(BR)CES V(BR)ECS Typ. ------0.46 2.3 2.8 2.6 ----11 8.1 ---------Max. Units Conditions ---V VGE = 0V, IC = 250A ---V VGE = 0V, IC = 1.0A ---- V/C VGE = 0V, IC = 1.0mA 3.0 IC = 15A VGE = 15V See Fig. 2, 5 ---V IC = 25A ---IC = 15A, TJ = 150C 5.5 VCE = VGE, IC = 250A ---- mV/C VCE = VGE, IC = 250A ---S VCE = 100V, IC = 15A 250 A VGE = 0V, VCE = 500V 1000 VGE = 0V, VCE = 500V, TJ = 150C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets t d(on) tr t d(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ---------------------------------------------------------Typ. 31 6.2 12 29 11 91 66 0.24 0.17 0.41 13 27 130 130 0.76 13 660 110 12 Max. Units Conditions 47 IC = 15A 9.3 nC VCC = 400V See Fig. 8 19 VGE = 15V ---TJ = 25C ---ns IC = 15A, VCC = 400V 160 VGE = 15V, RG = 23 120 Energy losses include "tail" ------mJ See Fig. 9, 10, 11, 14 0.61 ---TJ = 150C, ---ns IC = 15A, VCC = 400V ---VGE = 15V, RG = 23 ---Energy losses include "tail" ---mJ See Fig. 10, 14 ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 --- = 1.0MHz
Notes:
Repetitive rating; VGE=20V, pulse width
limited by max. junction temperature. ( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
Pulse width 5.0s,
single shot.
VCC=80%(VCES), VGE=20V, L=10H,
RG= 23, ( See fig. 13a )
Pulse width 80s; duty factor 0.1%.
IRGP430U
40
For both:
Triangular wave:
LOAD CURRENT (A)
30
Duty cycle: 50% T = 125C J Tsink = 90C Gate drive as specified Power Dissipation = 24W
Clamp voltage: 80% of rated
Square wave:
20
60% of rated voltage
10
Ideal diodes
0 0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK )
100
1000
I C , Collector-to-Emitter Current (A)
TJ = 25C TJ = 150C
10
IC , Collector-to-Emitter Current (A)
100
TJ = 150C
10
TJ = 25C
1
1 1
VGE = 15V 20s PULSE WIDTH
10
0.1 5 10
VCC = 100V 5s PULSE WIDTH
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
IRGP430U
25
VGE = 15V
4.5
VGE = 15V 80s PULSE WIDTH
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
4.0
20
3.5
IC = 30A
15
3.0
10
2.5
I C = 15A
2.0
5
1.5
I C = 7.5A
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature (C)
TC , Case Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
10
Thermal Response (Z thJC )
1
D = 0.50
0.20 0.10
P DM
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
t
1
t
2
Notes: 1. Duty fact or D = t
1
/t
2
0.01 0.00001
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRGP430U
1400
C, Capacitance (pF)
1000
C ies Coes
800
600
VGE , Gate-to-Emitter Voltage (V)
1200
V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = C ce + C gc
20
VCE = 400V I C = 15A
16
12
8
400
Cres
4
200
0 1 10 100
0 0 10 20 30 40
V CE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.48
Total Switching Losses (mJ)
0.46
0.44
Total Switching Losses (mJ)
VCC = 400V VGE = 15V TC = 25C I C = 15A
10
RG = 50 V GE = 15V V CC = 400V
I C = 30A
1
0.42
I C = 15A
0.40
I C = 7.5A
0.38 0 10 20 30 40 50 60
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
R G , Gate Resistance ( )
W
TC, Case Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
IRGP430U
2.0
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG = 23 T C = 150C V CC = 400V 1.6 V GE = 15V
100
VGE = 20V TJ = 125C
SAFE OPERATING AREA
1.2
10
0.8
0.4
0.0 0 10 20 30 40
1 1 10 100
A
1000
I C , Collector-to-Emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
15.90 ( .626) 15.30 ( .602)
-B-
3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M -A5.50 (.217)
-D-
5.30 ( .209) 4.70 ( .185) 2.50 (.089) 1.50 (.059)
4
NO TES: 1 DIMENSIO NS & T OLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIO NS ARE SHOW N MILLIMETE RS (INCHES). 4 CONFO RM S TO JEDEC OUTLINE T O-247AC.
20.30 (.800) 19.70 (.775) 1
2X
5.50 (.217) 4.50 (.177)
2
3
-C-
LEAD ASSIGNMENT S 1 - GAT E 2 - CO LLECTO R 3 - EMIT TER 4 - CO LLECTO R
*
14.80 (.583) 14.20 (.559)
2.40 (.094) 2.00 (.079) 2X
4.30 (.170) 3.70 (.145)
1.40 (.056) 3X 1.00 (.039) 0.25 ( .010) M 3.40 (.133) 3.00 (.118) 0.80 ( .031) 3X 0.40 ( .016) 2.60 (.102) 2.20 (.087)
* LO NGE R LEADED (20m m) VERS ION AVAILAB LE (TO-247AD)
TO ORDE R ADD "-E " SUFF IX TO PART NUMBER
5.45 (.215) 2X
CA
S
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
Dimensions in Millimeters and (Inches)
IRGP430U
L 50V 1000V VC *
0 - 400V
D.U.T.
RL = 400V 4 X IC@25C
480F 960V
Q
R
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V D.U.T. VC
Fig. 14a - Switching
Loss Test Circuit
* Driver same type as D.U.T., VC = 400V
Q
1000V
R
S
Q R
90%
S
VC 90%
10%
Fig. 14b - Switching Loss
Waveforms
t d(off)
10% I C 5% t d(on)
tr Eon Ets = (Eon +Eoff )
tf t=5s Eoff


▲Up To Search▲   

 
Price & Availability of 1957

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X