![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95836 IRF3709ZCS IRF3709ZCL Applications l High Frequency Synchronous Buck Converters for Computer Processor Power HEXFET(R) Power MOSFET VDSS RDS(on) max 30V 6.3m: Qg 17nC Benefits l Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current D2Pak IRF3709ZCS TO-262 IRF3709ZCL Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C PD @TC = 100C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Max. 30 20 87h 62h 350 79 40 0.53 -55 to + 175 Units V A c Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds W W/C C 300 (1.6mm from case) Thermal Resistance Parameter RJC RJA Junction-to-Case i Typ. Max. 1.89 40 Units C/W Junction-to-Ambient (PCB Mount) g --- --- Notes through are on page 11 www.irf.com 1 1/16/04 IRF3709ZCS/L Static @ TJ = 25C (unless otherwise specified) Parameter BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 30 --- --- --- 1.35 --- --- --- --- --- 88 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0.021 5.0 6.2 --- -5.5 --- --- --- --- --- 17 4.4 1.7 6.0 4.9 7.7 11 13 41 16 4.7 2130 450 220 --- --- 6.3 7.8 2.25 --- 1.0 150 100 -100 --- 26 --- --- --- --- --- --- --- --- --- --- --- --- --- pF VGS = 0V VDS = 15V ns nC nC VDS = 15V VGS = 4.5V ID = 17A S nA V mV/C A V Conditions VGS = 0V, ID = 250A mV/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 21A VGS = 4.5V, ID = 17A e e VDS = VGS, ID = 250A VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 15V, ID = 17A See Fig. 14a&b VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 17A Clamped Inductive Load e = 1.0MHz Avalanche Characteristics EAS IAR EAR Parameter Single Pulse Avalanche Energyd Avalanche CurrentA Repetitive Avalanche Energy Typ. --- --- --- Max. 60 17 7.9 Units mJ A mJ --- --- --- --- --- --- --- --- 16 6.2 Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units 87h A 350 1.0 24 9.3 V ns nC Conditions MOSFET symbol showing the integral reverse G S D p-n junction diode. TJ = 25C, IS = 17A, VGS = 0V TJ = 25C, IF = 17A, VDD = 15V di/dt = 100A/s e e 2 www.irf.com IRF3709ZCS/L 1000 TOP VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V 1000 TOP VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V ID, Drain-to-Source Current (A) BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 100 3.0V 10 3.0V 60s PULSE WIDTH Tj = 25C 10 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 1 0.1 1 60s PULSE WIDTH Tj = 175C 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 ID, Drain-to-Source Current () ID = 42A VGS = 10V 100 T J = 175C 1.5 10 1.0 1 T J = 25C VDS = 15V 60s PULSE WIDTH 0 1 2 3 4 5 6 7 8 0.1 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3 IRF3709ZCS/L 10000 VGS = 0V, f = 1 MHZ C iss = C gs + Cgd, C ds SHORTED C rss = C gd C oss = C ds + Cgd 6.0 ID= 17A VGS, Gate-to-Source Voltage (V) 5.0 C, Capacitance(pF) VDS= 24V VDS= 15V Ciss 1000 4.0 3.0 Coss 2.0 Crss 1.0 100 1 10 100 0.0 0 5 10 15 20 25 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000.00 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.00 T J = 175C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 100sec 10 1msec 1 Tc = 25C Tj = 175C Single Pulse 0 1 10 10msec 10.00 T J = 25C VGS = 0V 1.00 0.0 0.5 1.0 1.5 2.0 2.5 VSD, Source-to-Drain Voltage (V) 0.1 100 1000 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF3709ZCS/L 90 Limited By Package VGS(th) Gate threshold Voltage (V) 2.5 80 70 ID, Drain Current (A) 2.0 60 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (C) 1.5 ID = 250A 1.0 0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 J R1 R1 J 1 2 R2 R2 C 2 Ri (C/W) i (sec) 0.832 0.000221 1.058 0.001171 1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF3709ZCS/L RDS(on), Drain-to -Source On Resistance ( m) 9.00 Vgs = 10V 8.00 RDS(on), Drain-to -Source On Resistance (m ) 16 14 12 10 T J = 125C 8 6 4 2 0 2 3 4 5 6 7 8 9 10 T J = 25C ID = 21A T J = 125C 7.00 6.00 T J = 25C 5.00 4.00 10.0 20.0 30.0 40.0 50.0 60.0 70.0 ID, Drain Current (A) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Drain Current Current Regulator Same Type as D.U.T. Id Vds 50K 12V .2F .3F Fig 13. On-Resistance vs. Gate Voltage Vgs 250 EAS , Single Pulse Avalanche Energy (mJ) D.U.T. VGS 3mA + V - DS Vgs(th) 200 ID 5.4A 8.0A BOTTOM 17A TOP IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr 150 Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15V 100 V(BR)DSS tp VDS L 50 DRIVER RG 20V D.U.T IAS + V - DD 0 A 25 50 75 100 125 150 175 I AS tp 0.01 Starting T J , Junction Temperature (C) Fig 15a&b. Unclamped Inductive Test circuit and Waveforms Fig 16. Maximum Avalanche Energy vs. Drain Current 6 www.irf.com IRF3709ZCS/L D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - - + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs LD VDS + VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1% Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms www.irf.com 7 IRF3709ZCS/L Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by; * P =P loss conduction + P drive + P output P = Irms x Rds(on) loss + (Qg x Vg x f ) ( 2 ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput This can be expanded and approximated by; Q + oss x Vin x f + (Qrr x Vin x f ) 2 *dissipated primarily in Q1. Ploss = (Irms x Rds(on ) ) 2 Qgs 2 Qgd +Ix x Vin x f + I x x Vin x ig ig + (Qg x Vg x f ) + Qoss x Vin x f 2 f This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitances Cds and Cdg when multiplied by the power supply input buss voltage. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Qoss Characteristic 8 www.irf.com IRF3709ZCS/L D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information UCDTADTA6IADSA$"TAXDUC GPUA8P9@A'!# 6TT@H7G@9APIAXXA!A! DIAUC@A6TT@H7GAGDI@AAGA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S A$"T 96U@A8P9@ @6SAA2A! X@@FA! GDI@AG www.irf.com 9 S @ 7 H V I A U S 6 Q 2- COLLECTOR IGBT 1- GATE @ 9 P 8 A @ U 6 9 & ( ( A 2 A & A S 6 @ ( A F @ @ X 8 A @ DI G TO-262 Part Marking Information G 6 I P D U 6 I S @ U DI S @ D DA U 8 @ S & ( ( A ( A X X A I P A 9 @ G 7 H @ T T 6 G " " G DS A I 6 A T D A DT C U ) @ G Q H 6 Y @ ( ' & A @ 9 P 8 A U P G P B P G G 7 H @ T T 6 @ 9 P 8 A U P G Dimensions are shown in millimeters (inches) TO-262 Package Outline IRF3709ZCS/L A 8 A A @ I D G A G 7 H @ T T 6 A @ C U A DI 10 www.irf.com IRF3709ZCS/L D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 Notes: Repetitive rating; pulse width limited by This is applied to D2Pak, when mounted on 1" square PCB (FR4 or G-10 Material). For recommended footprint and soldering max. junction temperature. techniques refer to application note #AN-994. Starting TJ = 25C, L = 0.42mH, RG = 25, Calculated continuous current based on maximum allowable IAS = 17A. junction temperature. Package limitation current is 42A. Pulse width 400s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same R is measured at TJ of approximately 90C. charging time as Coss while VDS is rising from 0 to 80% VDSS. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/04 www.irf.com 11 |
Price & Availability of IRF3709ZCL
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |