![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
FUJITSU SEMICONDUCTOR DATA SHEET DS04-27224-1E ASSP For Power Management Applications 8-ch DC/DC Converter IC with Synchronous Rectifier for Voltage Step-up and Step-down MB3881 s DESCRIPTION The MB3881 a step-up/step-down type of 8-channel, DC/DC converter IC. It uses pulse width modulation (PWM) and synchronous rectification, designed for low voltage, high efficiency, and compactness. This IC is ideal for down conversion and up/down conversion (employing a step-up/step-down Zeta system enabling free I/O setting). The MB3881 can use channel 8 as its own power supply to provide a wide range of supply voltages, allowing itself to operate at low voltage. In addition, the MB3881 contains a triangular wave oscillator which can operate in synchronization with an external device, allowing the switching timing to be controlled externally. This contributes to reduction in switching noise, facilitating system configuration. The MB3881 is designed to be compact using the LQFP-64P package whose body size is 7 x 7 mm. The IC is the best for the power supply for advanced portable equipment such as a camera integrated VTR. s FEATURES * * * * * * * * Supporting the step-up/step-down Zeta methods (CH1 to CH7) Supporting synchronous rectification (CH1, CH2) Low start-up voltage : 1.8 V (CH8) Power-supply voltage range : 4 V to 13 V (CH1 to CH7) Built-in high-precision reference voltage generator : 2.5 V 1% Oscillation frequency range : 100 kHz to 800 kHz Built-in triangular wave oscillator capable of external synchronization Error amplifier output for soft start (CH1 to CH4, CH7) s PACKAGE 64-pin plastic LQFP (FPT-64P-M16) 2 MB3881 (CH7,CH8) GND(O)-2 +IN8(C) -IN8(C) s PIN ASSIGNMENT DTC6 DTC7 DTC8 +IN6 RB8 FB6 9 8 7 6 5 4 3 2 1 FB7 FB8 16 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 OUT7 OUT6 OUT5 VCC(O)-2 VCC(O)-1 OUT4 OUT3 GND(O)-1 OUT2-2 OUT2-1 VDD (O) OUT1-2 OUT1-1 VSS(O)-1 VSS(O)-2 OUT8 15 14 13 12 11 10 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 -IN6 +IN7 -IN7 +IN8 -IN8 (CH5,CH6) -IN6(C) OVP DTC5 FB5 -IN5 +IN5 -IN5(C) VREF GND CSCP VCC CTL-1 CTL-2 CTL-3 CTL-4 CS RT CT VB FB4 FB3 FB2 FB1 -IN4 -IN3 -IN2 -IN1 DTC4 DTC3 DTC2 DTC1 SYNC (CH1 to CH4) Output block Control block MB3881 s PIN DESCRIPTION Pin No. 47 46 CH1 48 50 51 44 43 CH2 45 53 54 41 CH3 40 42 56 38 CH4 37 39 57 20 21 CH5 22 23 19 60 CH5, CH6 18 14 15 CH6 16 17 13 61 10 11 CH7 12 9 62 Symbol FB1 -IN1 DTC1 OUT1-1 OUT1-2 FB2 -IN2 DTC2 OUT2-1 OUT2-2 FB3 -IN3 DTC3 OUT3 FB4 -IN4 DTC4 OUT4 FB5 -IN5 +IN5 -IN5 (C) DTC5 OUT5 OVP FB6 -IN6 +IN6 -IN6 (C) DTC6 OUT6 FB7 -IN7 +IN7 DTC7 OUT7 I/O O I I O O O I I O O O I I O O I I O O I I I I O I O I I I I O O I I I O Descriptions Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Main side output pin. Synchronous rectifier side output pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Main side output pin. Synchronous rectifier side output pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Output pin. Error amplifier output pin. Error amplifier inverted input pin. Dead time control pin. Output pin. Error amplifier output pin. Error amplifier inverted input pin. Error amplifier non-inverted input pin. Short detection comparator input pin. Dead time control pin. Output pin. Output maximum voltage setting pin. Error amplifier output pin. Error amplifier inverted input pin. Error amplifier non-inverted input pin. Short detection comparator input pin. Dead time control pin. Output pin. Error amplifier output pin. Error amplifier inverted input pin. Error amplifier non-inverted input pin. Dead time control pin. Output pin. (Continued) 3 MB3881 (Continued) Pin No. 4 5 6 CH8 7 8 3 2 64 33 OSC 34 35 28 Symbol FB8 -IN8 +IN8 -IN8 (C) +IN8 (C) DTC8 RB8 OUT8 RT CT SYNC CTL-1 I/O O I I I I I O I I Error amplifier output pin. Descriptions Error amplifier inverted input pin. Error amplifier non-inverted input pin. Short detection comparator inverted input pin. Short detection comparator non-inverted input pin. Dead time control pin. Output current setting pin. Output pin. Triangular wave frquency setting resistor connection pin. Triangular wave frquency setting capacitor connection pin External synchronous signal input pin. Power supply, CH 1, 3, 4, 8 control circuit. "H" level : Power supply operating mode "L"level : Standby mode CH 2 control circuit. *CTL-1pin = "H" level "H" level : CH2 operating mode "L" level : CH2 OFF mode CH5, 6 control circuit. *CTL-1pin = "H" level "H" level : CH5, CH6 operating mode "L" level : CH5, CH6 OFF mode CH7 control circuit. *CTL-1pin = "H" level "H" level : CH7 operating mode "L" level : CH7 OFF mode Short protection circuit capacitor connection pin. CH1, 2, 3, 4, 7 soft start circuit capacitor connection pin. Reference voltage and control circuit power supply pin. CH1, 2, 3, 4 output circuit power supply pin. CH5, 6, 7, 8 output circuit power supply pin. CH1, 2, 3, 4 output circuit power supply pin. CH5, 6, 7 output circuit power supply pin. CH1, 2 synchronous rectifier side output circuit power supply pin. Refernce voltage output pin. Triangular wave oscillator regulator output pin. Ground pin. CH1, 2, 3, 4 output circuit ground pin. CH5, 6, 7, 8 output circuit ground pin. 29 CTL-2 I Control 30 CTL-3 I 31 CTL-4 I O O 26 32 27 58 59 49 63 Power 52 24 36 25 55 1 CSCP CS VCC VCC (O) -1 VCC (O) -2 VSS (O) -1 VSS (O) -2 VDD (O) VREF VB GND GND (O) -1 GND (O) -2 4 MB3881 s BLOCK DIAGRAM * General view FB1 47 -IN1 46 Error - Amp.1 + + 1.25 V SCP Comp.1 - + + PWM Comp.1-1 + + - PWM VB1 Comp.1-2 + - Drive 1-2 CH1 Drive 1-1 58 VCC(O)-1 50 OUT1-1 49 VSS(O)-1 52 VDD(O) 51 OUT1-2 1.0 V DTC1 48 FB2 44 -IN2 43 Error - Amp.2 + + 1.25 V SCP Comp.2 - + + 1.0 V DTC2 45 PWM Comp.2-1 + + - PWM VB2 Comp.2-2 + - CH2 Drive 2-1 53 OUT2-1 Drive 2-2 54 OUT2-2 FB3 41 -IN3 40 Error - Amp.3 + + 1.25 V SCP Comp.3 - + + 1.0 V DTC3 42 PWM Comp.3 + + - CH3 Drive 3 56 OUT3 A FB4 38 -IN4 37 Error - Amp.4 + + 1.25 V SCP Comp.4 - + + 1.0 V DTC4 39 PWM Comp.4 + + - CH4 Drive 4 57 OUT4 55 GND(O)-1 FB5 20 -IN5 21 Error - Amp.5 + + 0.6 V SCP Comp.5 - + PWM Comp.5 + + - CH5 Drive 5 59 VCC(O)-2 60 OUT5 63 VSS(O)-2 -IN5(C) 23 +IN5 22 DTC5 19 FB6 14 -IN6 15 Error - Amp.6 + + 0.6 V SCP Comp.6 - + PWM Comp.6 + + - CH6 Drive 6 61 OUT6 B -IN6(C) 17 +IN6 16 OVP 18 DTC6 13 FB7 10 -IN7 11 Error - Amp.7 + + + 1.25 V SCP Comp.7 - + + + 1.0 V DTC7 9 PWM Comp.7 + + - CH7 Drive 7 62 OUT7 +IN7 12 20 k 80 k FB8 4 -IN8 5 - + +IN8 6 -IN8(C) 7 +IN8(C) 8 DTC8 3 - + SCP Comp.8 Error Amp.8 PWM Comp.8 - - + CH8 Drive 8 64 OUT8 2 RB8 1 GND(O)-2 C CTL-2 29 CTL-3 30 CTL-4 31 Buff Buff x0.8 CTL 1, 3, 4 CS CTL Logic CT1 1.73 V 1.0 V CT2 1.73 V 1.0 V CT 0.8 V 0.3 V CS 32 UVLO Power Ref ON/OFF CTL 2.5 V 24 VREF 25 GND 27 VCC VB 36 OSC 2V 35 33 34 CT SCP 28 CTL-1 H : ON (Power/CH1, 3, 4, 8) L : OFF (Standby mode) 26 CSCP SYNC RT (64 pin) 5 MB3881 * Enlarged view of A FB1 47 -IN1 46 Error - Amp.1 + + 1.25 V SCP Comp.1 - + + PWM Comp.1-1 + + - PWM Comp.1-2 + - CH1 Drive 1-1 58 VCC(O)-1 50 OUT1-1 49 VSS(O)-1 VB1 52 VDD(O) Drive 1-2 51 OUT1-2 1.0 V DTC1 48 FB2 44 -IN2 43 Error - Amp.2 + + 1.25 V SCP Comp.2 - + + 1.0 V DTC2 45 PWM Comp.2-1 + + - PWM Comp.2-2 + - CH2 Drive 2-1 53 OUT2-1 VB2 Drive 2-2 54 OUT2-2 FB3 41 -IN3 40 Error - Amp.3 + + 1.25 V SCP Comp.3 - + + 1.0 V DTC3 42 PWM Comp.3 + + - CH3 Drive 3 56 OUT3 FB4 38 -IN4 37 Error - Amp.4 + + 1.25 V SCP Comp.4 - + + 1.0 V DTC4 39 PWM Comp.4 + + - CH4 Drive 4 57 OUT4 55 GND(O)-1 6 MB3881 * Enlarged view of B FB5 20 -IN5 21 Error - Amp.5 + + 0.6 V SCP Comp.5 - + PWM Comp.5 + + - CH5 Drive 5 59 VCC(O)-2 60 OUT5 63 VSS(O)-2 -IN5(C) 23 +IN5 22 DTC5 19 FB6 14 -IN6 15 Error - Amp.6 + + 0.6 V SCP Comp.6 - + PWM Comp.6 + + - CH6 Drive 6 61 OUT6 -IN6(C) 17 +IN6 16 OVP 18 DTC6 13 FB7 10 -IN7 11 Error - Amp.7 + + + 1.25 V SCP Comp.7 - + + + 1.0 V DTC7 9 PWM Comp.7 + + - CH7 Drive 7 62 OUT7 +IN7 12 20 k 80 k 7 MB3881 * Enlarged view of C FB8 4 -IN8 5 - + +IN8 6 -IN8(C) 7 +IN8(C) 8 DTC8 3 - + SCP Comp.8 Error Amp.8 PWM Comp.8 - - + CH8 Drive 8 64 OUT8 2 RB8 1 GND(O)-2 CTL-2 29 CTL-3 30 CTL-4 31 CTL 1, 3, 4 CS CTL Logic CT1 Buff Buff x0.8 1.73 V 1.0 V CT2 1.73 V 1.0 V CT 0.8 V 0.3 V CS 32 UVLO Power ON/OFF CTL 25 GND 27 VCC VB 36 OSC 2V 35 33 34 CT SCP Ref 2.5 V 24 VREF 28 H : ON (Power/CH1, 3, 4, 8) L : OFF (Standby mode) CTL-1 (64 pin) 26 CSCP SYNC RT 8 MB3881 s ABSOLUTE MAXIMUM RATINGS Parameter Power supply voltage Output current Output peak current Power dissipation Symbol VCC VDD IO IO PD OUT pin OUT pin, Duty 5% Ta +25 C Condition Rating Min. Max. 17 17 20 200 800* Unit V V mA mA mW Storage temperature Tstg -55 +125 C * : The packages are mounted on the epoxy board (10 cm x 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. s RECOMMENDED OPERATING CONDITIONS Parameter Symbol CH8 Power supply voltage VCC VDD Reference voltage output current Reference voltage output current IOR IB CH1 to CH7, 4 V VCC(O)-VSS(O) 9 V CH1 VREF pin VB pin +IN5, +IN6, -IN1 to -IN7, -IN5 (C) , -IN6 (C) , OVP pin +IN8, -IN8, -IN8 (C) , +IN8 (C) pin +IN7 pin Control input voltage SYNC input voltage Output current Output current setting resister Oscillator frequency Timing capacitor Timing resistor VB pin capacitor Soft-start capacitor Short detection capacitor VCTL VSYNC IO RB fOSC CT RT CVB CS CSCP CTL pin SYNC pin OUT pin RB8 pin Condition Value Min. 1.8 4 4 -1 -0.5 0 0 0.1 0 0 1 2.4 100 47 6.8 0.22 Typ. 9 9 5 2 24 500 100 11 0.39 0.1 0.1 Max. 13 13 9 0 0 VCC - 1.8 VCC - 0.9 VCC - 1.8 VCC VCC 15 51 800 680 51 1.0 1.0 Unit V V V mA mA V V V V V mA k kHz pF k F F F Input voltage VIN Operating ambient temperature Ta -30 +25 +85 C WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 9 MB3881 s ELECTRICAL CHARACTERISTICS Symbol VREF VREF/ VREF Line Load Ios VTH VH VRST (Ta = +25 C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Value Conditions Unit Min. Typ. Max. Ta = -30 C to +85 C VCC = 4 V to 13 V VREF = 0 mA to -1 mA VREF = 2 V VCC = VCC = 2.475 -10 -10 -20 2.6 1.20 2.5 0.5* -5 2.8 0.2 1.30 2.525 10 10 -1 3.0 1.40 V % mV mV mA V V V Parameter Reference voltage Reference voltage block Output voltage temperature stability Input stability Load stability Short-circuit output current Threshold voltage Under voltage lockout protection circuit block(U.V.L.O) Pin No. 24 24 24 24 24 50 50 50 CH1 to CH7 Hysteresis width Reset voltage CH8 Threshold voltage Input standby voltage Charge current Threshold voltage Input standby voltage Input latch voltage Input source current Oscillator frequency VTH VSTB ICS VTH VSTB VI ICSCP fOSC f/fdv f/fdt VB VIH VIL ISYNC 64 32 32 26 26 26 26 VCC = 1.25 -1.4 0.65 -1.4 1.45 50 -1.0 0.70 50 50 -1.0 500 1 1* 1.65 100 -0.6 0.75 100 100 -0.6 550 10 V mV A V mV mV A kHz % % V V V A Short circuit detection block (SCP) Soft-start block (CS) 50, 53, 56, 57, 60, CT = 100 pF, RT = 11 k 450 61, 62, 64, 51, 54 VB = 2 V 50, 53, 56, 57, 60, VCC = 4 V to 13 V 61, 62, 64, 51, 54 50, 53, 56, 57, 60, Ta = -30 C to +85 C 61, 62, 64, 51, 54 36 50 50 35 Input "H" level Input "L" level SYNC = 5 V Triangular wave oscillator block (OSC) Frequency stability for voltage Frequency stability for temperature Output voltage SYNC input condition 1.980 2.000 2.020 2.0 0 50 0.8 100 Input current *: Standard design value. (Continued) 10 MB3881 (Continued) Symbol VTH VT/ VT IB (Ta = +25 C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Pin No. 47, 44, 41, 38, 10 47, 44, 41, 38, 10 46, 43, 40, 37, 11 12 Error amplifier block (CH1 to CH4, CH7) Voltage gain Frequency bandwidth AV BW VOH Output voltage VOL Output source current Output sink current Input offset voltage VT temperature stability ISOURCE ISINK VIO VT/ VT IB 47, 44, 41, 38, 10 47, 44, 41, 38, 10 47, 44, 41, 38, 10 47, 44, 41, 38, 10 47, 44, 41, 38, 10 47, 44, 41, 38, 10 Conditions FB = 1.35 V Ta = -30 C to +85 C -IN = 0 V (CH1 to CH4, CH7) +IN = 1 V (CH7) DC AV = 0 dB FB = 1.35 V FB = 1.35 V Value Min. 1.23 -320 8 60 2.2 70 -260 -120 -120 0 60 FB = 1.35 V FB = 1.35 V 2.2 70 Typ. 1.25 0.5* -60 10 100 1.2* 2.4 50 -2.0 140 0.5* -40 -30 -30 100 1.2* 2.4 50 -2.0 140 Max. 1.27 15 200 -1.0 10 VCC - 1.8 200 -1.0 Unit V % nA A dB MHz V mV mA A mV % nA nA nA V dB MHz V mV mA A Parameter Threshold voltage VT temperature stability Input bias current 20, 21, 14, 15 FB = 1.35 V 20, 21, 14, 15 Ta = -30 C to +85 C 22, 16 FB = 1.35 V -IN = 0 V FB = 1.35 V DC AV = 0 dB Error amplifier bolck (CH5, CH6) Input bias current Common mode input voltage range Voltage gain Frequency bandwidth Output voltage Output source current Output sink current 21, 15 18 VCM AV BW VOH VOL ISOURCE ISINK 20, 14 20, 14 20, 14 20, 14 20, 14 20, 14 20, 14 *: Standard design value. (Continued) 11 MB3881 (Continued) Parameter Input offset voltage Input bias current Common mode input voltage range Voltage gain Frequency bandwidth Output voltage Output source current Output sink current SCP Comp. block (CH1 to CH4, SCP) Symbol VIO IB VCM AV BW VOH VOL ISOURCE ISINK Pin No. 4, 5 6 5 4 4 4 4 4 4 4 DC (Ta = +25 C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Value Conditions Unit Min. Typ. Max. FB = 0.55 V +IN = 0 V FB = 0.55 V -15 -100 -50 0 60 1.1 60 0.97 0.77 -320 0.55 -200 0 -15 -50 FB = 0.55 V FB = 0.55 V 0 -20 -10 75 1.2* 1.3 5 -2.0 140 1.00 0.80 -60 0.60 -40 0 -10 15 VCC - 0.9 200 -1.0 1.03 0.83 0.65 VCC - 1.8 15 mV nA nA V dB MHz V mV mA A V V nA V nA V mV nA Error amplifier bolck (CH8) AV = 0 dB 50, 53, 56, 57 CH1 to CH4 Threshold voltage VTH 62 Input bias current Input offset voltage Input bias current Common mode input voltage range Input offset voltage IB VIO IB VCM VIO IB 46, 43, 40, 11, 37 60, 61 23, 17 60, 61 64 7 +IN = 1 V (CH7) -IN = 0 V -IN (C) = 0 V FB = 0.55 V SCP Comp. block (CH8 SCP) SCP Comp. block (CH5,CH6 SCP) Input bias current Common mode input voltage range VCM 64 0 VCC - 0.9 V PWM Comp. block (CH1 to CH7) Threshold voltage VT0 VT100 50 50 Duty cycle = 0% Duty cycle = 100% 0.9 1.0 1.73 1.83 V V Input bias current IDTC 48, 45, 42, 39, DTC = 0.4 V 19, 13, 9 (CH1 to CH7) -1.0 -0.3 A *: Standard design value. (Continued) 12 MB3881 (Continued) Parameter Symbol VT0 Threshold voltage VT100 64 Duty cycle = 100% -2.6 0.8 -100 80 22 17 -110 100 20 16 -2.0 0.9 35 26 32 25 -1.4 V Pin No. (Ta = +25 C, VCC = 9 V, VSS = 4.4 V, VDD = 5 V) Value Conditions Unit Min. Typ. Max. Duty cycle = 0% 0.2 0.3 V PWM Comp. block(CH8) 64 Output source current ISOURCE Output block (CH1 to CH7) (Drive-1) Output sink current ISINK ROH Output ON resistor ROL Output block (CH1, CH2) (Drive-2) Output source current ISOURCE Output sink current Output ON resistor Output block (CH8) (Drive) ISINK ROH ROL 50, 53, 56, 57, Duty 5%, 60, 61, 62 OUT = 4.4 V 50, 53, 56, 57, Duty 5%, 60, 61, 62 OUT = 9 V 50, 53, 56, 57, OUT = -15 mA 60, 61, 62 50, 53, 56, 57, OUT = 15 mA 60, 61, 62 51, 54 51, 54 51, 54 51, 54 64 Duty 5%, OUT = 0 V Duty 5%, OUT = 5 V OUT = -15 mA OUT = 15 mA RB = 24 k, OUT = 0.7 V Duty 5%, OUT = 0 V mA mA mA mA mA Output source current ISOURCE Output sink current ISINK 64 40 100 7 mA Output block (CTL-1 to CTL-4) (CTL) VIH CTL input condition VIL Input current ICTL ICCS Standby current ICCS (O) IDDS ICC Power supply current IDD 28, 29, 30, 31 Active mode 28, 29, 30, 31 Standby mode 28, 29, 30, 31 CTL = 5 V 27 58, 59 52 27, 58, 59 52 CTL-1 = 0 V CTL-1 = 0 V CTL-1 = 0 V CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V 1.5 0 13 0.5 200 10 10 10 11 10 V V A A A A mA A *: Standard design value. General 13 MB3881 s TYPICAL CHARACTERISTICS Power supply current vs. power supply voltage Power supply current ICC (mA) 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 Reference voltage vs. power supply voltage 5 Reference voltage VREF (V) Ta = +25 C CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V 4 3 2 1 0 0 2 Ta = +25 C CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V VREF = 0 mA 4 6 8 10 12 14 16 Power supply voltage VCC (V) Power supply voltage VCC (V) Reference voltage vs. ambient temperature 2.56 Reference voltage VREF (V) 2.54 2.52 2.5 2.48 2.46 2.44 -40 -20 VCC = 9 V CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V 0 20 40 60 80 100 Ambient temperature Ta (C) Reference voltage vs. control voltage Reference voltage VREF (V) 5 4 3 2 1 0 0 1 2 3 4 5 500 Ta = +25 C VCC = 9 V VREF = 0 mA Control current vs. control voltage Ta = +25 C VCC = 9 V Control current (A) 400 300 200 100 0 0 2 4 6 8 10 12 14 16 Control voltage VCTL-1 (V) Control voltage VCTL-1 (V) (Continued) 14 MB3881 (Continued) Triangular wave upper and lower limit voltage vs.triangular wave oscillator frequency Triangular wave upper and lower limit voltage VCT (V) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 Triangular wave upper and lower limit voltage vs. ambient temperature Triangular wave upper and lower limit voltage VCT (V) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 -20 0 20 40 60 80 100 VCC = 9 V RT = 11 k CT = 100 pF 1 Ta = +25 C VCC = 9 V CT = 100 pF Upper Upper Lower Lower 100 200 300 400 500 600 700 800 900 1000 Triangular wave oscillator frequency fOSC (kHz) Ambient temperature Ta ( C) Triangular wave oscillator frequency vs. timing capacitor Triangular wave oscillator frequency fOSC (kHz) 10000 Triangular wave oscillator frequency vs. timing resistor 10000 1000 Triangular wave oscillator frequency fOSC (kHz) Ta = +25 C VCC = 9 V Ta = +25 C VCC = 9 V 1000 100 RT = 6.8 k RT = 11 k RT = 51 k 100 CT = 47 pF CT = 100 pF CT = 220 pF CT = 470 pF CT = 680 pF 10 1 10 100 1000 10000 10 1k 10 k 100 k Timing capacitor CT (pF) Triangular wave oscillator frequency vs. ambient temperature Timing resistor RT () Power dissipation vs. ambient temperature Power dissipation PD (mW) 1000 800 600 400 200 0 -40 Triangular wave oscillator frequency fOSC (kHz) 560 540 520 500 480 460 440 -40 VCC = 9 V CTL-1 = CTL-2 = CTL-3 = CTL-4 = 5 V RT = 11 k CT = 100 pF -20 0 20 40 60 80 100 Ambient temperature Ta ( C) -20 0 20 40 60 80 100 Ambient temperature Ta ( C) (Continued) 15 MB3881 (Continued) Error amplifier gain and phase vs. frequency (CH1) 40 Ta = +25 C 180 VCC = 9 V AV Phase (deg) Gain AV (dB) 20 0 -20 -40 1k 10 k 100 k 90 0 -90 -180 240 k 10 k IN - + 2.4 k 10 F 10 k 1.4 V 46 - + + 1.26 V 47 OUT 1M 10 M Frequency f (Hz) Error amplifier gain and phase vs. frequency (CH5) 40 Ta = +25 C 180 90 0 AV -20 -40 1k 10 k 100 k 1M -90 VCC = 9 V 20 0 Phase (deg) Gain AV (dB) 2.5 V 240 k 10 k IN - + 10 F 10 k 2.4 k 21 22 18 1.4 V 10 k - + + 20 OUT -180 10 M 10 k Frequency f (Hz) Error amplifier gain and phase vs. frequency (CH8) 40 Ta = +25 C VCC = 9 V 180 1V Phase (deg) Gain AV (dB) 20 0 AV -20 -40 1k 10 k 100 k 90 0 -90 -180 240 k 10 k IN 10 F 6 10 k 10 k 10 k 5 - 4 + OUT - + 2.4 k 1M 10 M Frequency f (Hz) 16 MB3881 s FUNCTIONS 1. DC-DC Converter Functions (1) Reference voltage generator The reference voltage generator generates a temperature-compensated reference voltage (typically = 2.5 V) : from the voltage supplied from the power supply terminal (pin 27). The voltage is used as the reference voltage for the IC's internal circuitry. The reference voltage can supply a load current of up to 1 mA to an external device through the VREF terminal (pin 24). (2) Triangular-wave oscillator circuit The triangular wave oscillator incorporates a timing capacitor and a timing resistor connected respectively to the CT terminal (pin 34) and RT terminal (pin 33) to generate triangular oscillation waveform CT (amplitude of 0.3 to 0.8 V), CT1 (amplitude 1.0 to 1.73 V in phase with CT), or CT2 (amplitude 1.0 to 1.73 V in inverse phase with CT). CT1 and CT2 are input to the PWM comparator in the IC. (3) Error amplifier (Error Amp.) The error amplifier detects the DC/DC converter output voltage and outputs PWM control signals. It supports a wide range of in-phase input voltages from 0 V to "VCC - 1.8 V" (channels 1 to 7), allowing easy setting from the external power supply. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output pin to inverted input pin of the error amplifier, enabling stable phase compensation to the system. (4) PWM comparator (PWM Comp.) The PWM comparator is a voltage-to-pulse width converter for controlling the output duty depending on the input voltage. Channels 1, 2 main sides, channel 3 to 8 : The comparator keeps the output transistor on while the error amplifier output voltage and DTC voltage remain higher than the triangular wave voltage. Channels 1, 2 synchronous rectification sides:The comparator keeps the output transistor on while the error amplifier output voltage remain lower than the triangular wave voltage. (5) Output circuits The output circuits on the main side and on the synchronous rectification side are both in the totem pole configuration, capable of driving an external PNP transistor (channels 1,2 main sides, channels 3 to 7), NPN transistor (channel 8), and N-channel MOSFET (channels 1,2 synchronous rectification sides). 17 MB3881 2. Channel Control Function Channels are turned on and off depending on the voltage levels at the CTL-1 terminal (pin 28), CTL-2 terminal (pin 29), CTL-3 terminal (pin 30),and CTL-4 terminal (pin 31). Channel On/Off Setting Conditions Channel on/off state CTL-4 x L H L H L H L H ON OFF ON ON OFF ON Power CH8 CH1, 3, 4 CH2 CH5, 6 CH7 Voltage level at CTL pin CTL-1 L CTL-2 x CTL-3 x L L H H L H H x : Undefined OFF (Standby state) OFF OFF ON OFF ON OFF ON OFF ON 3. Protective Functions (1) Timer-latch short-circuit protection circuit The short-circuit detection comparator in each channel detects the output voltage level and, if any channel output voltage falls below the short-circuit detection voltage, the timer circuits is actuated to start charging the external capacitor CSCP connected to the CSCP terminal (pin 26). When the capacitor voltage reaches about 0.70 V, the circuit is turned off the output transistor and sets the dead time to 100%. To reset the actuated protection circuit, turn the power supply on back. (See "SETTING TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT".) (2) Undervoltage lockout protection circuit The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned on, may cause the IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, the undervoltage lockout protection circuit detects a decrease in internal reference voltage with respect to the power supply voltage, turns off the output transistor, and sets the dead time to 100% while holding the CSCP terminal (pin 26) at the "L" level. The circuit restores the output transistor to normal when the supply voltage reaches the threshold voltage of the undervoltage lockout protection circuit. 18 MB3881 4. Soft Start Operation (1) Description * When the CTL-1 to CTL-4 pins are driven high ("H" level) The channel-8 output voltage is soft-started by the capacitor (C+IN8) connected to the +IN8 terminal (pin 6). The capacitor (Cs) connected to the CS terminal (pin 32) starts being charged and the output voltages of channels 1 to 4 and channel 8 are soft-started by the error amplifier in proportion to the CS pin voltage. Input CTL-1 ( pin 28 ) CTL-2 ( pin 29 ) CTL-3 ( pin 30 ) CTL-4 ( pin 31 ) Output 2V VB ( pin 36) FB8 ( pin 4) CH8 output voltage VO8 2.5 V 0.3 V VREF ( pin 24) 1.25 V CS ( pin 32) CH1 to CH4, CH7 output voltage VO1 to VO4, VO7 CH5, CH6 output voltage VO5, VO6 (1) (2) (3) (4) t (1) to (4) : CH1 to CH4, CH7 soft start interval (2) to (3) : CH8 soft start interval 19 MB3881 * When the CTL-2 (CTL-4) terminal is driven low ("L" level) after channels 1, 3, 4, and 8 have been soft-started The capacitor (Cs) connected to the CS terminal (pin 32) starts being charged. The channel-2 (channel-7) output voltage is soft-started by the error amplifier in proportion to the CS pin voltage. Input CTL-1 ( pin 28) CTL-2 ( pin 29) (CTL-4 ( pin 31) ) CTL-3 ( pin 30) Output 2V VB ( pin 36) FB8 ( pin 4) CH8 output voltage VO8 2.5 V 0.3 V VREF ( pin 24) 1.25 V 1.25 V CS ( pin 32) CH1, CH3, CH4 output voltage VO1, VO3, VO4 CH2 (CH7) output voltage VO2 (VO7) CH5, CH6 output voltage VO5, VO6 t (1) (2) (5) (3) (6) (4) (5) (6) (1) to (4) (2) to (3) (5) to (6) (5)' to (6)' : Channel-1, 3, 4 soft start interval : Channel-8 soft start interval : Channel-2 (channel-7) soft start interval : Channel-2 (channel-7) soft start interval (waveform) as CTL-2 (CTL-4) goes "H" from "L" during channel-1, 3, 4 soft start interval 20 MB3881 (2) Setting Soft Start * Channel-8 soft start Channel 8 can be soft-started by connecting a capacitor between the DTC8 terminal (pin 3) and GND. The soft start time depends on the input voltage and load current. * Channel 1 to 4 and channel 7 soft start Soft start time ts[s] = 1.25 x Cs[F] : Note : The short-circuit detection function remains working even during soft start operation of channels 1 to 4 and 7. * Channel-5, 6 soft start Channel 5 can be soft-started by connecting a capacitor between the +IN5 terminal (pin 22) and GND. Channel 6, like channel 5, can be soft-started by connecting a capacitor between the +IN6 terminal (pin 16) and GND. s SETTING THE OSCILLATION FREQUENCY The oscillation frequency can be set by connecting the timing capacitor (CT) to the CT terminal (pin 34) and the timing resistor (RT) to the RT terminal (pin 33). Oscillation frequency fOSC (kHz) = : 550000 CT (pF) x RT (k) 21 MB3881 s SETTING THE OUTPUT VOLTAGE * CH1 to CH4 VO FB1 47 R1 46 -IN1 R2 - + + Error Amp.1 VO = 1.25 V R2 (R1 + R2) 1.25 V - + + SCP Comp.1 1.0 V * CH5, CH6 VO VO = bV R2 (R1 + R2) (aV > bV) R1 21 -IN5 R2 aV - + + Error Amp.5 0.6 V 23 -IN5(C) 22 +IN5 18 bV + - SCP Comp.5 OVP 22 MB3881 * CH7 VO FB7 11 R1 10 -IN7 R2 - + + + Error Amp.7 * +IN7 1.25 V VO = 1.25 V R2 (R1 + R2) * +IN7< 1.25 V VO = +IN7 R2 (R1 + R2) 1.25 V 12 +IN7 20 k - + + + SCP Comp.7 80 k 1.0 V * CH8 VO FB8 4 R1 -IN8 R2 5 - + Error Amp.8 VO = 2Rb (R1 + R2) (Ra + Rb) R2 Ra +IN8 Rb 7 -IN8(C) 8 +IN8(C) + - 6 SCP Comp.8 VB = 2 V 23 MB3881 s SAMPLE POWER SUPPLY USING CHANNEL 8 AS SELF-POWER SUPPLY Using channel 8 as the self-power supply, the MB3881 can support a wide range of supply voltages and operate at low input voltage (Vin 1.8 V). The following example shows sample power supply using a transformer. VSS (O) Vin H FB8 4 H -IN8 5 - + Error Amp.8 64 +IN8 6 OUT8 VO8-1 (15 V) 2 RB8 VCC VCC (O) The following settings are used in "APPLICATION EXAMPLE". * VSS(O) is set to the number of turnings that produces Vin - 1.8 V. * VCC and VCC(O) are set to the number of turnings that produces Vin + 2.2 V. Note that, because channels 1 to 4 operate at VCC 4 V, they must be set to the number of turnings that produces Vin + 2.2 V or more so that they operate at Vin 1.8 V. 24 MB3881 s SETTING THE OUTPUT CURRENT The output circuit (drive 8) is structured as illustrated below (in the output circuit diagram). As found in "Output Current Waveform" below, the source current value of the output current waveform has a constant current setting. Note that the source current is set by the following equation: Output source current : (VB / RB) x 80 = 48 / RB[A] (VB = 0.6 V) : : 59 VCC (O)-2 80 I Source current x 33 External NPN transistor Output source current 64 OUT8 I Output sink current Sink current x 33 70 k 2 0.6 V RB8 RB VB = 0.6 V : 1 GND (O)-2 In the output circuit diagram Output source current (Peak) Output source current Output current 0 Output sink current (Peak) t Output current waveform 25 MB3881 s SETTING TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT The short detection comparator (SCP comparator) in each channel monitors the output voltage. While the switching regulator load conditions are stable on all channels, the LOG_SCP output remains at "H" level, transistor Q1 is turned on, and the CSCP terminal (pin 26) is held at "L" level. If the load condition on a channel changes rapidly due to a short of the load, causing the output voltage to drop, the output of the short detection comparator on that channel goes to "H" level. This causes transistor Q1 to be turned off and the external short protection capacitor CSCP connected to the CSCP terminal to be charged at 1.0 A. When the capacitor CSCP is charged to the threshold voltage (VTH = 0.70 V), the latch is set and the external : FET is turned off (dead time is set to 100%). At this point, the latch input is closed and the CSCP terminal is held at "L" level. Short detection time (tPE) : tPE (s) = 0.70 x CSCP (F) VO1 External PNP transistor R1 46 -IN1 R2 1.0 V Drive 1-2 51 OUT1-2 - + + SCP Comp.1 Drive 1-1 50 OUT1-1 -IN8(C) 7 +IN8(C) 8 - + SCP Comp.8 LOG_SCP Drive 8 CSCP 26 R S Timer-latch short protection circuit 1 A bias bias 64 OUT8 CSCP UVLO Ref Q1 Power ON/OFF CTL 28 CTL-1 Timer-latch short circuit protection circuit 26 MB3881 s SETTING FOR EXTERNAL SYNCHRONOUS OSCILLATION For external synchronous operation, connect the timing capacitor (CT) to the CT terminal (pin 34) and the timing resistor (RT) to the RT terminal (pin 33). In this case, select the CT and RT so that the oscillation frequency is 5% to 10% lower than the frequency of the external synchronous signal excluding the setting error of the oscillation frequency. The duty cycle (T1/T) of the external synchronous signal must be set within a range from 10% to 90%. Triangular wave oscillator (OSC) equivalent circuit VB - I CT 34 CT 0.3 V 0.8 V + R - + Latch1 S Q "H" level: ON 1.5 I SYNC 35 100 k 1.4 V : Proportional to VRT/RT + - Latch2 S R Q External synchronization circuit Free-run oscillation 0.8 V VCT 0.3 V 5.0 V VSYNC 0V t External synchronous oscillation 0.8 V VCT 0.3 V 5.0 V VSYNC 0V T1 T t Note: If the external synchronous pulse is not input, the device is started with free-run oscillation. For free-run oscillation, set the SYNC terminal (pin 35) to "Lo" or "HiZ" level. The external synchronization circuit starts operation after a VREF rise. The CT pin oscillation frequency at startup is 500 kHz when the voltage at the VB terminal (pin 36) is 2 V with CT = 100 pF and RT = 11 k. If the triangular wave has superimposed noise during external synchronous oscillation, insert a CR filter. 27 MB3881 s TREATMENT WITHOUT USING CSCP When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 26) to GND with the shortest distance CSCP 26 Treatment when not using CSCP s TREATMENT FOR KILLING THE SOFT START FEATURE To disable the channel 1 to 4, 7 soft start function, leave the CS terminal (pin 32) open. To disable the channel 8 soft start function, remove the capacitor from the +IN8 terminal (pin 16). "Open" CS 32 VB 6 +IN8 When no soft start time is set 28 MB3881 s SETTING THE DEAD TIME When the device is set for step-up inverted output based on the step-up or step-up/down Zeta method or flyback method, the FB pin voltage may reach and exceed the rectangular wave voltage due to load fluctuation. If this is the case, the output transistor is fixed to a full-ON state (ON duty = 100%). To prevent this, set the maximum duty of the output transistor. To set it, set the voltage at the DTC1 terminal (pin 48) by applying a resistive voltage divider to the VREF voltage as shown below. When the voltage at the DTC1 terminal (pin 48) is higher than the triangular wave voltage (CT1), the output transistor is turned on. The maximum duty calculation formula assuming that triangular wave amplitude = 0.73 : V and triangular wave minimum voltage = 1.0 V is given below. (Same to other channels.) : DUTY (ON) max= : Vdt - 1.0 V Rb x 100[%], Vdt = 0.73 V Ra + Rb x VREF When the DTC1 terminal (pin 48) is not used, connect it directly to the VREF terminal (pin 24) as shown below. (Same to other channels.) VREF DTC1 24 Ra 48 Rb Vdt When using DTC to set dead time (Same to other channels.) ( CH1) VREF DTC1 24 48 When no soft start time is set ( Same to other channels.) ( CH 1) 29 MB3881 s APPLICATION EXAMPLE * General view A VCC(O)-1 58 FB1 A R17 12 k R18 20 k C21 0.1 F R9 1 k R1 OUT1-1 240 C13 2200 pF VSS(O)-1 VDD(O) 51 OUT1-2 C33 1 F C1 Q9 D1 2.2 F Q1 L1 33 H Vo1 (2.0 V) 47 50 49 46 -IN1 CH1 52 DTC1 48 B C8 2.2 F L3 15 H L2 15 H C34 C14 3900 pF 1 F C2 Q10 D2 2.2 F Vo2 (2.8 V) Q2 R2 75 OUT2-1 FB2 B R19 20 k R20 16 k C22 0.1 F R10 1 k 44 53 43 -IN2 CH2 54 OUT2-2 Vo3 (5.0 V) C C9 2.2 F L5 15 H L4 6.8 H C35 C15 3900 pF 1 F C3 D3 2.2 F A R33 24 k DTC2 R34 47 k 45 Q3 R3 75 OUT3 FB3 C23 0.1 F R11 R21 39 k 1 k C R22 13 k 41 56 40 -IN3 CH3 R46 24 k DTC3 R47 47 k 42 Vo4 (5.0 V) D C10 2.2 F L7 15 H L6 6.8 H C36 C16 3900 pF 1 F C4 D4 2.2 F Q4 R4 75 OUT4 FB4 C24 0.1 F R12 R23 39 k 1 k D R24 13 k 38 57 37 -IN4 CH4 R35 24 k DTC4 R36 47 k 39 GND(O)-1 55 Q5 VCC(O)-2 R5 3 k OUT5 C37 C17 470 pF VSS(O)-2 1 F E L8 33 H Vo5 (DRUM) 59 FB5 E Vin (3.6 V) R25 5.1 k C25 0.1 F R13 1 k R26 20 k -IN5(C) Motor control signal 20 60 C5 D5 2.2 F 21 -IN5 CH5 63 23 22 19 F Q6 L9 33 H Vo6 (CAP) +IN5 DTC5 B FB6 14 C26 0.1 F R14 R27 15 1 k 15 k -IN6 R28 20 k F -IN6(C) Motor control signal 61 R6 1 k OUT6 C38 C18 680 pF 1 F C6 D6 2.2 F CH6 17 16 +IN6 R43 24 k OVP 18 Over R44 voltage 47 k threshold setting voltage DTC6 13 G Q7 C11 2.2 F L11 15 H L10 15 H Vo7 (B.L) FB7 G R29 75 k R30 15 k C27 0.1 F R15 1 k 10 62 R7 100 OUT7 C39 C19 2200 pF 1 F C7 D7 2.2 F 11 -IN7 +IN7 Back light luminousity switching signal CH7 12 R37 24 k DTC7 R38 47 k 9 H FB8 4 C28 R31 0.1 F R16 130 k 1 k 5 -IN8 R32 10 k R39 30 k +IN8 R40 10 k 6 H VSS(0) (1.8 V) C40 1 F D8 T1 D10 C42 1 F Vo8-1 (15 V) VCC(0) (5.8 V) C46 1 F 7 CH8 64 OUT8 C20 100 pF C41 1 F D9 Q8 -IN8(C) R48 68 k R49 10 k R41 2 RB8 R8 12 k 8 +IN8(C) DTC8 3 GND(O)-2 1 36 k R42 20 k C VCC 27 CTL-2 29 CTL-3 30 CTL-4 31 CS C30 0.1 F VB 36 C32 0.1 F Synchronous signal 28 CTL-1 H : ON (Power/CH1, 3, 4, 8) L : OFF (Standby mode) 32 35 SYNC 3V5V 0V RT R45 12 k 33 34 CT C31 100 pF CSCP 26 24 25 GND VREF C29 0.1 F (64 pin) 30 MB3881 * Enlarged view of A Vo1 (2.0 V) L1 33 H A VCC(O)-1 58 FB1 A R17 12 k R18 20 k C21 0.1 F R9 1 k R1 OUT1-1 240 C13 2200 pF VSS(O)-1 VDD(O) 51 OUT1-2 C33 1 F C1 Q9 D1 2.2 F Q1 47 50 49 52 46 -IN1 CH1 DTC1 48 B C8 2.2 F L3 15 H L2 15 H C34 C14 3900 pF 1 F C2 Q10 D2 2.2 F Vo2 (2.8 V) Q2 R2 75 OUT2-1 FB2 B R19 20 k R20 16 k C22 0.1 F R10 1 k 44 53 43 -IN2 CH2 54 OUT2-2 Vo3 (5.0 V) C C9 2.2 F L5 15 H L4 6.8 H C35 C15 3900 pF 1 F C3 D3 2.2 F R33 24 k DTC2 R34 47 k 45 Q3 R3 75 OUT3 FB3 C R21 39 k R22 13 k C23 0.1 F R11 1 k 41 56 40 -IN3 CH3 R46 24 k DTC3 R47 47 k 42 Vo4 (5.0 V) D C10 2.2 F L7 15 H L6 6.8 H C36 C16 3900 pF 1 F C4 D4 2.2 F Q4 R4 75 OUT4 FB4 D R23 39 k R24 13 k C24 0.1 F R12 1 k 38 57 37 -IN4 CH4 R35 24 k DTC4 R36 47 k 39 GND(O)-1 55 31 MB3881 * Enlarged view of B Vo5 (DRUM) L8 33 H E 59 FB5 E Vin (3.6 V) R25 5.1 k C25 0.1 F R13 1 k 20 60 Q5 VCC(O)-2 R5 3 k OUT5 C37 C17 470 pF VSS(O)-2 1 F C5 D5 2.2 F 21 -IN5 R26 20 k -IN5(C) 23 22 19 63 CH5 Motor control signal +IN5 DTC5 F Q6 FB6 F R27 15 k C26 0.1 F R14 1 k R28 20 k -IN6(C) Motor control signal Vo6 (CAP) L9 14 61 R6 1 k OUT6 C38 C18 680 pF 1 F 33 H C6 D6 2.2 F 15 -IN6 CH6 17 16 +IN6 R43 24 k OVP 18 R44 Overvoltage 47 k threshold setting voltage DTC6 13 G Q7 C11 2.2 F L11 15 H L10 15 H Vo7 (B.L) FB7 G R29 75 k C27 0.1 F R15 1 k 10 62 R7 100 OUT7 C39 C19 2200 pF 1 F C7 D7 2.2 F 11 -IN7 R30 15 k CH7 +IN7 Back light luminousity switching signal 12 R37 24 k DTC7 R38 47 k 9 32 MB3881 * Enlarged view of C FB8 4 C28 0.1 F R31 R16 130 k 1 k 5 -IN8 R32 10 k R39 30 k R40 10 k +IN8 6 H H VSS(0) (1.8 V) C40 1 F D8 T1 D10 C42 1 F Vo8-1 (15 V) VCC(0) (5.8 V) C46 1 F 7 CH8 64 OUT8 C20 100 pF C41 1 F D9 Q8 D11 D12 C43 1 F C44 1 F D13 C45 1 F 8 R49 +IN8(C) 10 k R41 DTC8 -IN8(C) R48 68 k 2 RB8 R8 12 k 3 GND(O)-2 1 36 k R42 20 k 27 CTL-2 29 CTL-3 30 CTL-4 31 CS C30 0.1 F VB 36 C32 0.1 F 35 33 34 CT C31 100 pF CSCP 26 24 25 GND VCC 28 CTL-1 H : ON (Power/CH1, 3, 4, 8) L : OFF ( Standby mode ) (64 pin) 32 Synchronous signal SYNC 3V5V 0V RT R45 12 k VREF C29 0.1 F 33 MB3881 s PARTS LIST COMPONENT Q1 to Q7 Q8 Q9, Q10 D1 to D9 D10 to D13 L1 L2, L3 L4 L5 L6 L7 L8, L9 L10, L11 T1 C1 to C11 C13 C14 to C16 C17 C18 C19 C20 C21 to C30 C31 C32 C33 to C46 R1 R2 to R4 R5 R6 R7 R8 R9 to R16 R17 R18, R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 ITEM SPECIFICATION VCEO = -12 V VCEO = 15 V VDSS = 30 V VF = 0.42 V (max.) , IR = 1 mA VF = 0.77 V, IR = 10 A (max.) 33 H 15 H 6.8 H 15 H 6.8 H 15 H 33 H 15 H 2.2 F 2200 pF 3900 pF 470 pF 680 pF 2200 pF 100 pF 0.1 F 100 pF 0.1 F 1 F 240 75 3 k 1 k 100 12 k 1 k 12 k 20 k 16 k 39 k 13 k 39 k 13 k 5.1 k 20 k 15 k 20 k 75 k 15 k 130 k 10 k 0.69 A, 148 m 1 A, 74.5 m 1.5 A, 35.4 m 1A, 74.5 m 1.5 A, 35.4 m 1 A, 74.5 m 0.69 A, 148 m 1 A, 74.5 m 16 V 50 V 50 V 50 V 50 V 50 V 50 V 16 V 50 V 16 V 25 V 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W VENDOR SANYO SANYO Fairchild ORIGIN ORIGIN TDK TDK TDK TDK TDK TDK TDK TDK SUMIDA PARTS No. CPH3106 CPH3206 NDS355AN F1J2H F02J9 SLF6028T-330MR69 SLF6028T-150M1R0 SLF6028T-6R8M1R5 SLF6028T-150M1R0 SLF6028T-6R8M1R5 SLF6028T-150M1R0 SLF6028T-330MR69 SLF6028T-150M1R0 CLQ72B PNP Tr NPN Tr FET Diode Diode Coil Coil Coil Coil Coil Coil Coil Coil Transformer Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor (Continued) 34 MB3881 (Continued) COMPONENT R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 ITEM SPECIFICATION 24 k 47 k 24 k 47 k 24 k 47 k 30 k 10 k 36 k 20 k 24 k 47 k 12 k 24 k 47 k 68 k 10 k 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W 1/16 W VENDOR PARTS No. Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Note : SANYO : SANYO Electric Co., Ltd. Fairchild : Fairchild Semiconductor Corporation ORIGIN : Origin Electric Co., Ltd. TDK : TDK Corporation SUMIDA : Sumida Electric Co., Ltd. 35 MB3881 s REFERENCE DATA Conversion efficiency vs. load current (CH1 : Down conversion method with synchronous rectification) 95 94 Iin Vin R1 240 C37 C15 2200 pF 1 F A Q1 L2 33 H IL C1 Q9 D1 2.2 F VO1 x IL Vin x Iin VO1 (2.0 V) Conversion efficiency (%) 93 To OUT1-1 92 91 90 89 88 87 86 85 0 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V Vin = 6 V To OUT1-2 = x 100 (%) Ta = +25 C 2 V output VCC (O) = Vin + 2.2 V VSS (O) = Vin - 1.8 V 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) Conversion efficiency vs. load current (CH2 : Zeta method with synchronous rectification) 90 88 Iin Vin Q2 C10 L3 C38 C16 3900 pF 1 F 15 H C2 Q10 D2 2.2 F VO2 x IL Vin x Iin B 2.2 F L4 15 H IL VO2 (2.8 V) Conversion efficiency (%) 86 84 82 80 78 76 74 72 70 0 To OUT2-1 R2 75 To OUT2-2 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V Vin = 6 V = x 100 (%) Ta = +25 C 2.8 V output VCC (O) = Vin + 2.2 V VSS (O) = Vin - 1.8 V 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) (Continued) 36 MB3881 (Continued) Conversion efficiency vs. load current (CH3 : Zeta method ) 90 88 Iin Vin To VDD (O) C11 2.2 F L5 C39 6.8 H C17 3900 pF 1 F C3 D3 2.2 F C L6 15 H IL VO3 (5.0 V) Q3 Conversion efficiency (%) 86 84 82 80 78 76 74 72 70 0 Vin = 2.5 V Vin = 3 V Vin = 3.6 V Vin = 4.2 V Vin = 6 V To OUT3 R3 75 = VO3 x IL Vin x Iin x 100 (%) Ta = +25 C 5 V ouputt VCC (O) = Vin + 2.2 V VSS (O) = Vin - 1.8 V 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) 37 MB3881 s USAGE PRECAUTION 1. Never use setting exceeding maximum rated conditions. Exceeding maximum rated conditions may cause permanent damage to the LSI. Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding recommended operating conditions may adversely affect LSI reliability. 2. Use this device within recommended operating conditions. Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed conditions for each parameter. 3. Printed circuit board ground lines should be set up with consideration for common impedance. 4. Take appropriate static electricity measures. * * * * Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. Work platforms, tools, and instruments should be properly grounded. Working personnel should be grounded with resistance of 250 k to 1 M between body and ground. 5. Do not apply negative voltages. The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation. s ORDERING INFORMATION Part number MB3881PFF Package 64-pin plastic LQFP (FPT-64P-M16) Remarks 38 MB3881 s PACKAGE DIMENSION 64-pin plastic LQFP (FPT-64P-M16) 9.000.20(.354.008)SQ 7.000.20(.276.008)SQ 48 33 1.70(.067)MAX 1.400.10 (.055.004) 0.100.10 (.004.004) 49 32 Details of "A" part 0.10(.004) INDEX (1.00(.039)) 64 17 1 16 "A" 3.53.5 0.15 -0.05 .006 +0.10 +.004 -.002 0.500.25 (.020.010) 0.40(.016) 0.180.03 (.007.001) C 1999 FUJITSU LIMITED F64027SC-2-1 Dimensions in: mm (inches) 39 MB3881 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan. http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ F0004 (c) FUJITSU LIMITED Printed in Japan |
Price & Availability of MB3881PFF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |