|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
GS881Z18/32/36B(T/D)-xxxV 100-Pin TQFP & 165-Bump BGA Commercial Temp Industrial Temp Features * User-configurable Pipeline and Flow Through mode * NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization * Fully pin-compatible with both pipelined and flow through NtRAMTM, NoBLTM and ZBTTM SRAMs * IEEE 1149.1 JTAG-compatible Boundary Scan * On-chip write parity checking; even or odd selectable * 1.8 V or 2.5 V core power supply * 1.8 V or 2.5 V I/O supply * LBO pin for Linear or Interleave Burst mode * Pin-compatible with 2M, 4M, and 18M devices * Byte write operation (9-bit Bytes) * 3 chip enable signals for easy depth expansion * ZZ pin for automatic power-down * JEDEC-standard packages * RoHS-compliant 100-lead TQFP and 165-bump BGA packages available 9Mb Pipelined and Flow Through Synchronous NBT SRAM 250 MHz-150 MHz 1.8 V or 2.5 V VDD 1.8 V or 2.5 V I/O Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable, ZZ and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex offchip write pulse generation required by asynchronous SRAMs and simplifies input signal timing. The GS881Z18/32/36B(T/D)-xxxV may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the risingedge-triggered registers that capture input signals, the device incorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock. The GS881Z18/32/36B(T/D)-xxxV is implemented with GSI's high performance CMOS technology and is available in JEDEC-standard 100-pin TQFP and 165-bump BGA packages. Functional Description The GS881Z18/32/36B(T/D)-xxxV is a 9Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/ single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles. Paramter Synopsis -250 Pipeline 3-1-1-1 tKQ tCycle Curr (x18) Curr (x32/x36) tKQ tCycle Curr (x18) Curr (x32/x36) 3.0 4.0 200 230 5.5 5.5 160 185 -200 3.0 5.0 170 195 6.5 6.5 140 160 -150 3.8 6.7 140 160 7.5 7.5 128 145 Unit ns ns mA mA ns ns mA mA Flow Through 2-1-1-1 Rev: 1.00 6/2006 1/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV GS881Z18BT-xxxV 100-Pin TQFP Pinout (Package T) VDDQ VSS NC NC DQB DQB VSS VDDQ DQB DQB FT VDD NC VSS DQB DQB6 VDD VSS DQB DQB DQPB NC VSS VDDQ NC NC NC NC NC NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 512K x 18 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A A E1 E2 NC NC BB BA E3 VDD VSS CK W CKE G ADV NC A A A A NC NC VDDQ VSS NC DQPA DQA DQA VSS VDDQ DQA DQA VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA NC NC VSS VDDQ NC NC NC Rev: 1.00 6/2006 LBO A A A A A1 A0 TMS TDI VSS VDD TDO TCK A A A A A A A1 2/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV GS881Z32BT-xxxV 100-Pin TQFP Pinout (Package T) NC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC FT VDD NC VSS DQD DQD2 VDDQ VSS DQD DQD DQD DQD VSS VDDQ DQD DQD NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 256K x 32 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A A E1 E2 BD BC BB BA E3 VDD VSS CK W CKE G ADV NC A A A NC DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA NC Rev: 1.00 6/2006 LBO A A A A A1 A0 TMS TDI VSS VDD TDO TCK A A A A A A A 3/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV GS881Z36BT-xxxV 100-Pin TQFP Pinout (Package T) DQPC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC FT VDD NC VSS DQD DQD2 VDDQ VSS DQD DQD DQD DQD VSS VDDQ DQD DQD DQPD 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 256K x 36 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A A E1 E2 BD BC BB BA E3 VDD VSS CK W CKE G ADV NC A A A DQPB DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA DQPA Rev: 1.00 6/2006 LBO A A A A A1 A0 TMS TDI VSS VDD TDO TCK A A A A A A A 4/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV 100-Pin TQFP Pin Descriptions Symbol A0, A1 A CK BA BB BC BD W E1 E2 E3 G ADV CKE NC DQA DQB DQC DQD ZZ FT LBO TMS TDI TDO TCK VDD VSS VDDQ In In In Type In In In In In In In In In In In In In In -- I/O I/O I/O I/O In In In Description Burst Address Inputs; Preload the burst counter Address Inputs Clock Input Signal Byte Write signal for data inputs DQA1-DQA9; active low Byte Write signal for data inputs DQB1-DQB9; active low Byte Write signal for data inputs DQC1-DQC9; active low Byte Write signal for data inputs DQD1-DQD9; active low Write Enable; active low Chip Enable; active low Chip Enable--Active High. For self decoded depth expansion Chip Enable--Active Low. For self decoded depth expansion Output Enable; active low Advance/Load; Burst address counter control pin Clock Input Buffer Enable; active low No Connect Byte A Data Input and Output pins Byte B Data Input and Output pins Byte C Data Input and Output pins Byte D Data Input and Output pins Power down control; active high Pipeline/Flow Through Mode Control; active low Linear Burst Order; active low. Scan Test Mode Select Scan Test Data In Scan Test Data Out Scan Test Clock Core power supply Ground Output driver power supply Rev: 1.00 6/2006 5/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV 165 Bump BGA--x18 Commom I/O--Top View (Package D) 1 A B C D E F G H J K L M N P R NC NC NC NC NC NC NC FT DQB DQB DQB DQB DQB NC LBO 2 A A NC DQB DQB DQB DQB MCH NC NC NC NC NC NC NC 3 E1 E2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 4 BB NC VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 5 NC BA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS 6 E3 CK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC A1 A0 7 CKE W VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK 8 ADV G VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 9 A17 NC VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 10 A A NC NC NC NC NC NC DQA DQA DQA DQA NC A A 11 A NC DQA DQA DQA DQA DQA ZZ NC NC NC NC NC NC A A B C D E F G H J K L M N P R 11 x 15 Bump BGA--13 mm x 15 mm Body--1.0 mm Bump Pitch Rev: 1.00 6/2006 6/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV 165 Bump BGA--x32 Common I/O--Top View (Package D) 1 A B C D E F G H J K L M N P R NC NC NC DQC DQC DQC DQC FT DQD DQD DQD DQD NC NC LBO 2 A A NC DQC DQC DQC DQC MCH DQD DQD DQD DQD NC NC NC 3 E1 E2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 4 BC BD VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 5 BB BA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS 6 E3 CK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC A1 A0 7 CKE W VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK 8 ADV G VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 9 A17 NC VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 10 A A NC DQB DQB DQB DQB NC DQA DQA DQA DQA NC A A 11 NC NC NC DQB DQB DQB DQB ZZ DQA DQA DQA DQA NC NC A A B C D E F G H J K L M N P R 11 x 15 Bump BGA--13 mm x 15 mm Body--1.0 mm Bump Pitch Rev: 1.00 6/2006 7/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV 165 Bump BGA--x36 Common I/O--Top View (Package D) 1 A B C D E F G H J K L M N P R NC NC DQPC DQC DQC DQC DQC FT DQD DQD DQD DQD DQPD NC LBO 2 A A NC DQC DQC DQC DQC MCH DQD DQD DQD DQD NC NC NC 3 E1 E2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 4 BC BD VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 5 BB BA VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS 6 E3 CK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC A1 A0 7 CKE W VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK 8 ADV G VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A 9 A NC VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A 10 A A NC DQB DQB DQB DQB NC DQA DQA DQA DQA NC A A 11 NC NC DQPB DQB DQB DQB DQB ZZ DQA DQA DQA DQA DQPA NC A A B C D E F G H J K L M N P R 11 x 15 Bump BGA--13 mm x 15 mm Body--1.0 mm Bump Pitch Rev: 1.00 6/2006 8/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV GS881Z18/32/36D-xxxV165-Bump BGA Pin Description Symbol A0, A1 A DQA DQB DQC DQD BA, BB, BC, BD NC CK CKE W E1 E3 E2 G ADV ZZ FT LBO TMS TDI TDO TCK MCH DNU VDD VSS VDDQ Type I I I/O I -- I I I I I I I I I I I I I O I -- -- I I I Description Address field LSBs and Address Counter Preset Inputs Address Inputs Data Input and Output pins Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low No Connect Clock Input Signal; active high Clock Enable; active low Write Enable; active low Chip Enable; active low Chip Enable; active low Chip Enable; active high Output Enable; active low Burst address counter advance enable; active high Sleep mode control; active high Flow Through or Pipeline mode; active low Linear Burst Order mode; active low Scan Test Mode Select Scan Test Data In Scan Test Data Out Scan Test Clock Must Connect High Do Not Use Core power supply I/O and Core Ground Output driver power supply Rev: 1.00 6/2006 9/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. Write Drivers BC Control Logic Data Coherency Sense Amps Rev: 1.00 6/2006 D K SA1 SA0 Burst Counter SA1' SA0' A0-An Q ADV K 18 Write Address Write Address LBO FT K K Register 1 Register 2 Match 10/37 Read, Write and Memory Array K Write Data W D K Q BA NC Parity Check D K DQa-DQn Write Data BB NC Q BD E1 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. E2 E3 FT Register 2 Register 1 GS881Z18/32/36B(T/D)-xxxV NBT SRAM Functional Block Diagram CK K K CKE GS881Z18/32/36B(T/D)-xxxV (c) 2006, GSI Technology G GS881Z18/32/36B(T/D)-xxxV Functional Details Clocking Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation. Pipeline Mode Read and Write Operations All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2 and E3). Deassertion of any one of the Enable inputs will deactivate the device. Function Read Write Byte "a" Write Byte "b" Write Byte "c" Write Byte "d" Write all Bytes Write Abort/NOP W H L L L L L L BA X L H H H L H BB X H L H H L H BC X H H L H L H BD X H H H L L H Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins. Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (BA, BB, BC & BD) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock. Flow Through Mode Read and Write Operations Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode. Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock. Rev: 1.00 6/2006 11/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Synchronous Truth Table Operation Read Cycle, Begin Burst Read Cycle, Continue Burst NOP/Read, Begin Burst Dummy Read, Continue Burst Write Cycle, Begin Burst Write Cycle, Continue Burst Write Abort, Continue Burst Deselect Cycle, Power Down Deselect Cycle, Power Down Deselect Cycle, Power Down Deselect Cycle Deselect Cycle, Continue Sleep Mode Clock Edge Ignore, Stall Type Address CK CKE ADV W Bx E1 E2 E3 G ZZ R B R B W B B D D D D D External Next External Next External Next Next None None None None None None Current L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H X L-H L L L L L L L L L L L L X H L H L H L H H L L L L H X X H X H X L X X X X X L X X X X X X X L L H X X X H X X X L X L X L X X H X X L X X X H X H X H X X X X L H X X X L X L X L X X X H X L X X X L L H H X X X X X X X X X X L L L L L L L L L L L L H L DQ Q Q High-Z High-Z D D Notes 1,10 2 1,2,10 3 1,3,10 High-Z 1,2,3,10 High-Z High-Z High-Z High-Z High-Z High-Z 4 1 1 Notes: 1. Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Deselect cycle is executed first. 2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is sampled low but no Byte Write pins are active so no write operation is performed. 3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write cycles. 4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus will remain in High Z. 5. X = Don't Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals are Low 6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge. 7. Wait states can be inserted by setting CKE high. 8. This device contains circuitry that ensures all outputs are in High Z during power-up. 9. A 2-bit burst counter is incorporated. 10. The address counter is incriminated for all Burst continue cycles. Rev: 1.00 6/2006 12/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Pipelined and Flow Through Read Write Control State Diagram D B Deselect R W D D W R R New Read B New Write W B R W R W B Burst Read D Burst Write D B Key Input Command Code Notes: 1. The Hold command (CKE Low) is not shown because it prevents any state change. Transition Current State (n) Next State (n+1) n n+1 2. W, R, B, and D represent input command codes as indicated in the Synchronous Truth Table. n+2 n+3 Clock (CK) Command Current State Next State Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram Rev: 1.00 6/2006 13/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Pipeline Mode Data I/O State Diagram Intermediate BW High Z (Data In) D R Intermediate W Intermediate Intermediate RB Data Out (Q Valid) D Intermediate W R High Z B D Intermediate Key Input Command Code Notes: 1. The Hold command (CKE Low) is not shown because it prevents any state change. Transition Current State (n) Transition Next State (n+2) Intermediate State (N+1) 2. W, R, B, and D represent input command codes as indicated in the Truth Tables. n n+1 n+2 n+3 Clock (CK) Command Current State Intermediate State Next State Current State and Next State Definition for Pipeline Mode Data I/O State Diagram Rev: 1.00 6/2006 14/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Flow Through Mode Data I/O State Diagram BW High Z (Data In) D R W RB Data Out (Q Valid) D W R High Z B D Key Input Command Code Notes: 1. The Hold command (CKE Low) is not shown because it prevents any state change. Transition Current State (n) Next State (n+1) n n+1 2. W, R, B, and D represent input command codes as indicated in the Truth Tables. n+2 n+3 Clock (CK) Command Current State Next State Current State and Next State Definition for: Pipeline and Flow through Read Write Control State Diagram Rev: 1.00 6/2006 15/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Burst Cycles Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode. Burst Order The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details. Mode Pin Functions Mode Name Burst Order Control Output Register Control Power Down Control Pin Name LBO FT ZZ State L H L H or NC L or NC H Function Linear Burst Interleaved Burst Flow Through Pipeline Active Standby, IDD = ISB Note: There is a pull-up device on the FT pin and a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in the above table. Burst Counter Sequences Linear Burst Sequence A[1:0] A[1:0] A[1:0] A[1:0] 1st address 2nd address 3rd address 4th address 00 01 10 11 01 10 11 00 10 11 00 01 11 00 01 10 Interleaved Burst Sequence A[1:0] A[1:0] A[1:0] A[1:0] 1st address 2nd address 3rd address 4th address 00 01 10 11 01 00 11 10 10 11 00 01 11 10 01 00 Note: The burst counter wraps to initial state on the 5th clock. Note: The burst counter wraps to initial state on the 5th clock. BPR 1999.05.18 Rev: 1.00 6/2006 16/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Sleep Mode During normal operation, ZZ must be pulled low, either by the user or by it's internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time. Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode. Sleep Mode Timing Diagram tKH tKC CK tZZR tZZS ZZ tZZH tKL Designing for Compatibility The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as VDD or VDDQ on pipelined parts and VSS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets. Pin 66, a No Connect (NC) on GSI's GS8160Z18/36 NBT SRAM, the Parity Error open drain output on GSI's GS881Z18/36B NBT SRAM, is often marked as a power pin on other vendor's NBT compatible SRAMs. Specifically, it is marked VDD or VDDQ on pipelined parts and VSS on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafeTM parity feature may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline mode applications or tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open. Rev: 1.00 6/2006 17/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Absolute Maximum Ratings (All voltages reference to VSS) Symbol VDD VDDQ VI/O VIN IIN IOUT PD TSTG TBIAS Description Voltage on VDD Pins Voltage on VDDQ Pins Voltage on I/O Pins Voltage on Other Input Pins Input Current on Any Pin Output Current on Any I/O Pin Package Power Dissipation Storage Temperature Temperature Under Bias Value -0.5 to 4.6 -0.5 to VDD -0.5 to VDDQ +0.5 ( 4.6 V max.) -0.5 to VDD +0.5 ( 4.6 V max.) +/-20 +/-20 1.5 -55 to 125 -55 to 125 Unit V V V V mA mA W o o C C Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version) Parameter 1.8 V Supply Voltage 2.5 V Supply Voltage 1.8 V VDDQ I/O Supply Voltage 2.5 V VDDQ I/O Supply Voltage Symbol VDD1 VDD2 VDDQ1 VDDQ2 Min. 1.7 2.3 1.7 2.3 Typ. 1.8 2.5 1.8 2.5 Max. 2.0 2.7 VDD VDD Unit V V V V Notes Notes: 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. Input Under/overshoot voltage must be -2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC. Rev: 1.00 6/2006 18/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV VDDQ2 & VDDQ1 Range Logic Levels Parameter VDD Input High Voltage VDD Input Low Voltage Symbol VIH VIL Min. 0.6*VDD -0.3 Typ. -- -- Max. VDD + 0.3 0.3*VDD Unit V V Notes 1 1 Notes: 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. Input Under/overshoot voltage must be -2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC. Recommended Operating Temperatures Parameter Ambient Temperature (Commercial Range Versions) Ambient Temperature (Industrial Range Versions) Symbol TA TA Min. 0 -40 Typ. 25 25 Max. 70 85 Unit C C Notes 2 2 Notes: 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. Input Under/overshoot voltage must be -2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC. Undershoot Measurement and Timing VIH Overshoot Measurement and Timing 20% tKC VDD + 2.0 V VSS 50% VSS - 2.0 V 20% tKC 50% VDD VIL Capacitance (TA = 25oC, f = 1 MHZ, VDD = 2.5 V) Parameter Input Capacitance Input/Output Capacitance Note: These parameters are sample tested. Symbol CIN CI/O Test conditions VIN = 0 V VOUT = 0 V Typ. 4 6 Max. 5 7 Unit pF pF Rev: 1.00 6/2006 19/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV AC Test Conditions Parameter Input high level Input low level Input slew rate Input reference level Output reference level Output load Conditions VDD - 0.2 V 0.2 V 1 V/ns VDD/2 VDDQ/2 Fig. 1 VDDQ/2 * Distributed Test Jig Capacitance Figure 1 Output Load 1 DQ 50 30pF* Notes: 1. Include scope and jig capacitance. 2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted. 3. Device is deselected as defined by the Truth Table. DC Electrical Characteristics Parameter Input Leakage Current (except mode pins) FT, ZZ Input Current Output Leakage Current Symbol IIL IIN IOL Test Conditions VIN = 0 to VDD VDD VIN 0 V Output Disable, VOUT = 0 to VDD Min -1 uA -100 uA -1 uA Max 1 uA 100 uA 1 uA DC Output Characteristics (1.8 V/2.5 V Version) Parameter 1.8 V Output High Voltage 2.5 V Output High Voltage 1.8 V Output Low Voltage 2.5 V Output Low Voltage Symbol VOH1 VOH2 VOL1 VOL2 Test Conditions IOH = -4 mA, VDDQ = 1.6 V IOH = -8 mA, VDDQ = 2.375 V IOL = 4 mA IOL = 8 mA Min VDDQ - 0.4 V 1.7 V -- -- Max -- -- 0.4 V 0.4 V Rev: 1.00 6/2006 20/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Operating Currents -250 Parameter Test Conditions Mode Symbol 0 to 70C 200 30 160 25 185 15 145 15 40 40 85 60 -200 -40 to 85C 220 30 180 25 205 15 165 15 50 50 90 65 -150 Unit 0 -40 0 -40 to 70C to 85C to 70C to 85C 170 25 140 20 155 15 130 10 40 40 75 50 190 25 160 20 175 15 150 10 50 50 80 55 140 20 130 15 130 10 120 8 40 40 60 50 160 20 150 15 150 10 140 8 50 50 65 55 Pipeline (x32/x36) Operating Current Device Selected; All other inputs VIH or VIL Output open (x18) Flow Through Standby Current Deselect Current ZZ VDD - 0.2 V Device Deselected; All other inputs VIH or VIL Pipeline Flow Through Pipeline -- Flow Through Flow Through Pipeline IDD IDDQ IDD IDDQ IDD IDDQ IDD IDDQ ISB ISB IDD IDD mA mA mA mA mA mA mA mA -- Notes: 1. IDD and IDDQ apply to any combination of VDD1, VDD2, VDDQ1, and VDDQ2 operation. 2. All parameters listed are worst case scenario. Rev: 1.00 6/2006 21/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV AC Electrical Characteristics Parameter Clock Cycle Time Clock to Output Valid Clock to Output Invalid Clock to Output in Low-Z Setup time Hold time Clock Cycle Time Clock to Output Valid Clock to Output Invalid Clock to Output in Low-Z Setup time Hold time Clock HIGH Time Clock LOW Time Clock to Output in High-Z G to Output Valid G to output in Low-Z G to output in High-Z ZZ setup time ZZ hold time ZZ recovery Symbol tKC tKQ tKQX tLZ1 tS tH tKC tKQ tKQX tLZ tS tH tKH tKL tHZ1 tOE tOLZ1 tOHZ1 tZZS2 tZZH2 tZZR 1 -250 Min 4.0 -- 1.5 1.5 1.2 0.2 5.5 -- 2.0 2.0 1.5 0.5 1.3 1.7 1.5 -- 0 -- 5 1 20 Max -- 3.0 -- -- -- -- -- 5.5 -- -- -- -- -- -- 2.5 2.5 -- 2.5 -- -- -- Min 5.0 -- 1.5 1.5 1.4 0.4 6.5 -- 2.0 2.0 1.5 0.5 1.3 1.7 1.5 -- 0 -- 5 1 20 -200 Max -- 3.0 -- -- -- -- -- 6.5 -- -- -- -- -- -- 3.0 3.0 -- 3.0 -- -- -- Min 6.7 -- 1.5 1.5 1.5 0.5 7.5 -- 2.0 2.0 1.5 0.5 1.5 1.7 1.5 -- 0 -- 5 1 20 -150 Max -- 3.8 -- -- -- -- -- 7.5 -- -- -- -- -- -- 3.0 3.8 -- 3.8 -- -- -- Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Pipeline Flow Through Notes: 1. These parameters are sampled and are not 100% tested. 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above. Rev: 1.00 6/2006 22/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Pipeline Mode Timing (NBT) Write A Read B Suspend tKH tKL Read C tKC Write D writeno-op Read E Deselect CK tH tS A A tH tS B C D E CKE tH tS E* tH tS ADV tH tS W tH tS tS tH Bn tH tS tLZ tKQ Q(B) Q(C) D(D) Q(E) tHZ tKQX DQ D(A) Rev: 1.00 6/2006 23/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Flow Through Mode Timing (NBT) Write A Write B Write B+1 tKL tKH CK Read C tKC Cont Read D Write E Read F Write G tH tS CKE tH tS E tH tS ADV tH tS W tH tS Bn tH tS A0-An A B C D E F G tKQ tH tS DQ D(A) D(B) tKQ tLZ D(B+1) Q(C) tKQX tHZ Q(D) tLZ D(E) Q(F) tKQX D(G) tOLZ tOE tOHZ G *Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1 JTAG Port Operation Overview The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output drivers are powered by VDDQ. Disabling the JTAG Port It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected. Rev: 1.00 6/2006 24/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV JTAG Pin Descriptions Pin TCK TMS Pin Name Test Clock Test Mode Select I/O In In Description Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK. The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level. The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level. TDI Test Data In In TDO Test Data Out Output that is active depending on the state of the TAP state machine. Output changes in Out response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO. Note: This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up. JTAG Port Registers Overview The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins. Instruction Register The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state. Bypass Register The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM's JTAG Port to another device in the scan chain with as little delay as possible. Boundary Scan Register The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM's input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port's TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register. Rev: 1.00 6/2006 25/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV JTAG TAP Block Diagram * * * 108 * * * * * * * * 1 Boundary Scan Register 0 Bypass Register 210 0 Instruction Register TDI ID Code Register 31 30 29 TDO * *** 210 Control Signals TMS TCK Test Access Port (TAP) Controller Identification (ID) Register The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins. ID Register Contents GSI Technology JEDEC Vendor ID Code Presence Register 0 1 Not Used Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 X X X X X X X X X X X X X X X X X X X X 0 0 011011001 Rev: 1.00 6/2006 26/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Tap Controller Instruction Set Overview There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific (Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load address, data or control signals into the RAM or to preload the I/O buffers. When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01. When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table. JTAG Tap Controller State Diagram 1 Test Logic Reset 0 1 1 1 0 Run Test Idle Select DR 0 1 Select IR 0 1 Capture DR 0 Capture IR 0 Shift DR 1 1 0 1 Shift IR 1 0 Exit1 DR 0 Exit1 IR 0 Pause DR 1 0 Pause IR 1 0 Exit2 DR 1 0 Exit2 IR 1 0 Update DR 1 0 Update IR 1 0 Instruction Descriptions BYPASS When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path. SAMPLE/PRELOAD SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is Rev: 1.00 6/2006 27/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the TDI and TDO pins. EXTEST EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The EXTEST command does not block or override the RAM's input pins; therefore, the RAM's internal state is still determined by its input pins. Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST command is used to output the Boundary Scan Register's contents, in parallel, on the RAM's data output drivers on the falling edge of TCK when the controller is in the Update-IR state. Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM's input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM's output pins drive out the value of the Boundary Scan Register location with which each output pin is associated. IDCODE The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state. SAMPLE-Z If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state. RFU These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction. Rev: 1.00 6/2006 28/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV JTAG TAP Instruction Set Summary Instruction EXTEST IDCODE SAMPLE-Z RFU SAMPLE/ PRELOAD GSI RFU Code 000 001 010 011 100 101 110 Description Places the Boundary Scan Register between TDI and TDO. Preloads ID Register and places it between TDI and TDO. Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. Forces all RAM output drivers to High-Z. Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO. Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. GSI private instruction. Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO. Notes 1 1, 2 1 1 1 1 1 1 BYPASS 111 Places Bypass Register between TDI and TDO. Notes: 1. Instruction codes expressed in binary, MSB on left, LSB on right. 2. Default instruction automatically loaded at power-up and in test-logic-reset state. Rev: 1.00 6/2006 29/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV JTAG Port Recommended Operating Conditions and DC Characteristics (1.8/2.5 V Version) Parameter 1.8 V Test Port Input Low Voltage 2.5 V Test Port Input Low Voltage 1.8 V Test Port Input High Voltage 2.5 V Test Port Input High Voltage TMS, TCK and TDI Input Leakage Current TMS, TCK and TDI Input Leakage Current TDO Output Leakage Current Test Port Output High Voltage Test Port Output Low Voltage Test Port Output CMOS High Test Port Output CMOS Low Symbol VILJ1 VILJ2 VIHJ1 VIHJ2 IINHJ IINLJ IOLJ VOHJ VOLJ VOHJC VOLJC Min. -0.3 -0.3 0.6 * VDD1 0.6 * VDD2 -300 -1 -1 1.7 -- VDDQ - 100 mV -- Max. 0.3 * VDD1 0.3 * VDD2 VDD1 +0.3 VDD2 +0.3 1 100 1 -- 0.4 -- 100 mV Unit Notes V V V V uA uA uA V V V V 1 1 1 1 2 3 4 5, 6 5, 7 5, 8 5, 9 Notes: 1. Input Under/overshoot voltage must be -2 V < Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC. 2. VILJ VIN VDDn 3. 0 V VIN VILJn 4. Output Disable, VOUT = 0 to VDDn 5. The TDO output driver is served by the VDDQ supply. 6. IOHJ = -4 mA 7. IOLJ = + 4 mA 8. IOHJC = -100 uA 9. IOLJC = +100 uA JTAG Port AC Test Conditions Parameter Input high level Input low level Input slew rate Input reference level Output reference level Conditions VDD - 0.2 V 0.2 V 1 V/ns VDDQ/2 VDDQ/2 DQ JTAG Port AC Test Load 50 VDDQ/2 * Distributed Test Jig Capacitance 30pF* Notes: 1. Include scope and jig capacitance. 2. Test conditions as shown unless otherwise noted. Rev: 1.00 6/2006 30/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV JTAG Port Timing Diagram tTKC TCK tTH tTS TDI tTH tTS TMS tTKQ TDO tTH tTS Parallel SRAM input tTKH tTKL JTAG Port AC Electrical Characteristics Parameter TCK Cycle Time TCK Low to TDO Valid TCK High Pulse Width TCK Low Pulse Width TDI & TMS Set Up Time TDI & TMS Hold Time Symbol tTKC tTKQ tTKH tTKL tTS tTH Min 50 -- 20 20 10 10 Max -- 20 -- -- -- -- Unit ns ns ns ns ns ns Boundary Scan (BSDL Files) For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications Engineering Department at: apps@gsitechnology.com. Rev: 1.00 6/2006 31/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV TQFP Package Drawing (Package T) L Symbol A1 A2 b c D D1 E E1 e L L1 Y c Pin 1 Description Standoff Body Thickness Lead Width Lead Thickness Terminal Dimension Package Body Terminal Dimension Package Body Lead Pitch Foot Length Lead Length Coplanarity Lead Angle Min. Nom. Max 0.05 1.35 0.20 0.09 21.9 19.9 15.9 13.9 -- 0.45 -- 0.10 1.40 0.30 -- 22.0 20.0 16.0 14.0 0.65 0.60 1.00 0.15 1.45 0.40 0.20 22.1 20.1 16.1 14.1 -- 0.75 -- 0.10 L1 e b D D1 A1 Y A2 E1 E 0 -- 7 Notes: 1. All dimensions are in millimeters (mm). 2. Package width and length do not include mold protrusion. Rev: 1.00 6/2006 32/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Package Dimensions--165-Bump FPBGA (Package D) A1 CORNER TOP VIEW BOTTOM VIEW O0.10 M C O0.25 M C A B O0.40~0.60 (165x) A1 CORNER 1 2 3 4 5 6 7 8 9 10 11 A B C D E F G H J K L M N P R 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R 1.0 10.0 B 0.20(4x) 130.05 1.0 150.05 14.0 A Rev: 1.00 6/2006 0.36~0.46 1.40 MAX. C SEATING PLANE 0.20 C 33/37 1.0 1.0 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Ordering Information--GSI NBT Synchronous SRAM Org 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 256K x 36 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 256K x 36 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 256K x 36 512K x 18 Part Number1 GS881Z18BT-250V GS881Z18BT-200V GS881Z18BT-150V GS881Z32BT-250V GS881Z32BT-200V GS881Z32BT-150V GS881Z36BT-250V GS881Z36BT-200V GS881Z36BT-150V GS881Z18BT-250IV GS881Z18BT-200IV GS881Z18BT-150IV GS881Z32BT-250IV GS881Z32BT-200IV GS881Z32BT-150IV GS881Z36BT-250IV GS881Z36BT-200IV GS881Z36BT-150IV GS881Z18BGT-250V GS881Z18BGT-200V GS881Z18BGT-150V GS881Z32BGT-250V GS881Z32BGT-200V GS881Z32BGT-150V GS881Z36BGT-250V GS881Z36BGT-200V GS881Z36BGT-150V GS881Z18BGT-250IV Type NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT Voltage Option 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V Package TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP Speed2 (MHz/ns) 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 TA3 C C C C C C C C C I I I I I I I I I C C C C C C C C C I Status4 MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ 512K x 18 GS881Z18BGT-200IV NBT 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I PQ Notes: 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS881Z36BT-150IVT. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow through mode-selectable by the user . 3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. 4. MP = Mass Production. PQ = Pre-Qualification. 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings Rev: 1.00 6/2006 34/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Ordering Information--GSI NBT Synchronous SRAM Org 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 256K x 36 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 256K x 36 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 256K x 36 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 Part Number1 GS881Z18BGT-150IV GS881Z32BGT-250IV GS881Z32BGT-200IV GS881Z32BGT-150IV GS881Z36BGT-250IV GS881Z36BGT-200IV GS881Z36BGT-150IV GS881Z18BD-250V GS881Z18BD-200V GS881Z18BD-150V GS881Z32BD-250V GS881Z32BD-200V GS881Z32BD-150V GS881Z36BD-250V GS881Z36BD-200V GS881Z36BD-150V GS881Z18BD-250IV GS881Z18BD-200IV GS881Z18BD-150IV GS881Z32BD-250IV GS881Z32BD-200IV GS881Z32BD-150IV GS881Z36BD-250IV GS881Z36BD-200IV GS881Z36BD-150IV GS881Z18BGD-250V GS881Z18BGD-200V GS881Z18BGD-150V GS881Z32BGD-250V GS881Z32BGD-200V Type NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT Voltage Option 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V Package RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP RoHS-compliant TQFP 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA Speed2 (MHz/ns) 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 TA3 I I I I I I I C C C C C C C C C I I I I I I I I I C C C C C Status4 PQ PQ PQ PQ PQ PQ PQ MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP MP PQ PQ PQ PQ PQ 256K x 32 GS881Z32BGD-150V NBT 1.8 V or 2.5 V RoHS-compliant 165 BGA 150/7.5 C PQ Notes: 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS881Z36BT-150IVT. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow through mode-selectable by the user . 3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. 4. MP = Mass Production. PQ = Pre-Qualification. 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings Rev: 1.00 6/2006 35/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV Ordering Information--GSI NBT Synchronous SRAM Org 256K x 36 256K x 36 256K x 36 512K x 18 512K x 18 512K x 18 256K x 32 256K x 32 256K x 32 256K x 36 256K x 36 Part Number1 GS881Z36BGD-250V GS881Z36BGD-200V GS881Z36BGD-150V GS881Z18BGD-250IV GS881Z18BGD-200IV GS881Z18BGD-150IV GS881Z32BGD-250IV GS881Z32BGD-200IV GS881Z32BGD-150IV GS881Z36BGD-250IV GS881Z36BGD-200IV Type NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT NBT Voltage Option 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V 1.8 V or 2.5 V Package RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA RoHS-compliant 165 BGA Speed2 (MHz/ns) 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 150/7.5 250/5.5 200/6.5 TA3 C C C I I I I I I I I Status4 PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ PQ 256K x 36 GS881Z36BGD-150IV NBT 1.8 V or 2.5 V RoHS-compliant 165 BGA 150/7.5 I PQ Notes: 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS881Z36BT-150IVT. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow through mode-selectable by the user . 3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. 4. MP = Mass Production. PQ = Pre-Qualification. 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings Rev: 1.00 6/2006 36/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS881Z18/32/36B(T/D)-xxxV 9Mb Sync SRAM Datasheet Revision History DS/DateRev. Code: Old; New 881ZxxB_V_r1 Types of Changes Format or Content Page;Revisions;Reason * Creation of new datasheet Rev: 1.00 6/2006 37/37 (c) 2006, GSI Technology Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. |
Price & Availability of GS881Z36BD-200IV |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |