![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DISCRETE SEMICONDUCTORS DATA SHEET andbook, halfpage MBD128 BF1206 Dual N-channel dual-gate MOS-FET Product specification 2003 Nov 17 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET FEATURES * Two low noise gain controlled amplifiers in a single package * Superior cross-modulation performance during AGC * High forward transfer admittance * High forward transfer admittance to input capacitance ratio. APPLICATIONS * Gain controlled low noise amplifiers for VHF and UHF applications with 5 V supply voltage, such as digital and analog television tuners. DESCRIPTION The BF1206 is a combination of two different dual gate MOS-FET amplifiers with shared source and gate 2 leads. The source and substrate are interconnected. Internal bias circuits enable DC stabilization and a very good cross-modulation performance during AGC. Integrated diodes between the gates and source protect against excessive input voltage surges. The transistor is encapsulated in SOT363 micro-miniature plastic package. AMP a BF1206 PINNING - SOT363 PIN 1 2 3 4 5 6 drain (b) source gate 1 (b) gate 1 (a) gate 2 drain (a) DESCRIPTION handbook, halfpage d (a) 5 4 g2 g1 (a) 6 AMP b 1 2 Top view 3 d (b) MAM480 s g1 (b) Marking code: L6-. Fig.1 Simplified outline and symbol. QUICK REFERENCE DATA SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT - - amp. a: ID = 18 mA amp. b: ID = 12 mA Cig1-s Crss Xmod input capacitance at gate 1 reverse transfer capacitance cross-modulation amp. a: ID = 18 mA; f = 1 MHz amp. b: ID = 12 mA; f = 1 MHz f = 1 MHz amp. a: input level for k = 1% at 40 dB AGC amp. b: input level for k = 1% at 40 dB AGC NF noise figure amp. a: f = 400 MHz; ID = 18 mA amp. b: f = 800 MHz; ID = 12 mA amp. a: f = 11 MHz; ID = 18 mA amp. b: f = 11 MHz; ID = 12 mA 2003 Nov 17 2 33 29 - - - 102 100 - - - - - - 38 34 2.4 1.7 15 105 103 1.3 1.4 3 3.5 Per MOS-FET; unless otherwise specified VDS ID yfs drain-source voltage drain current (DC) forward transfer admittance 6 30 48 44 2.9 2.2 - - - 1.9 2.0 - - V mA mS mS pF pF fF dBV dBV dB dB dB dB Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 CAUTION This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B. ORDERING INFORMATION PACKAGE TYPE NUMBER NAME BF1206 - DESCRIPTION plastic surface mounted package; 6 leads VERSION SOT363 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134). SYMBOL PARAMETER CONDITIONS - - - - Ts 107 C; note 1 - -65 - MIN. MAX. UNIT Per MOS-FET; unless otherwise specified VDS ID IG1 IG2 Ptot Tstg Tj Note 1. Ts is the temperature at the soldering point of the source lead. THERMAL CHARACTERISTICS SYMBOL Rth j-s PARAMETER thermal resistance from junction to soldering point VALUE 240 UNIT K/W drain-source voltage drain current (DC) gate 1 current gate 2 current total power dissipation storage temperature junction temperature 6 30 10 10 180 +150 150 V mA mA mA mW C C 2003 Nov 17 3 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 200 MLE257 Ptot (mW) 150 100 50 0 0 50 100 150 Ts (C) 200 Fig.2 Power derating curve. STATIC CHARACTERISTICS Tj = 25 C unless otherwise specified. SYMBOL PARAMETER CONDITIONS VG1-S = VG2-S = 0; ID = 10 A VGS = VDS = 0; IG1-S = 10 mA VGS = VDS = 0; IG2-S = 10 mA VG2-S = VDS = 0; IS-G1 = 10 mA VG1-S = VDS = 0; IS-G2 = 10 mA VDS = 5 V; VG2-S = 4 V; ID = 100 A VDS = 5 V; VG1-S = 5 V; ID = 100 A amp. a: VG2-S = 4 V; VDS = 5 V; RG = 91 k; note 1 MIN. MAX. - 10 10 1.5 1.5 1 1 23 17 50 20 UNIT Per MOS-FET unless otherwise specified V(BR)DSS V(BR)G1-SS V(BR)G2-SS V(F)S-G1 V(F)S-G2 VG1-S(th) VG2-S(th) IDSX drain-source breakdown voltage gate-source breakdown voltage gate-source breakdown voltage forward source-gate voltage forward source-gate voltage gate-source threshold voltage gate-source threshold voltage drain-source current 6 6 6 0.5 0.5 0.3 0.35 14 V V V V V V V mA mA nA nA amp. b: 9 VG2-S = 4 V; VDS = 5 V; RG = 150 k; note 1 IG1-S IG2-S Note 1. RG1 connects gate 1 to VGG = 5 V. gate cut-off current gate cut-off current VG1-S = 5 V; VG2-S = VDS = 0 VG2-S = 5 V; VG1-S = VDS = 0 - - 2003 Nov 17 4 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET DYNAMIC CHARACTERISTICS AMPLIFIER a Common source; Tamb = 25 C; VG2-S = 4 V; VDS = 5 V; ID = 18 mA; unless otherwise specified. SYMBOL yfs Cig1-ss Cig2-ss Coss Crss NF PARAMETER forward transfer admittance input capacitance at gate 1 input capacitance at gate 2 output capacitance noise figure f = 1 MHz f = 1 MHz f = 1 MHz f = 11 MHz; GS = 20 mS; BS = 0 f = 400 MHz; YS = YS opt f = 800 MHz; YS = YS opt Gtr power gain f = 200 MHz; GS = 2 mS; BS = BS opt; GL = 0.5 mS; BL = BL opt; note 1 f = 400 MHz; GS = 2 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 f = 800 MHz; GS = 3.3 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 Xmod cross-modulation input level for k = 1%; fw = 50 MHz; funw = 60 MHz; note 2 at 0 dB AGC at 10 dB AGC at 40 dB AGC Notes 1. Calculated from measured s-parameters. 2. Measured in Fig.35 test circuit. 90 - 102 - 92 105 - - - CONDITIONS pulsed; Tj = 25 C MIN. 33 - - - - - - - - - - TYP. 38 2.4 3.2 1.1 15 3 1.3 1.6 35 30 23 BF1206 MAX. 48 2.9 - - 30 - 1.9 2.2 - - - UNIT mS pF pF pF fF dB dB dB dB dB dB reverse transfer capacitance f = 1 MHz dBV dBV dBV 2003 Nov 17 5 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET GRAPHS FOR AMPLIFIER a BF1206 handbook, halfpage 30 MLE258 (1) (2) (3) (4) (5) handbook, halfpage 32 MLE259 ID (mA) 20 ID (mA) 24 (1) (2) (3) (4) (5) (6) 16 10 (7) (6) 8 (7) 0 0 0.5 1 1.5 VG1-S (V) 2 0 0 2 4 VDS (V) 6 VDS = 5 V; Tj = 25 C. (1) (2) (3) (4) VG2-S = 4 V. VG2-S = 3.5 V. VG2-S = 3 V. VG2-S = 2.5 V. (5) VG2-S = 2 V. (6) VG2-S = 1.5 V. (7) VG2-S = 1 V. VG2-S = 4 V; Tj = 25 C. (1) VG1-S = 1.5 V. (2) VG1-S = 1.4 V. (3) VG1-S = 1.3 V. (4) VG1-S = 1.2 V. (5) VG1-S = 1.1 V. (6) VG1-S = 1 V. (7) VG1-S = 0.9 V. Fig.3 Transfer characteristics; typical values; amplifier a. Fig.4 Output characteristics; typical values; amplifier a. 2003 Nov 17 6 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 100 IG1 MLE260 (1) (2) handbook, halfpage 50 MLE261 (A) 80 (3) (4) yfs (mS) (3) (2) 40 (1) (4) 60 (5) 30 (5) 40 20 (6) (6) 20 (7) 1 (7) 0 0 0.5 1 1.5 2 VG1-S (V) 0 0 10 20 ID(mA) 30 VDS = 5 V; Tj = 25 C. (1) VG2-S = 4 V. (2) VG2-S = 3.5 V. (3) VG2-S = 3 V. (4) VG2-S = 2.5 V. (5) VG2-S = 2 V. (6) VG2-S = 1.5 V. (7) VG2-S = 1 V. VDS = 5 V; Tj = 25 C. (1) VG2-S = 4 V. (2) VG2-S = 3.5 V. (3) VG2-S = 3 V. (4) VG2-S = 2.5 V. (5) VG2-S = 2 V. (6) VG2-S = 1.5 V. (7) VG2-S = 1 V. Fig.5 Gate 1 current as a function of gate 1 voltage; typical values; amplifier a. Fig.6 Forward transfer admittance as a function of drain current; typical values; amplifier a. handbook, halfpage 24 MLE262 handbook, halfpage 20 MLE263 ID (mA) 16 ID (mA) 16 12 8 8 4 0 0 10 20 30 40 50 IG1 (A) 0 0 1 2 3 4 VGG (V) 5 VDS = 5 V; VG2-S = 4 V; Tj = 25 C. VDS = 5 V; VG2-S = 4 V; Tj = 25 C. RG1 = 91 k (connected to VGG); see Fig.35. Fig.7 Drain current as a function of gate 1 current; typical values; amplifier a. Fig.8 Drain current as a function of gate 1 supply voltage (VGG); typical values; amplifier a. 2003 Nov 17 7 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 40 ID MLE288 handbook, halfpage (1) (2) 20 MLE292 (mA) 32 ID (mA) 16 (1) (2) (3) (4) 24 (3) (4) (5) (6) (7) 12 (5) 16 8 8 4 0 0 2 3 6 VGG = VDS (V) 8 0 0 2 4 VG2-S(V) 6 VG2-S = 4 V; Tj = 25 C; RG1 = 150 k (connected to VGG); see Fig.35. (1) (2) (3) (4) RG1 = 56 k. RG1 = 68 k. RG1 = 82 k. RG1 = 91 k. (5) RG1 = 100 k. (6) RG1 = 120 k. (7) RG1 = 150 k. VDS = 5 V; Tj = 25 C; RG1 = 91 k (connected to VGG); see Fig.35. (1) VGG = 5 V. (2) VGG = 4.5 V. (3) VGG = 4 V. (4) VGG = 3.5 V. (5) VGG = 3 V. Fig.9 Drain current as a function of gate 1 (VGG) and drain supply voltage; typical values; amplifier a. Fig.10 Drain current as a function of gate 2 voltage; typical values; amplifier a. 2003 Nov 17 8 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 50 MLE264 IG1 (A) handbook, halfpage 120 MLE266 40 (1) (2) Vunw (dBV) 110 30 (3) (4) (5) 100 20 90 1 0 0 2 4 VG2-S(V) 6 80 0 10 20 30 40 50 gain reduction (dB) VDS 5 V; Tj = 25 C. RG1 = 91 k (connected to VGG); see Fig.35. (1) VGG = 5 V. (2) VGG = 4.5 V. (3) VGG = 4 V. (4) VGG = 3.5 V. (5) VGG = 3 V. VDS = 5 V; VGG = 5 V; RG1 = 91 k; f = 50 MHz; f unw = 60 MHz; Tamb = 25 C; see Fig.35. Fig.11 Gate 1 current as a function of gate 2 voltage; typical values; amplifier a. Fig.12 Unwanted voltage for 1% cross-modulation as a function of gain reduction; typical values; amplifier a. handbook, halfpage gain 0 MLE265 handbook, halfpage 24 MLE267 reduction (dB) -10 ID (mA) 16 -20 -30 8 -40 -50 0 0 1 2 3 VAGC (V) 4 0 10 20 30 40 50 gain reduction (dB) VDS = 5 V; VGG = 5 V; RG1 = 91 k; f = 50 MHz; Tamb = 25 C; see Fig.35. VDS = 5 V; VGG = 5 V; RG1 = 91 k; f = 50 MHz; Tamb = 25 C; see Fig.35. Fig.13 Typical gain reduction as a function of AGC voltage; typical values; amplifier a. Fig.14 Drain current as a function of gain reduction; typical values; amplifier a. 2003 Nov 17 9 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 102 handbook, halfpage Yis (mS) 10 MLE268 103 handbook, halfpage yrs (S) 102 rs MLE269 -103 rs (deg) -102 bis yrs 1 10 -10 gis 10-1 10 1 10 -1 103 f (MHz) 102 f (MHz) 103 102 VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 C. VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 C. Fig.15 Input admittance as a function of frequency; typical values; amplifier a. Fig.16 Reverse transfer admittance and phase as a function of frequency; typical values; amplifier a. 102 handbook, halfpage yfs MLE270 -102 fs (deg) handbook, halfpage 10 MLE271 yfs (mS) Yos (mS) bos 1 10 -fs -10 10-1 gos 1 10 102 f (MHz) -1 103 10-2 10 102 f (MHz) 103 VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 C. VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 C. Fig.17 Forward transfer admittance and phase as a function of frequency; typical values; amplifier a. Fig.18 Output admittance as a function of frequency; typical values; amplifier a. 2003 Nov 17 10 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET Amplifier a scattering parameters VDS = 5 V; VG2-S = 4 V; ID = 18 mA; Tamb = 25 C f (MHz) 50 100 200 300 400 500 600 700 800 900 1000 s11 MAGNITUDE (ratio) 0.988 0.984 0.971 0.951 0.926 0.896 0.865 0.832 0.797 0.769 0.732 ANGLE (deg) -4.62 -9.23 -18.33 -27.32 -36.04 -44.50 -52.63 -60.47 -67.66 -75.01 -81.73 s21 MAGNITUDE (ratio) 3.72 3.71 3.66 3.58 3.47 3.36 3.23 3.09 2.91 2.83 2.67 ANGLE (deg) 174.72 169.42 159.05 148.77 138.74 129.05 119.67 110.43 101.40 93.09 84.05 s12 MAGNITUDE (ratio) 0.0008 0.0015 0.0029 0.0038 0.0044 0.0046 0.0043 0.0038 0.0028 0.0051 0.0071 ANGLE (deg) 86.73 84.39 79.96 76.62 74.42 74.84 79.73 92.63 118.47 146.61 159.78 BF1206 s22 MAGNITUDE (ratio) 0.991 0.989 0.986 0.980 0.973 0.965 0.958 0.951 0.937 0.940 0.937 ANGLE (deg) -2.07 -4.16 -8.24 -12.32 -16.33 -20.25 -24.20 -28.14 -32.14 -35.76 -39.86 Noise data VDS = 5 V; VG2-S = 4 V; ID = 18 mA; Tamb = 25 C f (MHz) 400 800 Fmin (dB) 1.3 1.6 opt (ratio) 0.618 0.593 (deg) 22.7 44.1 Rn () 26.7 29.7 2003 Nov 17 11 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET DYNAMIC CHARACTERISTICS AMPLIFIER b Common source; Tamb = 25 C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA; unless otherwise specified. SYMBOL yfs Cig1-ss Cig2-ss Coss Crss F PARAMETER forward transfer admittance input capacitance at gate 1 input capacitance at gate 2 output capacitance noise figure f = 1 MHz f = 1 MHz f = 1 MHz f = 11 MHz; GS = 20 mS; BS = 0 f = 400 MHz; YS = YS opt f = 800 MHz; YS = YS opt Gtr power gain f = 200 MHz; GS = 2 mS; BS = BS opt; GL = 0.5 mS; BL = BL opt; note 1 f = 400 MHz; GS = 2 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 f = 800 MHz; GS = 3.3 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 Xmod cross-modulation input level for k = 1%; fw = 50 MHz; funw = 60 MHz; note 2 at 0 dB AGC at 10 dB AGC at 40 dB AGC Notes 1. Calculated from measured s-parameters. 2. Measured in Fig.35 test circuit. 90 - 100 - 90 103 - - - CONDITIONS pulsed; Tj = 25 C MIN. 29 - - - - - - - - - - TYP. 34 1.7 4.2 0.85 15 3.5 1.3 1.4 35 31 27 BF1206 MAX. 44 2.2 - - 30 - 1.9 2 - - - UNIT mS pF pF pF fF dB dB dB dB dB dB reverse transfer capacitance f = 1 MHz dBV dBV dBV 2003 Nov 17 12 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET GRAPHS FOR AMPLIFIER b BF1206 handbook, halfpage 30 MLE272 (1) (2) (3) (5) (4) handbook, halfpage 32 MLE273 ID (mA) 20 ID (mA) 24 (1) (2) (3) (6) 16 (4) 10 (7) (5) 8 (6) (7) 0 0 0.5 1 1.5 VG1-S (V) 2 0 0 2 4 VDS (V) 6 VDS = 5 V; Tj = 25 C. (1) VG2-S = 4 V. (2) VG2-S = 3.5 V. (3) VG2-S = 3 V. (4) VG2-S = 2.5 V. (5) VG2-S = 2 V. (6) VG2-S = 1.5 V. (7) VG2-S = 1 V. VG2-S = 4 V; Tj = 25 C. (1) VG1-S = 1.5 V. (2) VG1-S = 1.4 V. (3) VG1-S = 1.3 V. (4) VG1-S = 1.2 V. (5) VG1-S = 1.1 V. (6) VG1-S = 1 V. (7) VG1-S = 0.9 V. Fig.19 Transfer characteristics; typical values; amplifier b. Fig.20 Output characteristics; typical values; amplifier b. 2003 Nov 17 13 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 100 IG1 MLE274 (1) (2) handbook, halfpage 50 MLE275 (A) 80 (3) yfs (mS) (2) (1) (3) 40 60 (4) (4) 30 (5) (5) 40 (6) 20 (6) 20 (7) 10 (7) 0 0 0.5 1 1.5 2 VG1-S (V) 0 0 10 20 ID(mA) 30 VDS = 5 V; Tj = 25 C. (1) VG2-S = 4 V. (2) VG2-S = 3.5 V. (3) VG2-S = 3 V. (4) VG2-S = 2.5 V. (5) VG2-S = 2 V. (6) VG2-S = 1.5 V. (7) VG2-S = 1 V. VDS = 5 V; Tj = 25 C. (1) VG2-S = 4 V. (2) VG2-S = 3.5 V. (3) VG2-S = 3 V. (4) VG2-S = 2.5 V. (5) VG2-S = 2 V. (6) VG2-S = 1.5 V. (7) VG2-S = 1 V. Fig.21 Gate 1 current as a function of gate 1 voltage; typical values; amplifier b. Fig.22 Forward transfer admittance as a function of drain current; typical values; amplifier b. handbook, halfpage 24 MLE276 handbook, halfpage 12 MLE277 ID (mA) 16 ID (mA) 8 8 4 0 0 10 20 30 40 50 IG1 (A) 0 0 1 2 3 4 VGG (V) 5 VDS = 5 V; VG2-S = 4 V; Tj = 25 C. VDS = 5 V; VG2-S = 4 V; Tj = 25 C. RG1 = 150 k (connected to VGG); see Fig.35. Fig.23 Drain current as a function of gate 1 current; typical values; amplifier b. Fig.24 Drain current as a function of gate 1 supply voltage (VGG); typical values; amplifier b. 2003 Nov 17 14 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 24 MLE278 handbook, halfpage (1) (2) (3) (4) (5) (6) (7) (5) 16 MLE279 ID (mA) 16 ID (mA) 12 (1) (2) (3) (4) 8 8 4 0 0 2 4 6 VGG = VDS (V) 8 0 0 2 4 VG2-S (V) 6 VG2-S = 4 V; Tj = 25 C. RG1 = 150 k (connected to VGG); see Fig.35. (1) RG1 = 270 k. (2) RG1 = 220 k. (3) RG1 = 180 k. (4) RG1 = 150 k. (5) RG1 = 120 k. (6) RG1 = 100 k. (7) RG1 = 82 k. VDS = 5 V; Tj = 25 C. RG1 = 150 k (connected to VGG); see Fig.35. (1) VGG = 5 V. (2) VGG = 4.5 V. (3) VGG = 4 V. (4) VGG = 3.5 V. (5) VGG = 3 V. Fig.25 Drain current as a function of gate 1 (VGG) and drain supply voltage; typical values; amplifier b. Fig.26 Drain current as a function of gate 2 voltage; typical values; amplifier b. 2003 Nov 17 15 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, halfpage 30 MLE280 handbook, halfpage (1) (2) 120 MLE282 IG1 (A) 20 Vunw (dBV) 110 (3) (4) 100 (5) 10 90 0 0 2 4 VG2-S (V) 6 80 0 10 20 30 40 50 gain reduction (dB) VDS 5 V; Tj = 25 C. RG1 = 150 k (connected to VGG); see Fig.35. (1) VGG = 5 V. (2) VGG = 4.5 V. (3) VGG = 4 V. (4) VGG = 3.5 V. (5) VGG = 3 V. VDS = 5 V; VGG = 5 V; RG1 = 150 k; f = 50 MHz; f unw = 60 MHz; Tamb = 25 C; see Fig.35. Fig.27 Gate 1 current as a function of gate 2 voltage; typical values; amplifier b. Fig.28 Unwanted voltage for 1% cross-modulation as a function of gain reduction; typical values; amplifier b. handbook, halfpage gain 0 MLE281 handbook, halfpage 16 MLE283 reduction (dB) -10 ID (mA) 12 -20 8 -30 4 -40 -50 0 0 1 2 3 VAGC (V) 4 0 10 20 30 40 50 gain reduction (dB) VDS = 5 V; VGG = 5 V; RG1 = 150 k; f = 50 MHz; Tamb = 25 C; see Fig.35. VDS = 5 V; VGG = 5 V; RG1 = 150 k; f = 50 MHz; Tamb = 25 C; see Fig.35. Fig.29 Typical gain reduction as a function of AGC voltage; typical values; amplifier b. Fig.30 Drain current as a function of gain reduction; typical values; amplifier b. 2003 Nov 17 16 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 102 handbook, halfpage Yis (mS) 10 MLE284 103 handbook, halfpage yrs (S) 102 rs MLE285 -103 rs (deg) -102 bis 1 yrs 10 -10 gis 10-1 10-2 10 102 f (MHz) 103 1 10 102 f (MHz) -1 103 VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 C. VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 C. Fig.31 Input admittance as a function of frequency; typical values; amplifier b. Fig.32 Reverse transfer admittance and phase as a function of frequency; typical values; amplifier b. 102 handbook, halfpage yfs MLE286 -102 fs (deg) 102 handbook, halfpage Yos (mS) 10 bos MLE287 yfs (mS) 10 -fs -10 gos 1 1 10 102 f (MHz) -1 103 10-1 10 102 f (MHz) 103 VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 C. Fig.33 Forward transfer admittance and phase as a function of frequency; typical values; amplifier b. VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 C. Fig.34 Output admittance as a function of frequency; typical values; amplifier b. 2003 Nov 17 17 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET BF1206 handbook, full pagewidth VAGC R1 10 k C1 4.7 nF C3 4.7 nF C2 RGEN 50 VI R2 50 4.7 nF RG1 DUT 2.2 H C4 4.7 nF L1 RL 50 VGG VDS MGS315 Fig.35 Cross-modulation test set-up (for one MOS-FET). Amplifier b scattering parameters VDS = 5 V; VG2-S = 4 V; ID = 12 mA; Tamb = 25 C f (MHz) 50 100 200 300 400 500 600 700 800 900 1000 s11 MAGNITUDE (ratio) 0.991 0.989 0.982 0.973 0.961 0.947 0.933 0.919 0.905 0.890 0.881 ANGLE (deg) -3.43 -6.84 -13.61 -20.37 -27.05 -33.68 -40.17 -46.54 -52.86 -58.60 -64.34 s21 MAGNITUDE (ratio) 3.44 3.43 3.41 3.38 3.34 3.29 3.23 3.16 3.09 3.02 2.94 ANGLE (deg) 176.33 172.66 165.44 158.20 151.04 144.02 137.12 130.22 123.22 116.84 110.20 s12 MAGNITUDE (ratio) 0.0008 0.0015 0.0029 0.0041 0.0051 0.0058 0.0062 0.0063 0.0065 0.0055 0.0058 ANGLE (deg) 86.54 84.92 80.95 77.63 74.43 71.86 70.28 70.72 72.37 75.91 89.82 s22 MAGNITUDE (ratio) 0.988 0.987 0.985 0.982 0.978 0.973 0.969 0.965 0.960 0.958 0.958 ANGLE (deg) -1.69 -3.38 -6.72 -10.08 -13.46 -16.83 -20.25 -23.68 -27.22 -30.57 -34.14 Noise data VDS = 5 V; VG2-S = 4 V; ID = 12 mA; Tamb = 25 C f (MHz) 400 800 Fmin (dB) 1.3 1.4 opt (ratio) 0.648 0.604 (deg) 14.4 31.1 Rn () 28.8 27.9 2003 Nov 17 18 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET PACKAGE OUTLINE Plastic surface mounted package; 6 leads BF1206 SOT363 D B E A X y HE vMA 6 5 4 Q pin 1 index A A1 1 e1 e 2 bp 3 wM B detail X Lp c 0 1 scale 2 mm DIMENSIONS (mm are the original dimensions) UNIT mm A 1.1 0.8 A1 max 0.1 bp 0.30 0.20 c 0.25 0.10 D 2.2 1.8 E 1.35 1.15 e 1.3 e1 0.65 HE 2.2 2.0 Lp 0.45 0.15 Q 0.25 0.15 v 0.2 w 0.2 y 0.1 OUTLINE VERSION SOT363 REFERENCES IEC JEDEC EIAJ SC-88 EUROPEAN PROJECTION ISSUE DATE 97-02-28 2003 Nov 17 19 Philips Semiconductors Product specification Dual N-channel dual-gate MOS-FET DATA SHEET STATUS LEVEL I DATA SHEET STATUS(1) Objective data PRODUCT STATUS(2)(3) Development DEFINITION BF1206 This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). II Preliminary data Qualification III Product data Production Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. DEFINITIONS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. DISCLAIMERS Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status `Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. 2003 Nov 17 20 Philips Semiconductors - a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. (c) Koninklijke Philips Electronics N.V. 2003 SCA75 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands R77 20p/01/pp21 Date of release: 2003 Nov 17 Document order number: 9397 750 12005 |
Price & Availability of BF1206
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |