![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Preliminary Datasheet * Power amplifier for GSM or AMPS application * Fully integrated 2 stage amplifier * Operating voltage range: 2.7 to 6 V * 2 W output power at 3.6 V * Overall power added efficiency 46 % * Input matched to 50 , simple output match ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (taped) Package 1) CGY 94 CGY 94 Q68000-A9124 MW 12 Maximum ratings Characteristics Positive supply voltage Negative supply voltage ) Supply current Channel temperature Storage temperature 2 Symbol VD VG max. Value 9 -8 2 150 -55...+150 Unit V V A C C ID TCh Tstg Pulse peak power dissipation duty cycle 12.5%, ton=0.577ms PPulse Ptot 9 5 W W Total power dissipation (Ts 81 C) Ts: Temperature at soldering point Thermal Resistance Channel-soldering point RthChS 14 K/W 1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines 2) VG = -8V only in combination with VTR = 0V; VG = -6V while VTR 0V Siemens Aktiengesellschaft pg. 1/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Functional block diagram: Control circuit: VG (1) VD1 (7) VD2 (12) VTR (2) Control Circuit Pin (8) Pout (12) The drain current ID of the CGY 94 is adjusted by the internal control circuit. Therefore a negative voltage (-4V...-6V) has to be supplied at VG. For transmit operation VTR must be set to 0V. During receive operation VTR should be disconnected (shut off mode). GND1 (6, 9) GND2 (3, 4, 5, 10) GND3 (11) Pin # 1 2 3,4,5,10 6,9 7 8 11 12 VG VTR GND 2 GND 1 VD1 RFin GND 3 VD2, RFout Configuration Negative voltage at control circuit (-4V...-6V) Control voltage for transmit mode (0V) or receive mode (open) RF and DC ground of the 2nd stage RF and DC ground of the 1st stage Positive drain voltage of the 1st stage RF input power Ground for internal output matching Positive drain voltage of the 2nd stage, RF output power DC characteristics Characteristics Drain current Symbol Conditions VD=3V, VG=0V, VTR n.c. min 0.6 2.7 typ 0.9 4.1 1.1 0.32 1.3 -2.8 max 1.3 5.9 -1.8 Unit A A A S S V stage 1 IDSS1 stage 2 IDSS2 Drain current with active current control Transconductance (stage 1 and 2) Pinch off voltage ID gfs1 gfs2 Vp VD=3V, VG=-4V, VTR=0V VD=3V, ID=350mA VD=3V, ID=700mA VD=3V, ID<500A (all stages) 0.25 1.1 -3.8 Siemens Aktiengesellschaft pg. 2/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Electrical characteristics (TA = 25C , f=0.9 GHz, ZS=ZL=50 Ohm, VD=3.6V, VG=-4V, VTR pin connected to ground, unless otherwise specified; pulsed with a duty cycle of 10%, ton=0.33ms) Characteristics Supply current VD=3.0V; Pin=10dBm Symbol IDD min 27.0 22.8 31.5 32.8 34.5 43 42 41 - typ 1.18 2 400 10 29.0 23.6 32.3 33.6 35.5 48 47 46 -49 -45 1.5 : 1 max 2.0 : 1 Unit A mA Negative supply current (normal operation) IG ID IG G G Po Po Po - Shut-off current VTR n.c. A A dB dB dBm dBm dBm % % % dBc dBc - Negative supply current (shut off mode, VTR pin n.c.) Gain Pin=-5dBm Power gain VD=3.6V; Pin=10dBm Output Power VD=3.0V; Pin=10dBm Output Power VD=3.6V; Pin=10dBm Output Power VD=5V; Pin=10dBm Overall Power added Efficiency VD=3.0V; Pin=10dBm Overall Power added Efficiency VD=3.6V; Pin=10dBm Overall Power added Efficiency VD=5V; Pin=10dBm Harmonics (Pin=10dBm, CW) VD=3.6V; (Pout=33.1dBm) 2f0 3f0 Input VSWR VD=3.6V; Siemens Aktiengesellschaft pg. 3/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Pout and PAE vs. Pin (VD=3.6V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms) 45 AAAAAAAA AAAA AAA AAAA AAA AAA AAA AAAA AAAA AAAA A AAA AAA AAAA AAAA AAAA AAAAAAAAAA AAAA AAA AAAA AAAA AAAA AAA AAAA AAAA AAAA AAA AAA AAAA AAA AAA A AAAA AAAAA AAA AAAA AAA AAAA AAAA AAAA AAAA AAAA AAAA AAA AAA AAAA AAAAAA A AAAA AAA AAAA AAA AAA AAAA AAA AAAA AAA AAAA AAA A AAAA AAAAAA AAAA AAAAAA A AAA AAAA AAAA AAA AAAAAA A Pout [dBm] AAA AAA AAA AAAA AAA AAA AAAAAAAAAPAE [%] AAA AAAA AAAAAA A AAAAAAA A AAA AAA AAA AAA AAAA AAAAA A AAAAA AAA AAAAAA AAAA AAA AAA AAA AAAA AAA AAAA 60 40 50 Pout [dBm] 35 40 30 30 25 20 20 10 15 -5 0 5 10 15 0 Pin [dBm] Pout and PAE vs. Pin (VD=5V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms) 45 AAAA AAA AAAA AAAA AAA AAA AAAA AAA AAAA AAA AAA AAA AAAA AAAA AAA AAAA AAAA AAAA AAAA AAA AAAA AAA AAAA AAAA AAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAA AAAA AAAA AAA AAA AAAA AAA AAA AAAAAA A AAA AAAA AAAA AAAA AAA AAAA AAAA AAA AAAA AAAA AAA AAAA AAA AAA AAAA AAA AAAA AAAA AAA AAA AAAA AAA AAA AAAA AAAA AAA AAA AAAA Pout [dBm] AAAAAAA A AAA AAA AAA AAAA AAAAAAAAA AAAA AAA AAA AAAA AAA AAAAAAAAAPAE [%] AAAA AAA A AAAA AAAA AAAAA AAAAAA AAA AAAAAA AAAAA A AAAA AAA AAAAAAAAA AAAA AAA AAAAA AAAA A AAA AAAA 60 40 50 Pout [dBm] 35 40 30 30 25 20 20 10 15 -5 0 5 10 15 0 Pin [dBm] Siemens Aktiengesellschaft pg. 4/9 17.10.95 HL EH PD 21 PAE [%] PAE [%] GaAs MMIC S-Parameter at VD=3.6V and Pin=9dBm (VG=-4V, VTR=0V, pulsed with a duty cycle of 10%) CGY 94 _______________________________________________________________________________________________________ 30 25 20 15 10 Mag [dB] 5 0 -5 -10 -15 -20 -25 -30 750 770 790 810 830 850 870 890 910 930 950 MAG(s11) MAG(s21) f [M Hz] S-Parameter at VD=5V and Pin=9dBm (VG=-4V, VTR=0V, pulsed with a duty cycle of 10%) 30 25 20 15 10 Mag [dB] 5 0 -5 -10 -15 -20 -25 -30 750 770 790 810 830 850 870 890 910 930 950 MAG(s11) MAG(s21) f [M Hz] Siemens Aktiengesellschaft pg. 5/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Performance of internal bias control circuit (VTR=0V) 3,0 2,8 2,6 2,4 2,2 2,0 ID / A 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 2,0 2,5 3,0 3,5 4,0 -Vg / V 4,5 5,0 5,5 6,0 ID (VD=3.0V) ID (VD=6.0V) Siemens Aktiengesellschaft pg. 6/9 17.10.95 HL EH PD 21 GaAs MMIC Total Power Dissipation Ptot=f(TS) CGY 94 _______________________________________________________________________________________________________ Permissible pulse load Ptot_max/Ptot_DC = f(t_p) Siemens Aktiengesellschaft pg. 7/9 17.10.95 HL EH PD 21 GaAs MMIC CGY 94 _______________________________________________________________________________________________________ Test circuit board: Note: 43nH By changing the position of the 6.8 pF capacitor at pin # 12 it is possible to tune the board for max. Pout or max. PAE. To achieve the maximum output power place the capacitor close to the CGY94. For a better PAE increase the distance between the capacitor and the CGY94 device (2-5mm). Principal circuit: VG 1nF +VD 1nF 4.7uF 43nH VG (1) VD1 (7) VD2 (12) VTR (2) VTR 1nF Control Circuit IN Pin (8) Pout (12) OUT 6.8pF GND1 (6, 9) GND2 (3, 4, 5, 10) GND3 (11) 2) Coilcraft SMD Spring Inductor distribution by Ginsbury Electronic GmbH, Am Moosfeld 85 D-81829 Munchen, Tel. 089/45170-223 Siemens Aktiengesellschaft pg. 8/9 17.10.95 HL EH PD 21 GaAs MMIC APPLICATION - HINTS CGY 94 _______________________________________________________________________________________________________ 1. CW - capability of the CGY94 Proving the possibility of CW - operation there must be known the total power dissipation of the device. This value can be found as a function of the temperature in the datasheet (page 7). The CGY94 has a maximum total power dissipation of Ptot = 5 W. As an example we take the operating point with a drain voltage VD = 3 V and a typical drain current of ID=1.0 A. So the maximum DC - power can be calculated to: PDC = VD I D = 3W This value is smaller than 5 W and CW - operation is possible. By decoupling RF power out of the CGY94 the power dissipation of the device can be further reduced. Assuming a power added efficiency (PAE) of 40 % the total power dissipation Ptot can be calculated using the following formula: Ptot = PDC (1- PAE ) = 3W (1- 0.40) = 1.8W 2. Operation without using the internal current control If you don' t want to use the internal current control, it is recommended to connect the negative supply voltage at pin 1 (VTR) instead of pin 2 (VG). In that case VG is not connected. 3. Biasing and use considerations Biasing should be timed in such a way, that the gate voltage (VG) is always applied before the drain voltage (VD), and when returning to the standby mode, the drain voltage has to be removed before the gate voltage. Siemens Aktiengesellschaft pg. 9/9 17.10.95 HL EH PD 21 |
Price & Availability of Q68000-A9124
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |