Part Number Hot Search : 
LTC1745 D41162 CP1002 10A600V R2000 FH6316 2SJ13 C0515A
Product Description
Full Text Search
 

To Download PHP6N50E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
FEATURES
* Repetitive Avalanche Rated * Fast switching * Stable off-state characteristics * High thermal cycling performance * Low thermal resistance
PHP6N50E, PHB6N50E
SYMBOL
d
QUICK REFERENCE DATA VDSS = 500 V
g
ID = 5.9 A RDS(ON) 1.5
s
GENERAL DESCRIPTION
N-channel, enhancement mode field-effect power transistor, intended for use in off-line switched mode power supplies, T.V. and computer monitor power supplies, d.c. to d.c. converters, motor control circuits and general purpose switching applications. The PHP6N50E is supplied in the SOT78 (TO220AB) conventional leaded package. The PHB6N50E is supplied in the SOT404 surface mounting package.
PINNING
PIN 1 2 3 tab gate drain 1 source DESCRIPTION
SOT78 (TO220AB)
tab
SOT404
tab
2
drain
1 23
1
3
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134) SYMBOL PARAMETER VDSS VDGR VGS ID IDM PD Tj, Tstg Drain-source voltage Drain-gate voltage Gate-source voltage Continuous drain current Pulsed drain current Total dissipation Operating junction and storage temperature range CONDITIONS Tj = 25 C to 150C Tj = 25 C to 150C; RGS = 20 k Tmb = 25 C; VGS = 10 V Tmb = 100 C; VGS = 10 V Tmb = 25 C Tmb = 25 C MIN. - 55 MAX. 500 500 30 5.9 3.7 24 125 150 UNIT V V V A A A W C
December 1998
1
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
AVALANCHE ENERGY LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134) SYMBOL PARAMETER EAS Non-repetitive avalanche energy CONDITIONS
PHP6N50E, PHB6N50E
MIN. -
MAX. 287
UNIT mJ
EAR IAS, IAR
Unclamped inductive load, IAS = 4.2 A; tp = 0.21 ms; Tj prior to avalanche = 25C; VDD 50 V; RGS = 50 ; VGS = 10 V; refer to fig:17 Repetitive avalanche energy1 IAR = 5.9 A; tp = 2.5 s; Tj prior to avalanche = 25C; RGS = 50 ; VGS = 10 V; refer to fig:18 Repetitive and non-repetitive avalanche current
-
10 5.9
mJ A
THERMAL RESISTANCES
SYMBOL PARAMETER Rth j-mb Rth j-a Thermal resistance junction to mounting base Thermal resistance junction to ambient CONDITIONS MIN. SOT78 package, in free air SOT404 package, pcb mounted, minimum footprint TYP. MAX. UNIT 60 50 1 K/W K/W K/W
1 pulse width and repetition rate limited by Tj max. December 1998 2 Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
ELECTRICAL CHARACTERISTICS
Tj = 25 C unless otherwise specified SYMBOL PARAMETER Drain-source breakdown voltage V(BR)DSS / Drain-source breakdown Tj voltage temperature coefficient RDS(ON) Drain-source on resistance VGS(TO) Gate threshold voltage Forward transconductance gfs IDSS Drain-source leakage current IGSS Qg(tot) Qgs Qgd td(on) tr td(off) tf Ld Ld Ls Ciss Coss Crss V(BR)DSS CONDITIONS VGS = 0 V; ID = 0.25 mA VDS = VGS; ID = 0.25 mA
PHP6N50E, PHB6N50E
MIN. 500 2.0 2 -
TYP. MAX. UNIT 0.1 1.2 3.0 3.6 1 30 10 53 4 28 10 33 92 40 3.5 4.5 7.5 610 96 54 1.5 4.0 25 250 200 64 6 34 V %/K V S A A nA nC nC nC ns ns ns ns nH nH nH pF pF pF
VGS = 10 V; ID = 3 A VDS = VGS; ID = 0.25 mA VDS = 30 V; ID = 3 A VDS = 500 V; VGS = 0 V VDS = 400 V; VGS = 0 V; Tj = 125 C Gate-source leakage current VGS = 30 V; VDS = 0 V Total gate charge Gate-source charge Gate-drain (Miller) charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Internal drain inductance Internal drain inductance Internal source inductance Input capacitance Output capacitance Feedback capacitance ID = 6 A; VDD = 400 V; VGS = 10 V VDD = 250 V; RD = 39 ; RG = 12
Measured from tab to centre of die Measured from drain lead to centre of die (SOT78 package only) Measured from source lead to source bond pad VGS = 0 V; VDS = 25 V; f = 1 MHz
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Tj = 25 C unless otherwise specified SYMBOL PARAMETER IS ISM VSD trr Qrr Continuous source current (body diode) Pulsed source current (body diode) Diode forward voltage Reverse recovery time Reverse recovery charge CONDITIONS Tmb = 25C Tmb = 25C IS = 6 A; VGS = 0 V IS = 6 A; VGS = 0 V; dI/dt = 100 A/s MIN. TYP. MAX. UNIT 390 4 5.9 24 1.2 A A V ns C
December 1998
3
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
PHP6N50E, PHB6N50E
120 110 100 90 80 70 60 50 40 30 20 10 0
PD%
Normalised Power Derating
1
Zth j-mb, Transient thermal impedance (K/W) D = 0.5 0.2
PHP3N60
0.1 0.1 0.05 0.02
0.01
single pulse
P D
tp
D=
tp T t
T
0
20
40
60
80 100 Tmb / C
120
140
0.001 1us
10us
1ms 100us 10ms tp, pulse width (s)
100ms
1s
Fig.1. Normalised power dissipation. PD% = 100PD/PD 25 C = f(Tmb)
ID% Normalised Current Derating
15
Fig.4. Transient thermal impedance. Zth j-mb = f(t); parameter D = tp/T
120 110 100 90 80 70 60 50 40 30 20 10 0
ID, Drain current (Amps) Tj = 25 C
PHP4N50 7V 10 V 6.5 V
10
6V 5.5 V
5
5V VGS = 4.5 V
0
20
40
60
80 Tmb / C
100
120
140
0
0
5
10 15 20 VDS, Drain-Source voltage (Volts)
25
30
Fig.2. Normalised continuous drain current. ID% = 100ID/ID 25 C = f(Tmb); conditions: VGS 10 V
Fig.5. Typical output characteristics. ID = f(VDS); parameter VGS
RDS(on), Drain-Source on resistance (Ohms) 4.5 V 5V 5.5 V VGS = 6 V PHP4N50 Tj = 25 C
100
ID, Drain current (Amps)
PHP4N50
4
10
RD
S(
ON
)=
VD
S/
ID
3
tp = 10 us 100 us
6.5 V 7V 2
10 V
1 DC
1 ms
1
10 ms
0.1 10
100 1000 VDS, Drain-source voltage (Volts)
10000
0
0
5 10 ID, Drain current (Amps)
15
Fig.3. Safe operating area. Tmb = 25 C ID & IDM = f(VDS); IDM single pulse; parameter tp
Fig.6. Typical on-state resistance. RDS(ON) = f(ID); parameter VGS
December 1998
4
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
PHP6N50E, PHB6N50E
15
ID, Drain current (Amps) VDS > ID x RDS(on)max
PHP4N50
4
VGS(TO) / V max.
10
3
typ.
min. 2
5
1
Tj = 25 C Tj = 150 C 0
0
0
2 4 6 VGS, Gate-Source voltage (Volts)
8
10
-60
-40
-20
0
20
40 60 Tj / C
80
100
120
140
Fig.7. Typical transfer characteristics. ID = f(VGS); parameter Tj
gfs, Transconductance (S) VDS > ID x RDS(on)max 5 Tj = 25 C 4 3 150 C PHP4N50
Fig.10. Gate threshold voltage. VGS(TO) = f(Tj); conditions: ID = 0.25 mA; VDS = VGS
ID / A SUB-THRESHOLD CONDUCTION
6
1E-01
1E-02
1E-03
2%
typ
98 %
1E-04
2
1E-05
1 0
1E-06
0
5 ID, Drain current (A)
10
15
0
1
2 VGS / V
3
4
Fig.8. Typical transconductance. gfs = f(ID); parameter Tj
a Normalised RDS(ON) = f(Tj)
Fig.11. Sub-threshold drain current. ID = f(VGS); conditions: Tj = 25 C; VDS = VGS
PHP4N50 Ciss
1000
Junction capacitances (pF)
2
100
1
Coss Crss
0 -60 -40 -20 0 20 40 60 Tj / C 80 100 120 140
10
1
10 100 VDS, Drain-Source voltage (Volts)
1000
Fig.9. Normalised drain-source on-state resistance. a = RDS(ON)/RDS(ON)25 C = f(Tj); ID = 3 A; VGS = 10 V
Fig.12. Typical capacitances, Ciss, Coss, Crss. C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
December 1998
5
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
PHP6N50E, PHB6N50E
15
VGS, Gate-Source voltage (Volts) ID = 6 A Tj = 25 C 250 V
PHP4N50
20
IF, Source-Drain diode current (Amps) VGS = 0 V
PHP4N50
15
10 100 V VDD = 400 V
10 150 C
5
Tj = 25 C
5
0
0
10
20
30 40 50 Qg, Gate charge (nC)
60
70
80
0
0
0.2
0.4 0.6 0.8 1 VSDS, Source-Drain voltage (Volts)
1.2
1.4
Fig.13. Typical turn-on gate-charge characteristics. VGS = f(QG); parameter VDS
PHP4N50
10
Fig.16. Source-Drain diode characteristic. IF = f(VSDS); parameter Tj
1000
Switching times (ns) VDD = 250 V VGS = 10 V RD = 39 Ohms Tj = 25 C td(off) tf tr
Non-repetitive Avalanche current, IAS (A)
100
25 C Tj prior to avalanche = 125 C 1
VDS
10
td(on)
tp ID
PHP6N50E 1E-05 1E-04 Avalanche time, tp (s) 1E-03 1E-02
1
0.1 1E-06
0
10
20 30 40 RG, Gate resistance (Ohms)
50
60
Fig.14. Typical switching times; td(on), tr, td(off), tf = f(RG)
Fig.17. Maximum permissible non-repetitive avalanche current (IAS) versus avalanche time (tp); unclamped inductive load
1.15 1.1 1.05
Normalised Drain-source breakdown voltage
V(BR)DSS @ Tj V(BR)DSS @ 25 C
10
Maximum Repetitive Avalanche Current, IAR (A) Tj prior to avalanche = 25 C
1
1 0.95 0.9 0.85 -100
125 C
0.1
PHP6N50E 0.01 1E-06
-50 0 50 Tj, Junction temperature (C) 100 150
1E-05
1E-04 Avalanche time, tp (s)
1E-03
1E-02
Fig.15. Normalised drain-source breakdown voltage; V(BR)DSS/V(BR)DSS 25 C = f(Tj)
Fig.18. Maximum permissible repetitive avalanche current (IAR) versus avalanche time (tp)
December 1998
6
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
MECHANICAL DATA
Dimensions in mm Net Mass: 2 g
PHP6N50E, PHB6N50E
4,5 max 10,3 max
1,3
3,7 2,8
5,9 min
15,8 max
3,0 max not tinned
3,0
13,5 min
1,3 max 1 2 3 (2x)
2,54 2,54
0,9 max (3x)
0,6 2,4
Fig.19. SOT78 (TO220AB); pin 2 connected to mounting base.
Notes 1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide. 2. Refer to mounting instructions for SOT78 (TO220) envelopes. 3. Epoxy meets UL94 V0 at 1/8".
December 1998
7
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
MECHANICAL DATA
Dimensions in mm Net Mass: 1.4 g
10.3 max
PHP6N50E, PHB6N50E
4.5 max 1.4 max
11 max 15.4
2.5 0.85 max (x2) 2.54 (x2)
0.5
Fig.20. SOT404 : centre pin connected to mounting base.
MOUNTING INSTRUCTIONS
Dimensions in mm
11.5
9.0
17.5 2.0
3.8
5.08
Fig.21. SOT404 : soldering pattern for surface mounting.
Notes 1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide. 2. Epoxy meets UL94 V0 at 1/8".
December 1998
8
Rev 1.200
Philips Semiconductors
Product specification
PowerMOS transistors Avalanche energy rated
DEFINITIONS
Data sheet status Objective specification Product specification Limiting values
PHP6N50E, PHB6N50E
This data sheet contains target or goal specifications for product development. This data sheet contains final product specifications.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. (c) Philips Electronics N.V. 1998 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
December 1998
9
Rev 1.200


▲Up To Search▲   

 
Price & Availability of PHP6N50E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X