Part Number Hot Search : 
BCM3034 CSA13 LA38B 2SA1320 TDA8132 MB89567A SMAJ30 BZX555V8
Product Description
Full Text Search
 

To Download ADG1308 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 4- and 8-Channel 15 V/+12 V Multiplexers ADG1308/ADG1309
FEATURES
33 V supply range 130 on resistance Fully specified at 15 V/+12 V 3 V logic-compatible inputs Rail-to-rail operation Break-before-make switching action 16-lead TSSOP and 16-lead SOIC_N Upgrade for the ADG508A/ADG509A
FUNCTIONAL BLOCK DIAGRAMS
ADG1308
S1 S1A DA S4A D S1B DB S8 1-OF-8 DECODER S4B 1-OF-4 DECODER
06009-001
ADG1309
APPLICATIONS
Audio and video routing Test equipment Data acquisition systems Battery-powered systems Communication systems Signal routing
A0 A1 A2 EN
A0
A1
EN
Figure 1.
GENERAL DESCRIPTION
The ADG1308 and ADG1309 are monolithic analog multiplexers consisting of eight single channels and four differential channels, respectively. The ADG1308 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1309 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off. When the switches are on, each switch conducts equally well in both directions and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is the low charge injection for minimum transients when switching the digital inputs. Fast switching speed coupled with high signal bandwidth makes the parts suitable for video signal switching. CMOS construction ensures ultra low power dissipation, making the parts ideally suited for portable and battery-powered instruments.
PRODUCT HIGHLIGHTS
1. 16-lead TSSOP and 16-lead SOIC_N available. 2. Pin compatible with the ADG508AKR and the ADG509AKR devices. 3. 3 V, logic-compatible digital input where: VIH = 2.0 V and VIL = 0.8 V. 4. VL logic power supply not required. 5. Low power consumption.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved.
ADG1308/ADG1309 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagrams............................................................. 1 General Description ......................................................................... 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Dual Supply ................................................................................... 3 Single Supply ................................................................................. 5 Absolute Maximum Ratings............................................................ 6 ESD Caution...................................................................................6 Pin Configurations and Function Descriptions ............................7 ADG1308 Truth Table ..................................................................7 ADG1309 Truth Table ..................................................................8 Typical Performance Characteristics ..............................................9 Test Circuits..................................................................................... 11 Terminology .................................................................................... 13 Outline Dimensions ....................................................................... 14 Ordering Guide .......................................................................... 14
REVISION HISTORY
4/06--Revision 0: Initial Version
Rev. 0 | Page 2 of 16
ADG1308/ADG1309 SPECIFICATIONS
DUAL SUPPLY
VDD = +15 V 10%, VSS = -15 V 10%, GND = 0 V, unless otherwise noted. 1 Table 1.
Parameter ANALOG SWITCH Analog Signal Range On Resistance, RON On Resistance Match Between Channels, RON On Resistance Flatness, RFLAT (On) LEAKAGE CURRENTS Source Off Leakage, IS (Off ) Drain Off Leakage, ID (Off ) Channel On Leakage, ID, IS (On) DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, IINL or IINH Digital Input Capacitance, CIN DYNAMIC CHARACTERISTICS 2 Transition Time, tTRANSITION tON (EN) tOFF (EN) Break-Before-Make Time Delay, tBBM Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth CS (Off ) CD (Off ) ADG1308 ADG1309 CD, CS (On) ADG1308 ADG1309 +25C -40C to +105C VSS to VDD 130 210 5 10 25 70 1 50 1 50 1 50 2.0 0.8 0.005 0.1 5 80 130 80 100 85 100 25 2 80 80 500 5 15 10 20 15 300 Unit V typ max typ max typ max nA typ nA max nA typ nA max nA typ nA max V min V max A max A max pF typ ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ pF typ pF typ Test Conditions/Comments
VS = 10 V, IS = -1 mA; see Figure 13 VDD = +13.5 V, VSS = -13.5 V VS = 10 V, IS = -1 mA VS = -5 V, 0 V, +5 V, IS = -1 mA
VD = 10 V, VS = -10 V; see Figure 14 VS = 1 V, 10 V; VD = 10 V, 1 V; see Figure 14 VS = VD = 10 V; see Figure 15
VIN = VINL or VINH
190 120 150 10
RL = 300 , CL = 35 pF VS = 10 V; see Figure 16 RL = 300 , CL = 35 pF VS = 10 V; see Figure 18 RL = 300 , CL = 35 pF VS = 10 V; see Figure 18 RL = 300 , CL = 35 pF VS1 = VS2 = 10 V; see Figure 17 VS = 0 V, RS = 0 , CL = 1 nF; see Figure 19 RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 20 RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 21 RL = 50 , CL = 5 pF; see Figure 22 f = 1 MHz, VS = 0 V f = 1 MHz, VS = 0 V f = 1 MHz, VS = 0 V f = 1 MHz, VS = 0 V f = 1 MHz, VS = 0 V
Rev. 0 | Page 3 of 16
ADG1308/ADG1309
Parameter POWER REQUIREMENTS IDD IDD ISS VDD/VSS
1 2
+25C 0.002
-40C to +105C
Unit A typ A max A typ A max A typ A max
Test Conditions/Comments VDD = +16.5 V, VSS = -16.5 V Digital inputs = 0 V or VDD Digital inputs = 5 V Digital inputs = 0 V or VDD or 5 V
1.0 220 320 0.002 1.0 5/16.5
V min/V max |VDD| = |VSS|
Temperature range for B version is -40C to +105C. Guaranteed by design; not subject to production test.
Rev. 0 | Page 4 of 16
ADG1308/ADG1309
SINGLE SUPPLY
VDD = 12 V, V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted. 1 Table 2.
Parameter ANALOG SWITCH Analog Signal Range On Resistance, RON On Resistance Match Between Channels, RON On Resistance Flatness, RFLAT (On) LEAKAGE CURRENTS Source Off Leakage, IS (Off ) Drain Off Leakage, ID (Off ) Channel On Leakage, ID, IS (On) DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, IINL or IINH Digital Input Capacitance, CIN DYNAMIC CHARACTERISTICS 2 Transition Time, tTRANSITION tON (EN) tOFF (EN) Break-Before-Make Time Delay, tBBM Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth CS (Off ) CD (Off ) ADG1308 ADG1309 CD, CS (On) ADG1308 ADG1309 POWER REQUIREMENTS IDD IDD VDD
1 2
+25C
-40C to +105C Unit 0 to VDD V typ max typ max typ nA typ
50 nA max
Test Conditions/Comments
325 500 10 20 65 1 1
660
VS = 0 V to 10 V, IS = -1 mA; see Figure 13 VDD = 10.8 V, VSS = 0 V VS = 0 V to 10 V, IS = -1 mA VS = 3 V, 6 V, 9 V, IS = -1 mA VDD = 13.2 V VS = 1 V/10 V, VD = 10 V/1 V; see Figure 14 VS = 1 V/10 V, VD = 10 V/1 V; see Figure 14 VS = VD = 1 V or 10 V; see Figure 15
nA typ
50 nA max
1
50
nA typ
nA max
2.0 0.8 0.001 0.1 3 100 170 90 110 105 130 45
2 80 80 500
V min V max A max pF typ ns typ VIN = VINL or VINH
240 ns typ 170 ns typ 180 20 ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ pF typ pF typ A typ A max A typ A max V min/V max
5 10 15 20 15 0.002 1.0 220 320 5/16.5
RL = 300 , CL = 35 pF VS = 8 V; see Figure 16 RL = 300 , CL = 35 pF VS = 8 V; see Figure 18 RL = 300 , CL = 35 pF VS = 8 V; see Figure 18 RL = 300 , CL = 35 pF VS1 = VS2 = 8 V; see Figure 17 VS = 6 V, RS = 0 , CL = 1 nF; see Figure 19 RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 20 RL = 50 , CL = 5 pF, f = 1 MHz; see Figure 21 RL = 50 , CL = 5 pF; see Figure 22 f = 1 MHz, VS = 6 V f = 1 MHz, VS = 6 V f = 1 MHz, VS = 6 V f = 1 MHz, VS = 6 V f = 1 MHz, VS = 6 V VDD = 13.2 V Digital inputs = 0 V or VDD Digital inputs = 5 VSS = 0 V, GND = 0 V
Temperature range for the B version is -40C to +105C. Guaranteed by design; not subject to production test.
Rev. 0 | Page 5 of 16
ADG1308/ADG1309 ABSOLUTE MAXIMUM RATINGS
TA = 25C, unless otherwise noted. Table 3.
Parameter VDD to VSS VDD to GND VSS to GND Analog, Digital Inputs 1 Continuous Current, S or D pins Peak Current, S or D pins (Pulsed at 1 ms, 10% Duty Cycle Maximum) Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature TSSOP, JA, Thermal Impedance 16-Lead SOIC, JA, Thermal Impedance Reflow Soldering Peak Temperature (Pb-free)
1
Rating 35 V -0.3 V to +25 V +0.3 V to -25 V VSS - 0.3 V to VDD + 0.3 V or 30 mA (whichever occurs first) 30 mA 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
-40C to +105C -65C to +150C 150C 112C/W 77C/W 260 (+0/-5)C
Overvoltages at A, EN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings provided.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 16
ADG1308/ADG1309 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
A0 1 EN 2 VSS
3 16 15
A1 A2 GND VDD S5 S6 S7 S8
06009-002
ADG1308
TOP VIEW (Not to Scale)
14 13 12 11 10 9
S1 4 S2 5 S3 6 S4 7 D8
Figure 2. ADG1308 Pin Configuration (TSSOP and SOIC_N)
Table 4. ADG1308 Pin Function Descriptions
Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mnemonic A0 EN VSS S1 S2 S3 S4 D S8 S7 S6 S5 VDD GND A2 A1 Description Logic Control Input A0. Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches. Most Negative Power Supply Potential. In single supply applications, this pin can be connected to ground. Source Terminal 1. Can be an input or an output. Source Terminal 2. Can be an input or an output. Source Terminal 3. Can be an input or an output. Source Terminal 4. Can be an input or an output. Drain Terminal. Can be an input or an output. Source Terminal 8. Can be an input or an output. Source Terminal 7. Can be an input or an output. Source Terminal 6. Can be an input or an output. Source Terminal 5. Can be an input or an output. Most Positive Power Supply Potential. Ground (0 V) Reference. Logic Control Input A2. Logic Control Input A1.
ADG1308 TRUTH TABLE
Table 5.
A2 X1 0 0 0 0 1 1 1 1
1
A1 X1 0 0 1 1 0 0 1 1
A0 X1 0 1 0 1 0 1 0 1
EN 0 1 1 1 1 1 1 1 1
ON SWITCH NONE 1 2 3 4 5 6 7 8
X = Don't care.
Rev. 0 | Page 7 of 16
ADG1308/ADG1309
A0 1 EN 2 VSS 3 S1A 4 S2A 5 S3A 6 S4A 7 DA 8
16 15
A1 GND VDD S1B S2B S3B S4B DB
06009-003
ADG1309
TOP VIEW (Not to Scale)
14 13 12 11 10 9
Figure 3. ADG1309 Pin Configuration (TSSOP and SOIC_N)
Table 6. ADG1309 Pin Function Descriptions
Pin Number SOIC/TSSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mnemonic A0 EN VSS S1A S2A S3A S4A DA DB S4B S3B S2B S1B VDD GND A1 Description Logic Control Input A0. Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches. Most Negative Power Supply Potential. In single supply applications, this pin can be connected to ground. Source Terminal 1A. Can be an input or an output. Source Terminal 2A. Can be an input or an output. Source Terminal 3A. Can be an input or an output. Source Terminal 4A. Can be an input or an output. Drain Terminal A. Can be an input or an output. Drain Terminal B. Can be an input or an output. Source Terminal 4B. Can be an input or an output. Source Terminal 3B. Can be an input or an output. Source Terminal 2B. Can be an input or an output. Source Terminal 1B. Can be an input or an output. Most Positive Power Supply Potential. Ground (0 V) Reference. Logic Control Input A1.
ADG1309 TRUTH TABLE
Table 7.
Al X1 0 0 1 1
1
A0 X1 0 1 0 1
EN 0 1 1 1 1
ON SWITCH PAIR NONE 1 2 3 4
X = Don't care.
Rev. 0 | Page 8 of 16
ADG1308/ADG1309 TYPICAL PERFORMANCE CHARACTERISTICS
200 180 160 TA = 25C 500 600 VDD = 12V VSS = 0V TA = +85C
ON RESISTANCE ()
ON RESISTANCE ()
140 120 100 80 60 40 20
VDD = +15V VSS = -15V
400
300
200 TA = -40C 100 TA = +25C
06009-004
-12
-9
-6 -3 0 3 6 9 SOURCE OR DRAIN VOLTAGE (V)
12
15
0
2
4 6 8 SOURCE OR DRAIN VOLTAGE (V)
10
12
Figure 4. On Resistance as a Function of VD (VS ) for Dual Supply
450 TA = 25C 400
Figure 7. On Resistance as a Function of VD (VS ) for Different Temperatures, Single Supply
6 TA = 25C 4 VDD = +15V VSS = -15V VDD = +5V VSS = -5V
350 300 250 200 150 100 50
06009-005
CHARGE INJECTION (pC)
ON RESISTANCE ()
2
VDD = 12V VSS = 0V
0
VDD = +12V VSS = 0V
-2
-4
0
2
4 6 8 SOURCE OR DRAIN VOLTAGE (V)
10
12
-10
-5
0 VS (V)
5
10
15
Figure 5. On Resistance as a Function of VD (VS ) for Single Supply
250 VDD = +15V VSS = -15V
Figure 8. Charge Injection vs. Source Voltage
160 140 120 VDD = +15V VSS = -15V TON
200
ON RESISTANCE ()
TIME (ns)
150 TA = +85C 100 TA = -40C 50
100 80 60 40 20
06009-006
TOFF
TA = +25C
-10
-5 0 5 SOURCE OR DRAIN VOLTAGE (V)
10
15
-20
0
20 40 TEMPERATURE (C)
60
80
Figure 6. On Resistance as a Function of VD (VS ) for Different Temperatures, Dual Supply
Figure 9. TON/TOFF Time vs. Temperature
Rev. 0 | Page 9 of 16
06009-009
0 -15
0 -40
06009-008
0
-6 -15
06009-007
0 -15
0
ADG1308/ADG1309
0 -10 -20
OFF ISOLATION (dB)
-10
VDD = +15V VSS = -15V TA = 25C
-20 -30
VDD = +15V VSS = -15V TA = 25C
-30 -40 -50 -60 -70 -80 -90 -100
06009-010
CROSSTALK (dB)
-40 -50 -60 -70 -80 -90 S1x - S2x SxA - SxB
100k
1M 10M FREQUENCY (Hz)
100M
1G
100k
1M 10M FREQUENCY (Hz)
100M
1G
Figure 10. Off Isolation vs. Frequency
12
Figure 12. Crosstalk vs. Frequency
10
VDD = +15V VSS = -15V TA = 25C
CAPACITANCE (pF)
8
SOURCE/DRAIN ON
6
DRAIN OFF
4
2
SOURCE OFF
-10
-5
0 VBIAS (V)
5
10
15
Figure 11. ADG1308 Capacitance vs. Source Voltage, 15 V Dual Supply
06009-012
0 -15
Rev. 0 | Page 10 of 16
06009-011
-110 10k
-100 10k
ADG1308/ADG1309 TEST CIRCUITS
V
IS (OFF) A S D ID (OFF) A
06009-014
ID (ON) NC S D A
06009-015
S
D IDS
06009-013
VS
VD
NC = NO CONNECT
VD
VS
Figure 14. Off Leakage
Figure 15. On Leakage
Figure 13. On Resistance
VDD 3V ADDRESS DRIVE (VIN) 0V 50% 50%
VSS VSS S1 S2-S7 S8 VS8 OUTPUT D GND 300 35pF
06009-016
tr < 20ns tf < 20ns
A0 VIN 50 A1 A2
VDD
VS1
tTRANSITION
tTRANSITION
90%
ADG13081
2.4V EN
OUTPUT
90%
1SIMILAR CONNECTION FOR ADG1309.
Figure 16. Address to Output Switching Times, tTRANSITION
VDD 3V ADDRESS DRIVE (VIN) 0V VIN 50 A0 A1 A2 S1 S2-S7 S8 80% OUTPUT 80% 2.4V EN GND VS VSS
VDD
VSS
ADG13081
D
OUTPUT
300
35pF
06009-017
tBBM
1SIMILAR CONNECTION FOR ADG1309.
Figure 17. Break-Before-Make Delay, tBBM
VDD 3V ENABLE DRIVE (VIN) 0V 50% 50% A0 A1 A2 S1 S2-S8 VS VDD VSS VSS
tON (EN)
0.9VO OUTPUT
tOFF (EN)
0.9VO VIN 50 EN
ADG13081
D GND
OUTPUT 300 35pF
1SIMILAR CONNECTION FOR ADG1309.
Figure 18. Enable Delay, tON (EN), tOFF (EN)
Rev. 0 | Page 11 of 16
06009-018
ADG1308/ADG1309
VDD VSS VDD 3V A0 A1 VIN A2 VSS
ADG13081
VOUT QINJ = CL x VOUT VOUT VS VIN
06009-019
RS
S EN GND
D CL 1nF
VOUT
1SIMILAR
CONNECTION FOR ADG1309.
Figure 19. Charge Injection
VDD 0.1F
VSS 0.1F NETWORK ANALYZER
VDD 0.1F
VSS 0.1F NETWORK ANALYZER
VDD S
VSS
VDD S
VSS
50 D
50 VS VOUT
50 VS D RL 50 VOUT
GND
RL 50
GND
06009-020
OFF ISOLATION = 20 log
VS
INSERTION LOSS = 20 log
VOUT WITH SWITCH VOUT WITHOUT SWITCH
Figure 20. Off Isolation
VDD 0.1F NETWORK ANALYZER VOUT RL 50 VSS 0.1F
Figure 22. Bandwidth
VDD S1
VSS
D S2 VS GND
R 50
CHANNEL-TO-CHANNEL CROSSTALK = 20 log
Figure 21. Channel-to-Channel Crosstalk
Rev. 0 | Page 12 of 16
06009-022
VOUT VS
06009-021
VOUT
ADG1308/ADG1309 TERMINOLOGY
RON Ohmic resistance between D and S. RON Difference between the RON of any two channels. IS (Off) Source leakage current when the switch is off. ID (Off) Drain leakage current when the switch is off. ID, IS (On) Channel leakage current when the switch is on. VD (VS) Analog voltage on Terminal D and Terminal S. CS (Off) Channel input capacitance for off condition. CD (Off) Channel output capacitance for off condition. CD, CS (On) On switch capacitance. CIN Digital input capacitance. tON (EN) Delay time between the 50% and 90% points of the digital input and switch on condition. tOFF (EN) Delay time between the 50% and 90% points of the digital input and switch off condition. tTRANSITION Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another. TBBM Off time measured between the 80% point of both switches when switching from one address state to another. VINL Maximum input voltage for Logic 0. VINH Minimum input voltage for Logic 1. IINL (IINH) Input current of the digital input. IDD Positive supply current. ISS Negative supply current. Off Isolation A measure of unwanted signal coupling through an off channel. Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching. Bandwidth The frequency at which the output is attenuated by 3 dB. On Response The frequency response of the on switch.
Rev. 0 | Page 13 of 16
ADG1308/ADG1309 OUTLINE DIMENSIONS
5.10 5.00 4.90
16
9
4.50 4.40 4.30
1 8
6.40 BSC
PIN 1 0.15 0.05 0.65 BSC 0.30 0.19 COPLANARITY 0.10 1.20 MAX
0.20 0.09
SEATING PLANE
8 0
0.75 0.60 0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AB
Figure 23. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters
10.00 (0.3937) 9.80 (0.3858) 4.00 (0.1575) 3.80 (0.1496)
16 1 9 8
6.20 (0.2441) 5.80 (0.2283)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10
1.75 (0.0689) 1.35 (0.0531)
0.50 (0.0197) x 45 0.25 (0.0098)
8 0.51 (0.0201) SEATING 0.25 (0.0098) 0 1.27 (0.0500) PLANE 0.31 (0.0122) 0.40 (0.0157) 0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AC CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 24. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16) Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model ADG1308BRUZ 1 ADG1308BRUZ-REEL71 ADG1308BRZ1 ADG1308BRZ-REEL71 ADG1309BRUZ1 ADG1309BRUZ-REEL71 ADG1309BRZ1 ADG1309BRZ-REEL71
1
Temperature Range -40C to +105C -40C to +105C -40C to +105C -40C to +105C -40C to +105C -40C to +105C -40C to +105C -40C to +105C
Package Description 16-Lead Thin Shrink Small Outline Package [TSSOP] 16-Lead Thin Shrink Small Outline Package [TSSOP] 16-Lead Narrow Body Small Outline Package [SOIC_N] 16-Lead Narrow Body Small Outline Package [SOIC_N] 16-Lead Thin Shrink Small Outline Package [TSSOP] 16-Lead Thin Shrink Small Outline Package [TSSOP] 16-Lead Narrow Body Small Outline Package [SOIC_N] 16-Lead Narrow Body Small Outline Package [SOIC_N]
Package Option RU-16 RU-16 R-16 R-16 RU-16 RU-16 R-16 R-16
Z = Pb-free part.
Rev. 0 | Page 14 of 16
ADG1308/ADG1309
NOTES
Rev. 0 | Page 15 of 16
ADG1308/ADG1309 NOTES
(c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06009-0-4/06(0)
Rev. 0 | Page 16 of 16


▲Up To Search▲   

 
Price & Availability of ADG1308

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X