![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
ZL60301 Parallel Fiber Optic Transceiver (4 + 4) x 2.7 Gbps Data Sheet July 2003 Ordering Information ZL60301/MJD Parallel Fiber Transceiver Heat sink and EMI shield options are available upon request 0C to +80C Features * * * * * * * Complies with POP4 MSA specification 4 Transmit channels and 4 Receive channels Data rate up to 2.7 Gbps per channel 850 nm VCSEL array Data I/O is CML compatible with DC blocking capacitors Link reach 300 m with 50/125 m 500 fiber at 2.5 Gbps Channel BER better than 10-12 MHz.km * * * * * * Industry standard MPO/MTP ribbon fiber connector interface Pluggable MegArray(R) ball grid array connector Optionally available with EMI shield and external heat sink Laser class 1M IEC 60825-1:2001 compliant Low power consumption, max 1 W Power supply 3.3 V Rx_EN Rx_SD SQ_EN VCCA Rx VCCB Rx VEE Rx DOUT0+ DOUT0DOUT3+ DOUT3DIN3+ DIN3- TransImpedance and Limiting Amplifier RX0 0 PIN Array RX1 1 2 RX2 3 RX3 3TX3 2TX2 1 TX1 0 TX0 VCSEL Driver VCSEL Array DIN0+ DIN0VCSEL Driver Controller Tx_EN Tx_DIS RESET FAULT VCC Tx VEE TX Figure 1 - Transceiver Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved. ZL60301 Applications * * * High-speed interconnects within and between switches, routers and transport equipment Proprietary backplanes Interconnects rack-to-rack, shelf-to-shelf, board-to-board, board-to-optical backplane Data Sheet Description The ZL60301 is a very high-speed transceiver for parallel fiber applications. This transceiver performs E/O and O/E conversions for data transmission over multimode fiber ribbon. The transmit section converts parallel electrical input signals via a laser driver and a VCSEL array into parallel optical output signals at a wavelength of 850nm. The receive section converts parallel optical input signals via a PIN photodiode array and a transimpedance and limiting amplifier, into electrical output signals. The module is fitted with a pluggable industry-standard MegArray(R) BGA connector. This provides ease of assembly on the host board and enables provisioning of bandwidth on demand. 2 Zarlink Semiconductor Inc. ZL60301 Table of Contents Data Sheet Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Transmitter Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Receiver Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Receiver Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transceiver Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Transceiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Eye safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrostatic discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrostatic discharge immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electromagnetic interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Handling instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Cleaning the optical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ESD handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Zarlink Semiconductor Inc. ZL60301 Absolute Maximum Ratings Data Sheet Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Parameter Supply voltage Differential input voltage amplitude1 Voltage on any pin Relative humidity (non-condensing) Storage temperature ESD resistance Symbol VCC V VPIN MOS TSTG VESD Table 1 - Absolute Maximum Ratings 1. Differential input voltage amplitude is defined as V = DIN+ - DIN-. Min -0.3 -0.3 5 -40 Max 4.0 1.2 VCC + 0.3 95 100 1 Unit V V V % C kV Recommended Operating Conditions Parameter Power supply voltage Operating case temperature Signalling rate (per Link distance2 capacitors3 noise4 channel)1 Symbol VCC TCASE fD LD CBLK VNPS Table 2 - Recommended Operating Conditions 1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of length 223-1 (PRBS-23). Information on lower bit rates and longer run lengths are available on request. 2. For maximum distance, see Table 11. 3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended. 4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz to 2700 MHz with the recommended power supply filter in place. Min 3.135 0 1.0 2 100 Max 3.465 80 2.7 Unit V C Gbps m nF Data I/O DC blocking Power supply 200 mVp-p L1 1 H L2 6.8 nH Host Vcc C1 10 F R1 100 R2 1.0 k Module Vcc C2 10 F C3 0.1 F C4 0.1 F Figure 2 - Recommended Power Supply Filter 4 Zarlink Semiconductor Inc. ZL60301 Transmitter Specifications Data Sheet All parameters below require operating conditions according to Table 2 - "Recommended Operating Conditions". Parameter Optical Parameters Launch power (50/125 m MMF)1 Extinguished output power Extinction ratio 2 3 Symbol Min Max Unit POUT POFF ER OMA C -8 6 0.30 830 -2 -30 dBm dBm dB mW Optical modulation amplitude Center wavelength Spectral width4 Relative intensity noise 860 0.85 -116 150 150 120 50 100 500 150 nm nmrms dB/Hz ps ps ps ps ps mW mA mVp-p ps ps OMA5 RIN12OMA tRO tFO TJ DJ tSK PD ICC VIN ZIN tRE tFE 200 80 Optical output rise time (20 - 80%) Optical output fall time (20 - 80%) Total jitter contributed (peak to Channel to channel Power dissipation Supply current Differential input voltage amplitude (peak to peak)8 Differential input impedance9 Electrical input rise time (20 - 80%) Electrical input fall time (20 - 80%) skew7 peak)6 Deterministic jitter contributed (peak to peak) Electrical Parameters 1600 120 160 160 Table 3 - Transmitter optical and Electrical Specifications 1. The output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits. 2. The extinction ratio is measured at 622 Mbps. 3. Informative. Corresponds to POUT = -8 dBm and ER = 6 dBm. 4. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes. 5. Corresponds to a Relative Intensity Noise (RIN) of -120 dB/Hz. 6. Total jitter equals TP1 to TP2 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet). 7. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs. 8. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are CML compatible. 9. Differential input impedance is measured between DIN+ and DIN-. 5 Zarlink Semiconductor Inc. ZL60301 Data Sheet DIN+ 50 50 DIN- VCC 13k 11k VEE Figure 3 - Differential CML Input Equivalent Circuit Transmitter Control and Status Signal Requirements The following table shows the timing relationships of the status and control signals of the transmit section. Parameter Control input voltage high1 Control input voltage low Control pull-up resistor2 resistor3 4, 5 4 Symbol VIH VIL RPU1 RPD VOL RPU2 TFA TFD TTDD Min 2.1 Typ Max Unit V 0.62 10 10 0.4 20 100 100 100 10 V k k V k s s s Control pull-down Status output voltage low Status pull-up resistor FAULT assert time FAULT lasers off RESET duration Table 4 - Transmitter Control and Status Signals 6 Zarlink Semiconductor Inc. ZL60301 Parameter RESET assert time RESET de-assert time Tx_EN assert time Tx_EN de-assert time Tx_DIS assert time Tx_DIS de-assert time Symbol TOFF TON TTEN TTD TTD TTEN Table 4 - Transmitter Control and Status Signals (continued) 1. Applies to control signals RESET, Tx_DIS and Tx_EN. 2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor. 3. Applies to control signal Tx_DIS. Internal pull-down resistor. 4. Applies to status signal FAULT. Internal pull-up to VCC. 5. With status output sink current max. 2 mA. Data Sheet Min Typ 5 Max 10 100 1 5 5 10 10 1 Unit s ms ms s s ms Transmitter Control and Status Timing Diagrams The following figures show the timing relationships of the status and control signals of the transmit section. VCC TTEN Tx Output [0:3] Data [0:3] Transmitter Not Ready Normal operation RESET: floating or high Figure 4 - Transmitter Power-up Sequence FAULT TFA TFD Data [0:3] Tx Output [0:3] No Fault Fault Figure 5 - Transmitter Fault Signal Timing Diagram 7 Zarlink Semiconductor Inc. ZL60301 Data Sheet RESET FAULT TTDD TON Data [0:3] Tx Output [0:3] Transmitter Not Ready Normal operation Figure 6 - Transmitter Reset Signal Timing Diagram Tx_EN TTD Data [0:3] Tx_DIS TTD Data [0:3] Lasers off Lasers off Normal operation Tx Off Normal operation Tx Off Tx_EN TTEN Data [0:3] Transmitter Not Ready Normal operation Figure 7 - Transmitter Enable and Disable Timing Diagram Tx_DIS High Tx_EN High Tx_EN Low Transmitter disabled Transmitter disabled Tx_DIS Low Normal operation Transmitter disabled Table 5 - TruthTable for Transmitter Operation (Pre-condition: RESET floating or HIGH) 8 Zarlink Semiconductor Inc. ZL60301 Receiver Specifications Data Sheet All parameters below require operating conditions according to Table 2 - "Recommended Operating Conditions" and a termination load of 100 differential at the electrical output. Parameter Optical Parameters Input optical power1 Center wavelength Return loss2 Stressed receiver sensitivity Channel to channel skew Signal detect assert Signal detect de-assert Electrical Parameters Power dissipation Supply current Differential output voltage amplitude (peak to Output differential load Stressed receiver eye impedance6 opening7 peak)5 PD ICC VOUT ZL PSE tRE tFE 500 80 0.3 160 160 500 150 800 120 mW mA mVp-p UI ps ps 4 3 Symbol Min Max Unit PIN C RL PSS tSK PSA PSD -16 830 12 -2 860 -11.7 100 -17 dBm nm dB dBm ps dBm dBm -31 Electrical output rise time (20 - 80%) Electrical output fall time (20 - 80%) Table 6 - Receiver Optical and Electrical Parameters 1. Receive power for a channel is measured for a BER of 10-12 and worst case extinction ratio. PIN (Min) is measured using a fast rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min). 2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Using a Loss Test Set. 3. The stressed receiver sensitivity is measured using PRBS 223-1 pattern, 2.6 dB inter-symbol interference, ISI (Min), 30 ps duty cycle dependent deterministic jitter, DCD DJ (Min), and 6 dB extinction ratio, ER (Min) (ER penalty = 2.2 dB). All channels not under test are receiving signals with an average input power of 6 dB above PIN (Min). 4. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs. 5. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured with a 100 differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible. 6. See Figure 13. 7. The stressed receiver eye opening represents the eye at TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet). The stressed receiver eye opening is measured using PRBS 223-1 pattern, 2.6 dB ISI min, 30 ps DCD DJ min, 6 dB ER min and an average input power of -11.2 dBm (0.5 dB above minimum stressed receiver sensitivity as defined in IEEE 802.3 clause 38.6). All channels not under test are receiving signals with an average input power of 6 dB above PIN (Min). 9 Zarlink Semiconductor Inc. ZL60301 Receiver Control and Status Signal Requirements Data Sheet The following table shows the timing relationships of the status and control signals of the receive section. Parameter Control input voltage high1 Control input voltage low 1 1 Symbol VIH VIL IIN VOL 2 Min 2.0 Typ Max Unit V 0.9 10 3.25 50 50 33 5 200 200 100 0.4 V A V k s s ms s Control input pull-up current Status output voltage low 2, 3 Status output pull-up resistor RPU TSD TLOS TRXEN TRXD Receiver signal detect assert time Receiver signal detect de-assert time Receiver enable assert time Receiver enable de-assert time Table 7 - Receiver Control and Status Signals 1. Applies to control signals Rx_EN, SQ_EN. 2. Applies to status signal Rx_SD. Internal pull-up to VCC. 3. With status output sink current max 2 mA. Receiver Control and Status Timing Diagrams The following figures show the timing relationships of the status and control signals of the receive section. Rx_EN TRXD ICC Normal Operation Rx Off Figure 8 - Receiver Enable Signal Timing Diagram 10 Zarlink Semiconductor Inc. ZL60301 Data Sheet Rx_SD TLOS Signal No Signal Figure 9 - Receiver Signal Detect Timing Diagram Transceiver Module Signals The pluggable parallel optical transceiver uses a 100 position FCI MegArray electrical connector (FCI PN: 84513-101), and an industry standard MTP(MPO) optical receptacle compliant with IEC 61754-7. K 1 2 3 4 5 6 7 8 9 10 DOUT00DOUT00+ VEE Rx DOUT01+ DOUT01VEE Rx VCCB Rx NIC NIC VCCA Rx J VEE Rx VEE Rx VEE Rx VEE Rx VEE Rx VEE Rx VCCB Rx DNC DNC VCCA Rx H DOUT03+ DOUT03VEE Rx DOUT02DOUT02+ VEE Rx VCCB Rx DNC DNC VEE Rx G VEE Rx VEE Rx VEE Rx NIC NIC NIC NIC DNC SD NIC F VEE Rx VEE Rx VEE Rx NIC NIC NIC NIC RX_EN SQ_EN NIC E VEE Tx VEE Tx VEE Tx NIC NIC NIC NIC TX_DIS RESET NIC D VEE Tx VEE Tx VEE Tx NIC NIC NIC NIC TX_EN FAULT NIC C DIN03DIN03+ VEE Tx DIN02+ DIN02VEE Tx VCC Tx DNC DNC VEE Tx B VEE Tx VEE Tx VEE Tx VEE Tx VEE Tx VEE Tx VCC Tx DNC DNC VCC Tx A DIN00+ DIN00VEE Tx DIN01DIN01+ VEE Tx VCC Tx DNC DNC VCC Tx Table 8 - Transceiver Pinout Assignments (Top view, toward MPO/MTP connector end) (10x10 array, 1.27 mm pitch) Module front view - MTP key up Tx0 Tx1 Tx2 Tx3 - - - - Rx3 Rx2 Rx1 Rx0 Host printed circuit board Table 9 - Transceiver Optical Channel Assignment 11 Zarlink Semiconductor Inc. ZL60301 Transceiver Pin Description Data Sheet The transceiver module case is electrically isolated from Transmitter signal common and Receiver signal common. Connection through mounting screw holes or frontplate whichever is applicable. Make the appropriate electrical connection for EMI shield integrity. Signal Name DIN[0:3] +/VCC Tx VEE Tx Type Data input Description Transmitter data in, channel 0 to 3 Transmitter power supply rail Transmitter signal common. All transmitter voltages are referenced to this potential unless otherwise stated. Control input Control input Status output Control input Data output Transmitter enable. HIGH: normal operation LOW: disable transmitter Transmitter disable. HIGH: disable transmitter LOW: normal operation Transmitter fault. HIGH: normal operation LOW: laser fault detected on at least one channel Transmitter reset. HIGH: normal operation LOW:reset to clear fault signal Receiver data out, channel 0 to 3. PIN preamplifier power supply rail. Receiver quantizer power supply rail. Receiver signal common. All receiver voltages are referenced to this potential unless otherwise stated. Control input Status output Control input Receiver enable. HIGH: normal operation LOW: disable receiver Receiver signal detect. HIGH: valid optical input on all channels LOW: loss of signal on at least one channel Squelch enable. HIGH: squelch function enabled. Data OUT is squelched on any channels that have loss of signal LOW: squelch function disabled Do not connect to any potential, including ground. No internal connection. Table 10 - Transceiver Pin Descriptions Directly connect these pads to the PC board receiver signal ground plane. Internal pull-up. Directly connect these pads to the PC board transmitter signal ground plane. Active high, internal pull-up. See Table 5. Active high, internal pulldown. See Table 5. When active, all channels are disabled. Clear by reset signal. Internal pull-up. Internal pull-up. Comments Internal differential termination at 100 . TX_EN TX_DIS FAULT RESET DOUT[0:3] +/VCCA Rx VCCB Rx VEE Rx RX_EN RX_SD Internal pull-up. SQ_EN Internal pull-up. DNC NIC 12 Zarlink Semiconductor Inc. ZL60301 Data Sheet VCCA and VCCB Rx can be connected to the same power supply. However, to insure maximum receiver sensitivity and minimize the impact of noise from the power supply, it is recommended to keep the power supplies separate and to use the recommended power supply filtering network on VCCA Rx, see Figure 2. Thermal Characteristics There are three options for heat sinks depending on the cooling needs. They are: 1. Direct application without any attached external heat sink 2. Use a generic external heat sink specified by Zarlink 3. Use a customer designed external heat sink In Figure 10 and Figure 11, the temperature rise and thermal resistance as a function of air velocity (free air velocity at the top of the module) is shown for option 1 and 2. The thermal resistance is defined as the temperature difference between the case temperature and ambient flowing air divided by the total heat dissipation of the module. Improved thermal properties can be achieved by using a larger heat sink especially if more height is available (option 3). For this option, a more detailed discussion with Zarlink is recommended regarding heat sink design attachment materials. Tem perature rise at 1.0W (Free stream air velocity) Option ZL60301/MLD 16 Option ZL60301/MJD Temperature rise (K) 12 8 4 0 0 1 2 3 Air velocity (m /s) 4 5 Figure 10 - Temperature Difference Between Ambient Flowing Air and Case at a Heat Dissipation of 1.0 W 13 Zarlink Semiconductor Inc. ZL60301 Therm al resistance to air (Free stream air velocity) Data Sheet 15 Thermal resistance (K/W) 10 Option ZL60301/MLD 5 Option ZL60301/MJD 0 0 1 2 3 4 5 Air velocity (m /s) Figure 11 - Thermal Resistance, as a Function of Air Velocity (the airflow is along the shortest side of the module) For any other orientation, the thermal resistance is 75-100% of the values shown above. 14 Zarlink Semiconductor Inc. ZL60301 Regulatory Compliance Eye safety Data Sheet The maximum optical output power is specified to comply with Class 1M in accordance with IEC 60825-1:2001. In addition the transmitter complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No.50, dated July 26, 2001. No maintenance or service of the product may be performed. Electrostatic discharge The module is classified as Class 1 (> 1000 Volts) according to MIL-STD-883, test method 3015.7, with regards to the electrical pads. Electrostatic discharge immunity The part withstand a 15 kV (air discharge) and 8 kV (contact discharge) either indirect or directly to receptacle; tested according to IEC 61000-4-2, while in operation without addition of bit errors. Electromagnetic interference Emission The electromagnetic emission is tested in front of the module (module fitted with EMI shield), with the module mounted in a frontplate cutout. The part is tested with FCC Part 15, 30 - 1000 MHz and 1 GHz to 5th harmonic of the highest fundamental frequency (6.75 GHz), and is specified to be Class B with > 6 dB margin. Immunity The electromagnetic immunity is tested without a front panel or enclosure. The module specification is maintained with an applied field of 10 V/m for frequencies between 10 kHz and 10 GHz, according to IEC 61000-4-3 and GR-1089-CORE. Handling instructions Cleaning the optical interface A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any contamination. If the module's optical port becomes contaminated, it can be cleaned with high-pressure nitrogen (the use of fluids, or physical contact, is not advised due to potential for damage). Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to clean the optical port of the module with high-pressure nitrogen. Connectors For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical MegArray connector and 200 for the optical MPO/MTP connector. ESD handling When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD protected work areas with wrist straps, controlled work-benches, floors etc. 15 Zarlink Semiconductor Inc. ZL60301 Link Reach Data Sheet The following table lists the minimum reach distance of the pluggable parallel fiber optic transceiver for different multi-mode fiber (MMF) types and bandwidths assuming worst case parameters. Each case allows for a maximum of 2 dB per channel connection loss for patch cables and other connectors. Fiber Type [core / cladding m] 62.5/125 MMF 62.5/125 or 50/125 MMF 50/125 MMF Modal Bandwidth @ 850 nm [MHz*km] 200 400 500 Reach Distance @ 1 Gbps [m] 350 650 750 Reach Distance @ 2.5 Gbps [m] 135 260 300 Reach Distance @ 2.7 Gbps [m] 115 220 270 Table 11 - Link Reach for Different Fiber Types and Data Rates Link Model Parameters The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link model version 2.3.5 (filename: 5pmd047.xls). Parameter Mode partition noise k-factor Modal noise Dispersion slope parameter Wavelength of zero dispersion Attenuation coefficient at 850 nm Conversion factor Q-factor [BER 10-12] TP4 eye opening DCD allocation at TP3 RMS baseline wander S.D. RIN coefficient Conversion factor DCD DJ BLW kRIN c_rx Table 12 - Link Model Parameters Symbol k MN SO UO dB C1 Q Value 0.3 0.3 0.11 1320 3.5 480 7.04 0.3 0.08 0.025 0.70 329 ns.MHz UI UI dB ps/nm2*km nm dB/km ns.MHz Unit 16 Zarlink Semiconductor Inc. ZL60301 Electrical Interface - Application Examples Recommended CML output Transmitter CML input Data Sheet Host PCB 100nF ZOUT=100 Differential Z0=100 Differential 100nF ZIN=100 Differential Figure 12 - Recommended Differential CML Input Interface Receiver CML output Recommended CML input Host PCB 100nF Z0=100 Differential 100nF ZTERM =100 Differential ZL Figure 13 - Recommended Differential CML Output Interface 17 Zarlink Semiconductor Inc. NOTES:1. All dimensions in mm. 2. Tolerancing per ASME Y14.5M-1994. (c) Zarlink Semiconductor 2002. All rights reserved. Package code Previous package codes Drawing type ISSUE ACN DATE 1 JS004296R1A MJD Package drawing - module layout Title 12-JUN-03 APPRD. TD/BE JS004296 NOTES:1. All dimensions in mm. 2. Tolerancing per ASME Y14.5M-1994. (c) Zarlink Semiconductor 2002. All rights reserved. Package code Previous package codes Drawing type ISSUE ACN DATE 1 JS004296R1A MJD Package Drawing, 12-JUN-03 Host circuit board footprint layout Title APPRD. TD/BE JS004296 For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request. Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE |
Price & Availability of ZL60301
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |