![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD- 93818 IRGP30B120KD-E INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features * Low VCE(on) Non Punch Through (NPT) Technology * Low Diode VF (1.76V Typical @ 25A & 25C) * 10 s Short Circuit Capability * Square RBSOA * Ultrasoft Diode Recovery Characteristics * Positive VCE(on) Temperature Coefficient * Extended Lead TO-247AD Package C Motor Control Co-Pack IGBT VCES = 1200V G E VCE(on) typ. = 2.28V VGE = 15V, IC = 25A, 25C N-channel Benefits * Benchmark Efficiency for Motor Control Applications * Rugged Transient Performance * Low EMI * Significantly Less Snubber Required * Excellent Current Sharing in Parallel Operation * Longer leads for Easier Mounting TO-247AD Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current (Fig.1) Continuous Collector Current (Fig.1) Pulsed Collector Current (Fig.3, Fig. CT.5) Clamped Inductive Load Current(Fig.4, Fig. CT.2) Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation (Fig.2) Maximum Power Dissipation (Fig.2) Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw. Max. 1200 60 30 120 120 30 120 20 300 120 -55 to + 150 300, (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m) Units V A V W C Thermal Resistance Parameter RJC RJC RCS RJA Wt ZJC Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Transient Thermal Impedance Junction-to-Case Min. --- --- --- --- --- (Fig.24) Typ. --- --- 0.24 --- 6 (0.21) Max. 0.42 0.83 --- 40 --- Units C/W g (oz) www.irf.com 1 12/14/99 IRGP30B120KD-E Electrical C haracteristics @ TJ = 25C (unless otherw ise specified) P a ra m e te r V (B R )C E S C o lle cto r-to -E m itte r B re a kd o wn V o lta g e V (B R )C E S / T j T em p e ra tu re C o e ff. o f B re a kd o wn V o lta g e M in. 1200 T yp . + 1 .2 2 .2 8 2 .4 6 3 .4 3 2 .7 4 2 .9 8 5 .0 - 1 .2 1 6 .9 325 1 .7 6 1 .8 6 1 .8 7 2 .0 1 C o lle cto r-to -E m itte r S atura tio n V C E (on ) V o lta g e V G E (th ) V G E (th ) / T j G a te T h resho ld V o lta g e T em p e ra tu re C o e ff. o f T h resh o ld V o lta g e F orwa rd T ran sc o nd u c ta nc e 4 .0 1 4 .8 M ax . U nits V V /C 2 .4 8 2 .6 6 4 .0 0 V 3 .1 0 3 .3 5 6 .0 V 1 9 .0 250 675 2000 2 .0 6 2 .1 7 2 .1 8 2 .4 0 1 0 0 S A C o nd itio ns V G E = 0 V ,I c = 2 5 0 A V G E = 0 V , I c = 1 m A ( 2 5 -1 2 5 o C ) IC = 2 5 A , V G E = 1 5 V IC = 3 0 A , V G E = 1 5 V IC = 6 0 A , V G E = 1 5 V I C = 2 5 A , V G E = 1 5 V , T J = 1 2 5 C I C = 3 0 A , V G E = 1 5 V , T J = 1 2 5 C V C E = V G E , IC = 2 5 0 A o F ig . 5, 6 7, 9 10 11 9,1 0,1 1,12 o m V / C V C E = V G E , I C = 1 m A ( 2 5 -1 2 5 C ) g fe IC E S V C E = 5 0 V , IC = 2 5 A , P W = 8 0 s V G E = 0 V ,V C E = 1 2 0 0 V V G E = 0 v , V C E = 1 2 0 0 V , T J = 1 2 5 C V G E = 0 v , V C E = 1 2 0 0 V , T J = 1 5 0 C IC = 2 5 A Z ero G ate V oltag e C o lle ctor C u rre nt V FM D io d e F o rw a rd V o lta g e D ro p V IC = 3 0 A I C = 2 5 A , T J = 1 2 5 C I C = 3 0 A , T J = 1 2 5 C 8 IG E S G a te -to -E m itte r L ea k a ge C u rre n t nA V G E = 2 0 V Sw itching C haracteristics @ T J = 25C (unless otherw ise specified) P a ra m e te r Qg Q ge Q gc E on E off E tot E on E off E tot td (o n ) tr td (o ff) tf C ies C oes C res RBSOA T otal G a te ch a rg e (turn -o n ) G a te - E m itte r C h arg e (tu rn -on ) G a te - C o lle c to r C h a rg e (tu rn -o n ) T urn -O n S witc h in g Lo ss T urn -O ff S witc h ing L o ss T otal S w itc h ing L o ss T urn -o n S witc h in g Lo ss T urn -o ff S w itc h ing L o ss T otal S w itc h ing L o ss T urn - o n d e la y tim e R ise tim e T urn - o ff d e la y tim e F all tim e In p u t C a p a cita n c e O u tp ut C a p ac ita n ce R e v erse T ra n sfe r C a pa c ita n ce M in. T yp . 169 19 82 1066 1493 2559 1660 2118 3778 50 25 210 60 2200 210 85 M ax . U nits 254 29 nC 123 1250 1800 J 3050 1856 2580 4436 65 35 230 75 ns J C o nd itio ns IC = 2 5 A V CC = 6 0 0 V V GE = 15 V IC = 2 5 A , V C C = 6 0 0 V V G E = 1 5 V , R g = 5 , L=200H T J = 2 5 C , E n e rg y lo sse s in clu d e ta il a n d dio d e rev e rse re co v e ry o F ig . 23 CT 1 CT 4 WF1 WF2 13 , 15 CT 4 WF1 & 2 14 , 16 CT 4 WF1 WF2 Ic = 2 5 A , V C C = 6 0 0 V V G E = 1 5 V , R g = 5 , L=200H T J = 1 2 5 C , E n e rg y lo sse s in clu d e ta il a n d dio d e rev e rse re co v e ry o Ic = 2 5 A , V C C = 6 0 0 V V G E = 1 5 V , R g = 5 , L=200H T J = 1 2 5 oC , V GE = 0V pF V CC = 3 0 V f = 1 .0 M H z T J = 1 5 0 C , Ic = 1 2 0 A V CC = 1 0 0 0 V , V P = 1 2 0 0 V R g = 5 , V G E = + 1 5 V to 0 V TJ = 150 C V C C = 9 0 0 V ,V P = 1 2 0 0 V R g = 5 , V G E = + 1 5 V to 0 V T J = 1 2 5 oC V C C = 6 0 0 V , Ic = 2 5 A V G E = 1 5 V , R g = 5 , L=200H M e a sure d 5 m m from th e p a ck a g e . o o 22 4 CT 2 R e v erse b ia s sa fe o p e ra tin g a re a F U LL SQ U AR E CT 3 WF4 SCSO A E rec trr Irr Le S h ort C ircu it S a fe O p era tin g A re a 10 ---1820 300 34 13 ---2400 38 s J ns A nH R e v erse re c o v e ry e n e rg y o f th e d io de D io d e R ev e rse re co v e ry tim e P e ak R e v e rse R e c ov e ry C u rre n t In te rn a l E m itte r In du c ta n ce 17 ,18 ,19 20 , 21 CT 4, WF3 2 www.irf.com IRGP30B120KD-E Fig.1 - Maximum DC Collector Current vs. Case Temperature 70 60 50 40 30 20 80 (W) P 120 40 0 Fig.2 - Power Dissipation vs. Case Temperature 320 280 240 200 (A) I 10 0 0 40 80 120 160 tot 160 C 0 40 80 T C (C) 120 160 T C (C) Fig.3 - Forward SOA T C =25C; Tj < 150C 1000 PULSED 2s Fig.4 - Reverse Bias SOA Tj = 150C, V GE = 15V 1000 100 10 s 100 100s (A) 10 1ms C I 1 10ms DC 0.1 1 10 100 V CE (V) 1000 10000 I 10 1 1 10 100 V CE (V) 1000 10000 www.irf.com C (A) 3 IRGP30B120KD-E Fig.5 - Typical IGBT Output Characteristics Tj= -40C; tp=300s 60 55 50 45 40 (A) 60 V GE = 18V V GE = 15V V GE = 12V V GE = 10V V GE = 8V Fig.6 - Typical IGBT Output Characteristics Tj=25C; tp=300s 55 50 45 40 V GE = 18V V GE = 15V V GE = 12V V GE = 10V V GE = 8V (A) C 35 30 25 20 15 10 5 0 0 1 2 3 4 V CE (V) 5 6 35 30 25 20 15 10 5 0 0 1 2 3 4 V CE (V) 5 6 C I Fig.7 - Typical IGBT Output Characteristics Tj=125C; tp=300s 60 55 50 45 40 V GE V GE V GE V GE V GE = 18V = 15V = 12V = 10V = 8V I 60 55 50 45 40 (A) 35 30 25 20 15 10 5 0 Fig.8 - Typical Diode Forward Characteristic tp=300s - 40C 25C 125C (A) C 35 30 25 20 15 10 5 0 0 1 2 3 4 V CE (V) 5 6 I I F 0 1 2 V F (V) 3 4 4 www.irf.com IRGP30B120KD-E Fig.9 - Typical V CE vs V GE Tj= -40C 20 18 16 14 Fig.10 - Typical V CE vs V GE Tj= 25C 20 18 16 14 V CE ( V ) 12 10 8 6 4 2 0 (V) 12 10 8 6 4 2 0 6 8 10 12 14 16 18 20 I CE =10A I CE =25A I CE =50A I CE =10A I CE =25A I CE =50A V CE V GE (V) 6 8 10 12 14 V GE (V) 16 18 20 Fig.11 - Typical V CE vs V GE Tj= 125C 20 18 16 14 V CE ( V ) 12 10 8 6 4 2 0 6 8 10 12 14 V GE (V) 16 18 20 I CE =10A I CE =25A I CE =50A 250 225 200 175 150 (A) 125 Fig.12 - Typ. Transfer Characteristics V CE =20V; tp=20s Tj=25C Tj=125C I 100 75 50 25 0 0 4 8 12 V GE (V) 16 20 Tj=125C Tj=25C www.irf.com C 5 IRGP30B120KD-E Fig.13 - Typical Energy Loss vs Ic Tj=125C; L=200H; V CE =600V; Rg=22 ; V GE =15V 8000 7000 6000 Eon tdoff Fig.14 - Typical Switching Time vs Ic Tj=125C; L=200H; V CE =600V; Rg=22 ;V GE =15V 1000 Eoff tf tr Energy (J) 5000 4000 3000 2000 1000 0 0 10 20 30 40 50 60 10 0 10 20 30 40 50 t (nS) 100 tdon 60 I C (A) Fig.15 - Typical Energy Loss vs Rg Tj=125C; L=200H; V CE =600V; I CE =25A; V GE =15V 3500 3300 3100 2900 Energy (uJ) 2700 2500 2300 2100 1900 1700 1500 0 5 10 15 20 25 30 35 40 45 50 55 I C (A) Fig.16 - Typical Switching Time vs Rg Tj=125C; L=200H; V CE =600V; I CE =25A; V GE =15V 1000 tdoff Eon t (nS) Eoff 100 tdon tr tf 10 0 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) Rg (ohms) 6 www.irf.com IRGP30B120KD-E Fig.17 - Typical Diode I RR vs I F Tj=125C 45 Fig.18 - Typical Diode I RR vs Rg Tj=125C; I F =25A 45 40 35 40 35 30 Rg=5 30 IRR ( A ) IRR ( A ) 25 20 Rg=10 Rg=22 25 20 15 10 5 0 15 10 5 Rg=51 0 0 10 20 I F (A) 30 40 50 60 0 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) 45 40 35 30 (A) 25 Fig.19 - Typical Diode I RR vs dI F /dt V CC =600V; V GE =15V I F =25A; Tj=125C Fig.20 - Typical Diode Q RR V CC =600V; V GE =15V; Tj=125C 7000 6500 22 51 10 5 50A 40A 30A 25A 20A Rg=5 6000 5500 QRR ( n C ) 5000 RR Rg=10 20 15 10 5 0 0 500 1000 dI F / dt (A/s) 1500 Rg=51 Rg=22 4500 4000 I 3500 3000 2500 0 500 1000 1500 dI F / dt (A/s) www.irf.com 7 IRGP30B120KD-E Fig.21 - Typ. Diode E rec vs. I F Tj=125C 2400 5 10 22 51 1800 2200 2000 Energy (uJ) 1600 1400 1200 1000 800 0 10 20 I F (A) 30 40 50 60 Fig.22 - Typical Capacitance vs V CE V GE =0V; f=1MHz 10000 Fig.23 - Typ. Gate Charge vs. V GE I C =25A; L=600H 16 14 600V 800V C ies 12 CapacItance (pF) 1000 10 V GE ( V ) 100 8 6 C oes 100 4 C res 2 10 0 20 40 60 80 0 0 40 80 120 160 200 V CE (V) Q G , Total Gate Charge (nC) 8 www.irf.com IRGP30B120KD-E Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case 10 1 D =0.5 0.2 0.1 0.1 0.05 P DM 0.02 t1 0.01 0.01 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + T C SINGLE PULSE 0.001 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 t 1 , Rectangular Pulse Duration (sec) www.irf.com 9 IRGP30B120KD-E Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit L L DUT 0 VCC 80 V Rg DUT 1000V 1K Fig. CT.3 - S.C. SOA Circuit Fig. CT.4 - Switching Loss Circuit D riv er D C d iod e cla m p / DUT L 900V - 5V DUT / D R IV E R Rg DUT VCC Fig. CT.5 - Resistive Load Circuit R= VCC ICM DUT Rg VCC 10 www.irf.com IRGP30B120KD-E Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125C using Fig. CT.4 800 40 Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125C using Fig. CT.4 900 800 700 TEST CURRENT 45 40 35 30 25 20 tr 15 10% test current 700 35 600 90% ICE 500 30 25 600 500 V CE ( V ) I CE ( A ) tf 300 15 400 300 200 5% VCE 100 5% ICE 10 200 5% VCE 10 5 0 Eon Loss 5 100 0 -100 4.0 4.1 4.2 4.3 4.4 4.5 t I me (s) 0 Eoff Loss -100 -0.5 0 -5 0.0 0.5 1.0 t I me (s) 1.5 2.0 2.5 -5 Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125C using Fig. CT.4 0 30 Fig. WF.4 - Typ. S.C. Waveform @ TC=150C using Fig. CT.3 1200 250 -200 QRR tRR -400 20 1000 200 10 800 V CE ( V ) 150 V CE( V ) ICE ( A ) ICE ( A ) 400 20 V CE ( V ) 90% test current -600 10% Peak IRR Peak IRR 0 I C E( A ) 600 100 -800 -10 400 50 -1000 -20 200 0 -1200 -0.5 -30 0.0 0.5 t I me (S) 1.0 0 -10 0 10 t i me (s) 20 30 -50 www.irf.com 11 IRGP30B120KD-E TO-247AD Case Outline and Dimensions . : WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 Data and specifications subject to change without notice. 12/99 12 www.irf.com |
Price & Availability of IRGP30B120KD-E
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |