Part Number Hot Search : 
10027 TS982 R5108 2DR2G 4HCT1 IP2524B 2SC55 X85C33
Product Description
Full Text Search
 

To Download LM158N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LM158,A-LM258,A LM358,A
LOW POWER DUAL OPERATIONAL AMPLIFIERS
s INTERNALLY FREQUENCY COMPENSATED s LARGE DC VOLTAGE GAIN: 100dB s WIDE BANDWIDTH (unity gain): 1.1MHz
(temperature compensated)
s VERY LOW SUPPLY CURRENT/OP (500A) s s s s s s
ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE LOW INPUT BIAS CURRENT: 20nA (temperature compensated) LOW INPUT OFFSET VOLTAGE: 2mV LOW INPUT OFFSET CURRENT: 2nA INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE LARGE OUTPUT VOLTAGE SWING 0V TO (Vcc - 1.5V)
N DIP8 (Plastic Package)
D&S SO8 & miniSO8 (Plastic Micropackage)
DESCRIPTION These circuits consist of two independent, high gain, internally frequency compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. Inthe linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. PIN CONNECTIONS (top view)
1 2 3 4 5 6 7 8 - Output 1 - Inverting input - Non-inverting input - VCC- Non-inverting input 2 - Inverting input 2 - Output 2 - VCC+ P TSSOP8 (Thin Shrink Small Outline Package)
ORDER CODE
Part Number Temperature Range Package N * * * S D * * * P * * *
LM158,A -55C, +125C LM258,A -40C, +105C LM358,A 0C, +70C Example : LM258N
*
N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) S = Small Outline Package (miniSO) only available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape &Reel (PT)
1 2 3 4 + +
8 7 6 5
July 2003
1/12
LM158,A-LM258,A-LM358,A
SCHEMATIC DIAGRAM (1/2 LM158)
V CC
6A
4A CC
100A
Q5 Q6
Inverting input
Q2 Q1
Q3 Q4 Q11 Output Q13 Q10 Q12 Q7 R SC
Non-inverting input
Q8
Q9 50A GND
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Vid Ptot Iin Toper Tstg
1. 2. 3.
Parameter Supply voltage Input Voltage Differential Input Voltage Power Dissipation 1) Output Short-circuit Duration Input Current
3) 2)
LM158,A
LM258,A +/-16 or 32 -0.3 to +32 +32 500 Infinite 50
LM358,A
Unit V V V mW mA
Opearting Free-air Temperature Range Storage Temperature Range
-55 to +125
-40 to +105 -65 to +150
0 to +70
C C
Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
2/12
LM158,A-LM258,A-LM358,A
ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC-= Ground, V o = 1.4V, Tamb = +25C (unless otherwise specified)
Symbol Parameter LM158A-LM258A LM358A Min. Input Offset Voltage - note 1) Tamb = +25C LM158, LM258 LM158A Tmin Tamb Tmax LM158, LM258 Input Offset Current Tamb = +25C Tmin Tamb Tmax Input Bias Current - note 2) Tamb = +25C Tmin Tamb Tmax Large Signal Voltage Gain VCC = +15V, R L = 2k, Vo = 1.4V to 11.4V Tamb = +25C Tmin Tamb Tmax Supply Voltage Rejection Ratio (Rs 10k) SVR VCC+ = 5V to 30V Tamb = +25C Tmin Tamb Tmax Supply Current, all Amp, no load Tmin Tamb Tmax VCC = +5V Tmin Tamb Tmax VCC = +30V Input Common Mode Voltage Range VCC = +30V - note 3) Tamb = +25C Tmin Tamb Tmax Common Mode Rejection Ratio (Rs 10k) Tamb = +25C Tmin Tamb Tmax Output Current Source VCC = +15V, Vo = +2V, Vid = +1V Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V Output Voltage Swing ( RL = 2k) Tamb = +25C Tmin Tamb Tmax 65 65 100 65 65 100 dB Typ. 1 Max. 3 2 4 LM158-LM258 LM358 Min. Typ. 2 Max. 7 5 9 7 2 30 40 150 200 nA Unit
Vio
mV
Iio
2
10 30 50 100
Iib
20
20
nA
Avd
50 25
100
50 25
100
V/mV
ICC
0.7
1.2 1
0.7
1.2 2
mA
Vicm
0 0
VCC+ -1.5 VCC+ -2 85
0 0
VCC+ -1.5 VCC+ -2 85
V
CMR
70 60 20 10 12
70 60 60 20 10 12 VCC+ -1.5 VCC+ -2
dB
Isource
40 20 50
40 20 50
60
mA
Isink
mA A VCC+ -1.5 VCC+ -2
VOPP
0 0
0 0
3/12
LM158,A-LM258,A-LM358,A
Symbol
Parameter
LM158A-LM258A LM358A Min. Typ. Max.
LM158-LM258 LM358 Min. Typ. Max.
Unit
VOH
High Level Output Voltage (VCC+ = 30V) Tamb = +25C RL = 2k Tmin Tamb Tmax Tamb = +25C RL = 10k Tmin Tamb Tmax Low Level Output Voltage (RL = 10k) Tamb = +25C Tmin Tamb Tmax Slew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2k, CL = 100pF, unity Gain Gain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2k, CL = 100pF Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2k, Vo = 2Vpp, CL = 100pF, VO = 2Vpp Equivalent Input Noise Voltage f = 1kHz, Rs = 100, VCC = 30V Input Offset Voltage Drift Input Offset Current Drift
4)
26 26 27 27
27 28
26 26 27 27 20 20
27 28
V
VOL
5
5
20 20
mV
SR
V/s 0.3 0.6 0.3 0.6 MHz 0.7 1.1 0.7 1.1 % nV ----------Hz 30 300 V/C pA/C dB
GBP
THD
0.02
0.02
en DVio DIIio
55 7 10 120 15 200
55 7 10 120
Vo1/Vo2 Channel Separation - note 1kHz f 20kHZ
1. 2. 3. 4.
Vo = 1.4V, Rs = 0, 5V < VCC + < 30V, 0 < Vic < V CC+ - 1.5V The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC + - 1.5V, but either or both inputs can go to +32V without damage. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.
OPEN LOOP FREQUENCY RESPONSE (NOTE 3)
140 120
0.1m F VI VCC/2 + +125C 10M W
LARGE SIGNAL FREQUENCY RESPONSE
20
100k W 1k W
OUTPUT SWING (Vpp)
VOLTAGE GAIN (dB)
100 80 60 40 20 0
VCC
-
+15V VO 2k W
VO
15
VI +7V +
VCC = 30V & -55C Tamb
10
5 0
VCC = +10 to + 15V & -55C Tamb +125C 1.0 10 100 1k 10k 100k 1M 10M
1k
10k
100k
1M
FREQUENCY (Hz)
FREQUENCY (Hz)
4/12
LM158,A-LM258,A-LM358,A
VOLAGE FOLLOWER PULSE RESPONSE
4
10
OUTPUT CHARACTERISTICS
VCC = +5V VCC = +15V VCC = +30V
OUTPUT VOLTAGE (V)
2 1 0
OUTPUT VOLTAGE (V)
3
RL 2 k W VCC = +15V
1
v cc IO + VO
v cc /2
INPUT VOLTAGE (V)
3 2 1
0 10 20 30 40
0.1
0.01
0,001 0,01 0,1
Tamb = +25C 1 10 100
TIME (m s)
VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL)
500
OUTPUT SINK CURRENT (mA)
OUTPUT VOLTAGE REFERENCED
OUTPUT CHARACTERISTICS
8 7 6
V CC /2 + IO VO V CC
OUTPUT VOLTAGE (mV)
450
el
+ eO 50pF
TO VCC+ (V)
400 Input 350 Output 300 250
0 1 2 3 4
5 4 3 2 1
0,001 0,01
-
Independent of V CC T amb = +25C
Tamb = +25C VCC = 30 V
5 6 7 8
0,1
1
10
100
TIME (m s)
OUTPUT SOURCE CURRENT (mA)
CURRENT LIMITING (Note 1)
90
INPUT CURRENT (Note 1)
90
OUTPUT CURRENT (mA)
80
INPUT CURRENT (mA)
VI = 0 V VCC = +30 V VCC = +15 V
80 70 60 50 40 30 20 10 0
-
IO
70 60 50 40 30 20 10 0
-55 -35 -15
+
VCC = +5 V
5
25
45
65
85 105
125
-55 -35
-15
5
25
45
65
85 105
125
TEMPERATURE (C)
TEMPERATURE (C)
5/12
LM158,A-LM258,A-LM358,A
INPUT VOLTAGE RANGE
15
4
VCC
SUPPLY CURRENT
SUPPLY CURRENT (mA)
INPUT VOLTAGE (V)
3
mA -
ID
10
Negative
2
+
5
Positive
1
Tamb = 0C to +125C
Tamb = -55C
0 5 10 15
0 10 20 30
POWER SUPPLY VOLTAGE (V)
POSITIVE SUPPLY VOLTAGE (V)
160
100 INPUT CURRENT (nA)
R L = 20k W
VOLTAGE GAIN (dB)
120 80 40 R L = 2k W
75 50 25
Tamb= +25C
0
10
20
30
40
POSITIVE SUPPLY VOLTAGE (V)
160 VOLTAGE GAIN (dB) R L = 20k W 120 80 40 R L = 2k W
0 10 20 30 POSITIVE SUPPLY VOLTAGE (V)
GAIN BANDWIDTH PRODUCT (MHz) 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (C) VCC = 15V
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
6/12
LM158,A-LM258,A-LM358,A
POWER SUPPLY REJECTION RATIO (dB)
COMMON MODE REJECTION RATIO (dB)
115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (C)
115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (C)
TYPICAL APPLICATIONS (single supply voltage) Vcc = +5Vdc AC COUPLED INVERTING AMPLIFIER AC COUPLED NON-INVERTING AMPLIFIER
Rf 100k W R1 10kW
1/2 LM158
CI
R1 (as shown A V = -10) Co 0 eo RL 10k W 2VPP
AV= -
Rf C1 0.1m F
R1 100kW
R2 1MW
A = 1 + R2 V R1 (as shown A V = 11) Co 0 eo RL 10k W 2VPP
CI
1/2 LM158
eI ~ R2 100k W V CC
RB 6.2kW R3 100kW
RB 6.2kW eI ~ R3 1M W
R4 100kW
C1 10m F
V CC
C2 10m F R5 100kW
NON-INVERTING DC AMPLIFIER
DC SUMMING AMPLIFIER
e1 100kW
10kW 1/2 LM158
eO
A V = 1 + R2 R1 (As shown A V = 101) +5V
e2 e3 100k W 100kW 100kW e4 100kW 100kW
1/2 LM158
eO
R1 10k W
e O (V) 0
R2 1M W
e I (mV)
eo = e1 + e2 - e3 - e4 where (e1 + e2) (e3 + e4) to keep eo 0V
7/12
LM158,A-LM258,A-LM358,A
HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT
R2 100kW R1 100kW
1/2 LM158
R4 100kW R3 100kW
1/2 LM158
I eI IB
I
IB
1/2 LM158
eo
2N 929 0.001m F
+V1 +V2
Vo
IB
IB 3MW IB
1/2 LM158
if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ] ( (e2 + e1) ----------R2 As shown eo = 101 (e2 + e1)
1.5MW
Input current compensation
HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER
R1 100k W R3 100kW R4 100kW
LOW DRIFT PEAK DETECTOR
e1
1/2 LM158
IB
eO
R2 2k W
Gain adjust
1/2 LM158
R5 100kW
1/2 LM158
IB C 1m F 2I B
1/2 LM158
eo Zo
eI
1/2 LM158
e2
R6 100k W
R7 100kW
ZI 2IB
2N 929
0.001m F IB 3R 3MW IB
1/2 LM158
if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ] ( (e2 + e1) ----------R2
R 1MW
Input current compensation
As shown eo = 101 (e2 + e1)
ACTIVE BAND-PASS FILTER
R1 100kW C1 330pF R2 100kW +V1
1/2 LM158
R5 470kW
1/2 LM158
R4 10MW C2 R3 100kW 330 pF
1/2 LM158
R6 470kW Vo R7 100kW VCC R8 100kW C3 10m F
8/12
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP
Millimeters Dim. Min. A a1 B b b1 D E e e3 e4 F i L Z 0.51 1.15 0.356 0.204 7.95 2.54 7.62 7.62 6.6 5.08 3.81 1.52 Typ. 3.32 1.65 0.55 0.304 10.92 9.75 0.020 0.045 0.014 0.008 0.313 Max. Min.
Inches Typ. 0.131 0.065 0.022 0.012 0.430 0.384 0.100 0.300 0.300 0260 0.200 0.150 0.060 Max.
3.18
0.125
9/12
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE ( miniSO )
k
0,25 mm .010 inch GAGE PLANE
c
L E1
SEATING PLANE
A A2 A1
5
C
E
4
D
L1 b
C
8
1
Dim. Min. A A1 A2 b c D E E1 e L L1 k ccc 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.400 0d
Millimeters Typ. 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d Max. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.700 6d 0.100 Min. 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.016 0d
ccc
PIN 1 IDENTIFICATION
e
Inches Typ. 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004
10/12
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)
L C a3 b1 c1
a2 b e3
A
s E
D M
8
5 F
1
4
Millimeters Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4.0 1.27 0.6 8 (max.) 0.150 0.016 Typ. Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5.0 6.2 0.189 0.228 Min. 0.004 0.026 0.014 0.007 0.010
a1
Inches Typ. Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244 0.050 0.150 0.157 0.050 0.024
11/12
LM158,A-LM258,A-LM358,A
PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
k c
0.25mm .010 inch GAGE PLANE
L1
L
L
L1
E1
SEATING PLANE
A A2 A1 5 D b 8
8
C
E
4 e
5
PIN 1 IDENTIFICATION
Millimeters Dim. Min. A A1 A2 b c D E E1 e k l L L1 0.05 0.80 0.19 0.09 2.90 4.30 0 0.50 0.45 Typ. Max. 1.20 0.15 1.05 0.30 0.20 3.10 4.50 8 0.75 0.75 Min. 0.01 0.031 0.007 0.003 0.114 0.169 0 0.09 0.018
1
4
1
Inches Typ. Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177 8 0.030 0.030
1.00
0.039
3.00 6.40 4.40 0.65 0.60 0.600 1.000
0.118 0.252 0.173 0.025 0.0236 0.024 0.039
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com
12/12


▲Up To Search▲   

 
Price & Availability of LM158N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X