![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
MIC913 Micrel MIC913 350MHz Low-Power SOT-23-5 Op Amp General Description The MIC913 is a high-speed, operational amplifier. It provides a gain-bandwidth product of 350MHz with a very low, 4.2mA supply current, and features the tiny SOT-23-5 package. Supply voltage range is from 2.5V to 9V, allowing the MIC913 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC913 requires a minimum gain of +2 or -1 but is stable driving any capacitative load and achieves excellent PSRR, making it much easier to use than most conventional highspeed devices. Low supply voltage, low power consumption, and small packing make the MIC913 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. Features * * * * * * * 350MHz gain bandwidth product 4.2mA supply current SOT-23-5 package 500V/s slew rate Drives any capacitive load Low distortion Stable with gain of +2 or -1 Applications * * * * * * Video Imaging Ultrasound Portable equipment Line drivers XDSL Ordering Information Part Number MIC913BM5 Junction Temp. Range -40C to +85C Package SOT-23-5 Pin Configuration IN+ 3 Functional Pinout V+ OUT 2 1 IN+ V+ OUT 2 1 Part Identification 3 A24 4 5 4 5 IN- V- IN- V- SOT-23-5 SOT-23-5 Pin Description Pin Number 1 2 3 4 5 Pin Name OUT V+ IN+ IN- V- Pin Function Output: Amplifier Output Positive Supply (Input) Noninverting Input Inverting Input Negative Supply (Input) Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com August 2000 1 MIC913 MIC913 Micrel Absolute Maximum Ratings (Note 1) Supply Voltage (VV+ - VV-) ........................................... 20V Differential Input Voltage (VIN+ - VIN-) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN-) .......... VV+ to VV- Lead Temperature (soldering, 5 sec.) ....................... 260C Storage Temperature (TS) ........................................ 150C ESD Rating, Note 4 ................................................... 1.5kV Operating Ratings (Note 2) Supply Voltage (VS) ....................................... 2.5V to 9V Junction Temperature (TJ) ......................... -40C to +85C Package Thermal Resistance ............................... 260C/W Electrical Characteristics (5V) VV+ = +5V, VV- = -5V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted. Symbol VOS VOS IB IOS VCM CMRR PSRR AVOL VOUT Parameter Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 60dB -2.0V < VCM < +2.0V 5V < VS < 9V RL = 2k, VOUT = 2V RL = 200, VOUT = 2V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k positive, RL = 200 negative, RL = 200 GBW BW Gain-Bandwidth Product -3dB Bandwidth f = 80MHz, RL = 1k AV = 2, RL = 150 AV = 4 or AV = -3, RL = 400THD Total Harmonic Distortion RF = RG = 470, AV = 2, VOUT = 2Vpp, f = 2MHz AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500 SR IGND IGND Slew Rate Short-Circuit Output Current source sink Supply Current +3.0 +2.75 -3.25 70 70 65 60 60 +3.3 +3.0 85 81 71 71 3.5 -3.5 3.2 -2.8 300 213 104 0.01 0.05 350 72 25 4.1 4.9 5.4 -2.45 -2.2 -3.3 -3.0 Condition Min Typ 1 4 5.5 0.05 9 15 3 +3.25 Max 16 Units mV V/C A A A V dB dB dB dB dB V V V V V V V V MHz MHz MHz % % V/s mA mA mA mA MIC913 2 August 2000 MIC913 Micrel Electrical Characteristics VV+ = +9V, VV- = -9V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted Symbol VOS VOS IB IOS VCM CMRR AVOL VOUT Parameter Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing CMRR > 60dB -6.0V < VCM < 6.0V RL = 2k, VOUT = 6V positive, RL = 2k negative, RL = 2k GBW BW Gain-Bandwidth Product -3dB Bandwidth RL = 1k, f = 80MHz AV = 2 or AV = -1, RL = 150 AV = 4 or AV = -3 THD Total Harmonic Distortion RF = RG = 470, AV = 2, VOUT = 2Vpp, f = 2MHz AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500 SR IGND IGND Note 1. Note 2. Note 3. Note 4. Condition Min Typ 1 4 5.5 0.05 Max 16 Units mV V/C 9 15 3 +7.25 A A A V dB dB V V -7.25 70 60 +7.2 +6.8 88 73 +7.4 -7.4 350 240 140 0.01 0.04 500 -7.2 -6.8 V V MHz MHz MHz % % V/s mA mA Slew Rate Short-Circuit Output Current source sink Supply Current Exceeding the absolute maximum rating may damage the device. The device is not guaranteed to function outside its operating rating. 90 32 4.2 5.0 5.5 mA mA Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase). Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. August 2000 3 MIC913 MIC913 Micrel Test Circuits VCC 10F VCC 50 BNC 0.1F R2 5k 10F Input 0.1F 10k 10k 50 BNC 2k 4 2 BNC BNC Input Output R1 5k R7c 2k R7b 200 R7a 100 R6 4 2 0.1F 1 BNC MIC913 3 5 1 MIC913 3 5 Output 10k 0.1F 0.1F 50 5k All resistors 1% Input 0.1F R3 200k R4 250 R5 5k VEE 10F All resistors: 1% metal film VEE 10F R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 PSRR vs. Frequency 100pF VCC CMRR vs. Frequency 10pF R1 20 R2 4k 10F R3 27k S1 S2 4 2 0.1F 1 BNC MIC913 3 5 To Dynamic Analyzer R5 20 R4 27k 0.1F 10pF VEE 10F Noise Measurement MIC913 4 August 2000 MIC913 Micrel Electrical Characteristics Supply Current vs. Supply Voltage 5.0 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) Supply Current vs. Temperature 5.0 OFFSET VOLTAGE (mV) 1.0 0.5 0.0 -0.5 Offset Voltage vs. Temperature VSUPPLY = 5V +85C 4.5 +25C 4.5 VSUPPLY = 9V 4.0 4.0 VSUPPLY = 5V 3.5 -40C VSUPPLY = 9V -1.0 -1.5 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 3.0 2 3456789 SUPPLY VOLTAGE (V) 10 3.5 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) Bias Current vs. Temperature 10 Offset Voltage vs. Common-Mode Voltage 10 OFFSET VOLTGE (mV) OFFSET VOLTGE (mV) 8 6 4 2 0 +25C -2 -8 -6 -4 -2 0 2 4 6 8 COMMON-MODE VOLTAGE (V) -40C +85C VSUPPLY = 9V Offset Voltage vs. Common-Mode Voltage 10 VSUPPLY = 5V 9 8 7 6 +85C 5 4 3 2 -40C 1 0 +25C -1 -5 -4 -3 -2 -1 0 1 2 3 4 5 COMMON-MODE VOLTAGE (V) BIAS CURRENT (A) 8 6 VSUPPLY = 9V VSUPPLY = 5V 4 2 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) Short-Circuit Current vs. Temperature 90 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) 85 80 75 70 65 VSUPPLY = 5V SOURCING CURRENT VSUPPLY = 9V -20 Short-Circuit Current vs. Temperature 100 OUTPUT CURRENT (mA) VSUPPLY = 5V -25 SINKING CURRENT VSUPPLY = 9V Short-Circuit Current vs. Supply Voltage -40C 80 +25C 60 +85C -30 -35 40 SOURCING CURRENT 20 2 3456789 SUPPLY VOLTAGE (V) 10 60 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) -40 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) Short-Circuit Current vs. Supply Voltage -10 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) -15 -20 -25 -30 SINKING CURRENT -35 2 +25C 10 -40C 10 9 8 7 6 5 Output Voltage vs. Output Current OUTPUT VOLTAGE (V) VSUPPLY = 9V 0 -1 -2 -3 -4 -5 Output Voltage vs. Output Current -40C SINKING CURRENT +85C +85C 3456789 SUPPLY VOLTAGE (V) +85C 4 3 +25C -40C 2 SOURCING 1 CURRENT 0 0 20 40 60 80 100 OUTPUT CURRENT (mA) -6 +25C -7 -8 -9 VSUPPLY = 9V -10 -35 -30 -25 -20 -15 -10 -5 OUTPUT CURRENT (mA) 0 August 2000 5 MIC913 MIC913 Micrel Output Voltage vs. Output Current 4.0 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Output Voltage vs. Output Current 0 200 Gain Bandwidth and Phase Margin vs. Load 50 GAIN BANDWIDTH (MHz) 3.5 3.0 +85C VSUPPLY = 5V -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -30 +85C VSUPPLY = 5V SINKING CURRENT -40C +25C 2.5 -40C 2.0 1.5 1.0 0.5 0 0 SOURCING CURRENT 20 40 60 80 OUTPUT CURRENT (mA) +25C 120 80 40 0 0 VSUPPLY = 5V 30 20 Gain Bandwidth 10 -25 -20 -15 -10 -5 OUTPUT CURRENT (mA) 0 0 200 400 600 800 1000 CAPACITIVE LOAD (pF) Gain Bandwidth and Phase Margin vs. Load 200 50 Gain Bandwidth and Phase Margin vs. Supply Voltage 225 20 Common-Mode Rejection Ratio 120 100 GAIN BANDWIDTH (MHz) PHASE MARGIN () 120 80 40 0 0 VSUPPLY = 9V 30 20 175 150 125 100 2 10 5 CMRR (dB) Gain Bandwidth PHASE MARGIN () 160 Phase Margin GAIN BANDWIDTH (MHz) 40 200 15 80 60 40 VSUPPLY = 5V 20 Gain Bandwidth 10 Phase Margin 0 -5 10 1x102 1x103 1x104 1x105 1x106 3456789 SUPPLY VOLTAGE (V) FREQUENCY (Hz) Positive Power Supply Rejection Ratio 100 80 100 80 Negative Power Supply Rejection Ratio 120 100 Common-Mode Rejection Ratio +PSRR (dB) -PSRR (dB) 60 40 VSUPPLY = 5V 20 0 60 40 VSUPPLY = 5V 20 0 CMRR (dB) 80 60 40 VSUPPLY = 9V 20 1x102 1x103 1x104 1x105 1x106 1x107 1x102 1x103 1x104 1x105 1x106 1x107 1x102 1x103 1x104 1x105 1x106 FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) Positive Power Supply Rejection Ratio 100 80 100 80 Negative Power Supply Rejection Ratio 50 40 30 20 10 0 -10 -20 -30 -40 -50 1 Closed-Loop Frequency Response RL = 150 GAIN = -1 9V 2.5V 5V +PSRR (dB) -PSRR (dB) 60 40 VSUPPLY = 9V 20 0 60 40 VSUPPLY = 9V 20 0 1x102 1x103 1x104 1x105 1x106 1x107 1x102 1x103 1x104 1x105 1x106 1x107 GAIN (dB) 10 100 FREQUENCY (MHz) 500 FREQUENCY (Hz) FREQUENCY (Hz) MIC913 6 August 2000 1x107 0 1x107 0 200 400 600 800 1000 CAPACITIVE LOAD (pF) 0 PHASE MARGIN () 160 Phase Margin 40 MIC913 Micrel Closed-Loop Frequency Response 30 20 90 0 30 20 Closed-Loop Frequency Response 90 PHASE 0 30 20 Closed-Loop Frequency Response 90 PHASE 0 -90 -180 -270 -360 400 PHASE GAIN PHASE () PHASE () 10 -90 -180 -270 -360 400 10 GAIN -90 -180 -270 -360 400 10 GAIN 0 VSUPPLY = 2.5V AV = 4 -10 -20 1 0 VSUPPLY = 5V AV = 4 -10 -20 1 0 VSUPPLY = 9V AV = 4 -10 -20 1 10 100 FREQUENCY (MHz) 10 100 FREQUENCY (MHz) 10 100 FREQUENCY (MHz) Open-Loop Frequency Response 50 40 100pF 30 50pF 20 0pF 10 0 1000pF 471pF -10 -20 200pF -30 VSUPPLY = 5V -40 R = 1k L -50 1 10 100 500 FREQUENCY (MHz) Open-Loop Frequency Response 50 40 100pF 30 50pF 20 0pF 10 0 1000pF 471pF -10 -20 200pF -30 VSUPPLY = 9V -40 R = 1k L -50 1 10 100 500 FREQUENCY (MHz) 50 40 30 20 10 0 -10 -20 Open-Loop Frequency Response PHASE GAIN No Load RL = 100 200 150 100 50 0 -50 -100 -150 -200 -250 -300 500 -30 -40 VSUPPLY = 5V -50 1 10 100 FREQUENCY (MHz) 50 40 30 20 10 0 -10 -20 Open-Loop Frequency Response PHASE GAIN No Load RL = 100 200 150 100 50 0 -50 -100 -150 -200 -250 -300 500 -30 -40 VSUPPLY = 9V -50 1 10 100 FREQUENCY (MHz) 50 VSUPPLY = 5V 40 RL = 470 30 GAIN = -1 20 10 0 -10 C = 1000pF L -20 CL = 470pF -30 CL = 100pF -40 CL = 1.7pF -50 1 10 100 500 FREQUENCY (MHz) Closed-Loop Frequency Response 50 VSUPPLY = 9V 40 RL = 470 30 GAIN = -1 20 10 0 -10 CL = 1000pF -20 CL = 470pF -30 CL = 100pF -40 CL = 1.7pF -50 1 10 100 500 FREQUENCY (MHz) Closed-Loop Frequency Response PHASE () GAIN (dB) GAIN (dB) Closed-Loop Frequency Response Test Circuit VCC 10F SLEW RATE (V/s) 400 Positive Slew Rate 400 GAIN (dB) Negative Slew Rate 300 VCC = 5V 200 SLEW RATE (V/s) 300 VCC = 5V 200 0.1F FET probe MIC913 RF 50 10F VEE CL 100 100 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) August 2000 7 MIC913 PHASE () GAIN (dB) GAIN (dB) GAIN (dB) PHASE () GAIN (dB) GAIN (dB) GAIN (dB) MIC913 Micrel Positive Slew Rate 600 500 SLEW RATE (V/s) 400 300 200 100 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) VCC = 9V SLEW RATE (V/s) 600 500 400 300 200 100 0 0 Negative Slew Rate VCC = 9V 200 400 600 800 1000 LOAD CAPACITANCE (pF) MIC913 8 August 2000 MIC913 Micrel Functional Characteristics Small-Signal Pulse Response Small-Signal Pulse Response INPUT VCC = 5V AV = 2 CL = 1.7pF R1 = R2 = 470 OUTPUT OUTPUT INPUT VCC = 9V AV = 1 CL = 1.7pF R1 = R2 = 470 Small-Signal Pulse Response Small-Signal Pulse Response INPUT VCC = 5V AV = 2 CL = 100pF R1 = R2 = 470 OUTPUT OUTPUT INPUT VCC = 9V AV = 1 CL = 100pF R1 = R2 = 470 Small-Signal Pulse Response Small-Signal Pulse Response INPUT INPUT VCC = 5V AV = 1 CL = 1000pF R1 = R2 = 470 VCC = 9V AV = 1 CL = 1000pF R1 = R2 = 470 OUTPUT August 2000 OUTPUT 9 MIC913 MIC913 Micrel Large-Signal Pulse Response VCC = 5V AV = -1 CL = 1.7pF Large-Signal Pulse Response VCC = 9V AV = -1 CL = 1.7pF OUTPUT Large-Signal Pulse Response VCC = 5V AV = -1 CL = 100pF OUTPUT Large-Signal Pulse Response VCC = 9V AV = -1 CL = 100pF OUTPUT Large-Signal Pulse Response VCC = 5V AV = -1 CL = 1000pF OUTPUT Large-Signal Pulse Response VCC = 9V AV = -1 CL = 1000pF MIC913 OUTPUT 10 OUTPUT August 2000 MIC913 Micrel Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SOT-23-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85C. The part can be operated up to the absolute maximum temperature rating of 125C, but between 85C and 125C performance will degrade, in particular CMRR will reduce. A MIC913 with no load, dissipates power equal to the quiescent supply current * supply voltage PD(no load) = VV + - VV - IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. PD(output stage) = VV + - VOUT IOUT Applications Information The MIC913 is a high-speed, voltage-feedback operational amplifier featuring very low supply current. The MIC913 is not unity-gain stable, it requires a minimum gain of +2 or -1 to ensure stability. The device is however stable even when driving high capacitance loads. Driving High Capacitance The MIC913 is stable when driving any capacitance (see "Typical Characteristics: Gain Bandwidth and Phase Margin vs. Load Capacitance") making it ideal for driving long coaxial cables or other high-capacitance loads. Phase margin remains constant as load capacitance is increased. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device (see "Typical Characteristics: Gain Bandwidth and Phase Margin vs. Load"). In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC913 is NOT a current feedback device. Resistor values in the range of 1k to 10k are recommended. Layout Considerations All high speed devices require careful PCB layout. The high stability and high PSRR of the MIC913 make this op amp easier to use than most, but the following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. ( ) ( ) Total Power Dissipation = PD(no load) + PD(output stage) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SOT23-5 package has a thermal resistance of 260C/W. Max . Allowable Power Dissipation = TJ (max) - TA(max) 260W August 2000 11 MIC913 MIC913 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 1.30 (0.051) 0.90 (0.035) 10 0 0.15 (0.006) 0.00 (0.000) 0.20 (0.008) 0.09 (0.004) 0.50 (0.020) 0.35 (0.014) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 2000 Micrel Incorporated MIC913 12 August 2000 |
Price & Availability of MIC913
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |