



# 5V/3A ECPower™ Smart Current Limited Load Switch with True Reverse-Current Blocking

#### **General Description**

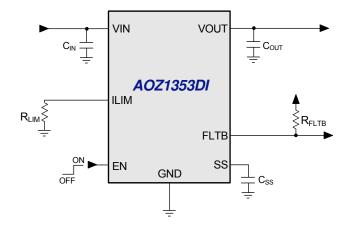
The AOZ1353DI is a current-limited load switch targeting applications that require comprehensive protections. The input operating voltage range is between 3.4V and 5.5V. The output terminal is rated 28V absolute maximum. The internal current-limiting circuit protects the supply from large load current. The current limit level is set with an external resistor. The soft-start circuit controls inrush current due to highly capacitive loads. The soft-start time can be optionally adjusted with an external capacitor. The device features very low quiescent current of  $80\mu A$ . The supply current reduces to less than  $1\mu A$  in shutdown. It also has under-voltage lockout (UVLO), overvoltage protection (OVP) and thermal shutdown protection.

The AOZ1353DI has True Reverse-Current Blocking (TRCB) protection to avoid undesired reverse-current from VOUT to VIN.

The device features fast recovery to turn on power switch once reverse current blocking protection is de-activated.

The AOZ1353DI is available in 3mm x 3mm DFN-12L package.

#### **Features**


- 28V voltage rating on VOUT pin
- 3.4V to 5.5V operating input voltage
- 3.5A current capability
- Typical R<sub>ON</sub>: 40mΩ
- Programmable current limit
- True Reverse-Current Blocking (TRCB)
- Fast recovery from TRCB
- Adjustable soft-start
- 80µA quiescent current
- Over-voltage protection
- Input under-voltage lockout
- Thermal shutdown protection
- ±4kV HBM rating
- ±1kV CDM Rating
- 3mm x 3mm DFN-12L Package
- UL2367 file no. E326264
- IEC60950 CB Certificate no. US-31249-UL

#### **Applications**

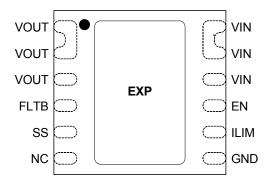
- USB PD power source switch
- Smart phone and tablet
- Notebook, ultrabook and desktop
- Portable devices



### **Typical Application**






### **Ordering Information**

| Part Number  | Fault Recovery | Package           | Environmental |
|--------------|----------------|-------------------|---------------|
| AOZ1353DI-01 | Auto-Restart   | 3mm x 3mm DFN-12L | RoHS          |
| AOZ1353DI-02 | Latch-Off      | 3mm x 3mm DFN-12L | RoHS          |



All AOS products are offered in packages with Pb-free plating and compliant to RoHS standards. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

### **Pin Configuration**



3mm x 3mm DFN-12L (Top Transparent View)

### **Pin Description**

| Pin Number | Pin Name | Pin Function                                                                                                                      |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1, 2, 3    | VOUT     | Power output. Connect to adaptor. Pin 3 is internally connected to pin 1 and pin 2.                                               |
| 4          | FLTB     | Fault indicator, open-drain output, active-low when fault condition occurs.                                                       |
| 5          | SS       | Soft-start pin. Connect a capacitor $C_{SS}$ from SS to GND to set the soft-start time or short to GND for fixed-time soft-start. |
| 6          | NC       | Not connected internally. Can leave it floated or connect to GND.                                                                 |
| 7          | GND      | Ground                                                                                                                            |
| 8          | ILIM     | Current limit set pin. Connect a 1% resistor R <sub>LIM</sub> from ILIM to GND to set the current limit threshold.                |
| 9          | EN       | Enable input. Active high.                                                                                                        |
| 10, 11, 12 | VIN      | Supply input. Connected to internal power regulator. Pin 10 is internally connected to pin 11 and pin 12.                         |
| EXP        | EXP      | Exposed pad. Connect to GND.                                                                                                      |

Rev. 1.2 February 2018 **www.aosmd.com** Page 2 of 16



### **Absolute Maximum Ratings**

Exceeding the Absolute Maximum Ratings may damage the device.

| Parameter                              | Rating          |  |  |
|----------------------------------------|-----------------|--|--|
| VOUT to GND                            | -0.3V to +28V   |  |  |
| VIN, EN, ILIM, SS, FLTB to GND         | -0.3V to +6V    |  |  |
| Junction Temperature (T <sub>J</sub> ) | +150°C          |  |  |
| Storage Temperature (T <sub>S</sub> )  | -65°C to +150°C |  |  |
| ESD Rating HBM/CDM                     | ±4kV / ±1kV     |  |  |

### **Recommended Operating Ratings**

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

| Parameter                             | Rating         |  |  |
|---------------------------------------|----------------|--|--|
| VIN to GND                            | 3.4V to 5.5V   |  |  |
| EN, FLTB to GND                       | 0V to 5.5V     |  |  |
| Switch Current (I <sub>SW</sub> )     | 0A to 3.5A     |  |  |
| Ambient Temperature (T <sub>A</sub> ) | -40°C to +85°C |  |  |
| Package Thermal Resistance            | 50°C/W         |  |  |

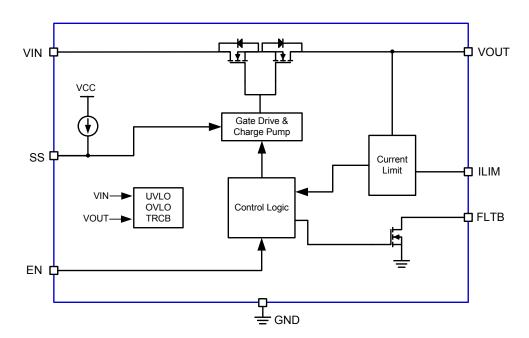
#### **Electrical Characteristics**

 $\rm T_A$  = 25°C,  $\rm V_{IN}$  = 5V, SS pin is shorted to GND unless otherwise specified.

| Symbol                 | Parameter                         | Conditions                                                        | Min. | Тур. | Max. | Units |  |
|------------------------|-----------------------------------|-------------------------------------------------------------------|------|------|------|-------|--|
| General                |                                   |                                                                   | I    | ı    | l .  |       |  |
| V <sub>IN</sub>        | Input Supply Voltage              |                                                                   | 3.4  |      | 5.5  | V     |  |
| V <sub>UVLO_R</sub>    | Under-voltage Lockout Threshold   | VIN rising                                                        | 3    | 3.25 | 3.35 | V     |  |
| V <sub>UVLO_HYS</sub>  | Under-voltage Lockout Hysteresis  | VIN falling                                                       |      | 150  |      | mV    |  |
| I <sub>IN_ON</sub>     | Input Quiescent Current           | VIN = 5V, I <sub>OUT</sub> = 0A, EN = 5V                          |      | 80   |      | μA    |  |
| I <sub>IN_OFF</sub>    | Input Shutdown Current            | VIN = 5V, EN = 0V                                                 |      | 0.1  | 1    | μA    |  |
| R <sub>ON</sub>        | Switch On Resistance              | VIN = 5V, I <sub>OUT</sub> = 1A                                   |      | 40   |      | mΩ    |  |
| V <sub>EN_H</sub>      | Enable Input Logic High Threshold | EN rising                                                         | 1.4  |      |      | V     |  |
| V <sub>EN_L</sub>      | Enable Input Logic Low Threshold  | EN falling                                                        |      |      | 0.4  | V     |  |
| I <sub>EN_BIAS</sub>   | Enable Input Bias Current         | EN = 1.8V                                                         |      | 1    | 1.5  | μA    |  |
| $V_{FLTB\_LO}$         | FLTB Pull-down Voltage            | I <sub>SINK</sub> = 3mA                                           |      |      | 0.3  | V     |  |
| Over-Voltage           | Protection                        |                                                                   |      |      |      |       |  |
| V <sub>OVLO_R</sub>    | Over-voltage Lockout Threshold    | VIN rising                                                        | 5.5  | 5.75 | 6    | _     |  |
| V <sub>OVLO_F</sub>    | Over-voitage Lockout Threshold    | VIN falling                                                       |      | 5.5  |      |       |  |
| V <sub>OVLO_HYS</sub>  | Over-voltage Lockout Hysteresis   |                                                                   |      | 250  |      | mV    |  |
| T <sub>DELAY_OVP</sub> | OVP Turn-Off Delay                | Time between VIN rises from 5V to 6.5V and power switch turns off |      | 2    |      | μs    |  |
| Over-Current           | Protection                        |                                                                   |      |      |      |       |  |
|                        |                                   | VOUT = 5V, $R_{LIM}$ = 4.02k $\Omega$                             | 3.08 | 3.5  | 3.92 |       |  |
| $I_{LIM}$              | Current Limit Threshold           | VOUT = 5V, $R_{LIM}$ = 14.3k $\Omega$                             | 0.9  | 1    | 1.1  | A     |  |
|                        |                                   | VOUT = 5V, $R_{LIM}$ = 29.4k $\Omega$                             | 0.45 | 0.5  | 0.55 |       |  |
| T <sub>OCP_FLTB</sub>  | Over-Current Flag Delay           | From I <sub>OUT</sub> ≥ I <sub>LIM</sub> to FLTB pulled low       |      | 12   |      | ms    |  |
| Reverse-Curi           | rent Blocking                     |                                                                   | •    |      |      |       |  |
| V <sub>T_RCB</sub>     | RCB Protection Trip Point         | VOUT-VIN, VOUT rising                                             |      | 60   |      | mV    |  |
| V <sub>R_RCB</sub>     | RCB Protection Release Trip Point | VIN-VOUT, VOUT falling                                            |      | 70   |      | mV    |  |
| V <sub>RCB_HYS</sub>   | RCB Hysteresis                    | V <sub>T_RCB</sub> + V <sub>R_RCB</sub>                           |      | 130  |      | mV    |  |
| T <sub>RCB</sub>       | RCB Response Time                 |                                                                   |      | 2    |      | μs    |  |

Rev. 1.2 February 2018 www.aosmd.com Page 3 of 16




#### **Electrical Characteristics**

 $\rm T_A$  = 25°C,  $\rm V_{IN}$  = 5V, SS pin is shorted to GND unless otherwise specified.

| Symbol                  | Parameter Conditions                           |                                                                                                     | Min. | Тур. | Max. | Units |  |
|-------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|------|------|-------|--|
| Thermal Shu             | Thermal Shutdown                               |                                                                                                     |      |      |      |       |  |
| T <sub>SD</sub>         | Thermal Shutdown Threshold                     | Temperature rising                                                                                  |      | 140  | °C   |       |  |
| T <sub>SD_HYS</sub>     | Thermal Shutdown Hysteresis                    | wn Hysteresis Temperature falling                                                                   |      | 20   |      | C     |  |
| Dynamic Characteristics |                                                |                                                                                                     |      |      |      |       |  |
| T <sub>D_ON</sub>       | Turn-On Delay Time (From VEN 50% to VOUT=0.5V) | VIN = 5V, $R_L$ = 100 $\Omega$ , $C_{OUT}$ = 1 $\mu$ F, $C_{SS}$ = 1nF, $R_{LIM}$ = 14.3k $\Omega$  |      | 2.1  |      | ms    |  |
| T <sub>ON</sub>         | Turn-ON Time (VOUT from 0.5V to 4.5V)          | VIN = 5V, $R_L$ = 100 $\Omega$ , $C_{OUT}$ = 1 $\mu$ F, SS Pin grounded, $R_{LIM}$ = 14.3 $k\Omega$ |      | 3.4  |      | ms    |  |



### **Functional Block Diagram**





### **Timing Diagrams**

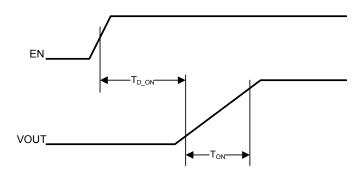
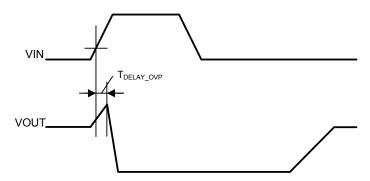
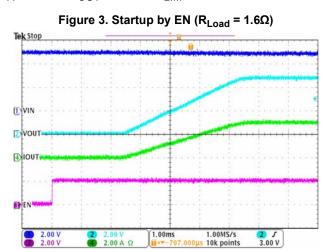
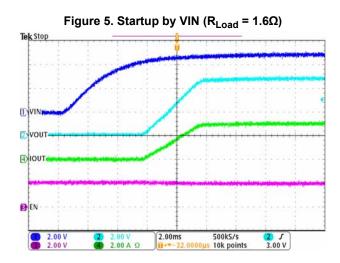


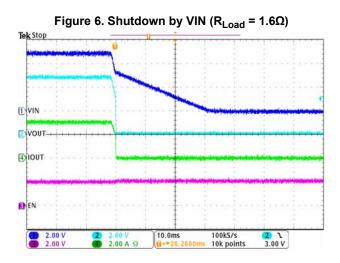

Figure 1. Turn-on Delay and Turn-on Time





Figure 2. OVP Delay and Recovery


Rev. 1.2 February 2018 **www.aosmd.com** Page 6 of 16





### **Typical Performance Curves**

 $T_A$  = 25°C,  $C_{OUT}$  = 20 $\mu$ F,  $R_{LIM}$  = 4.02 $k\Omega$ , SS pin shorted to GND unless otherwise specified.









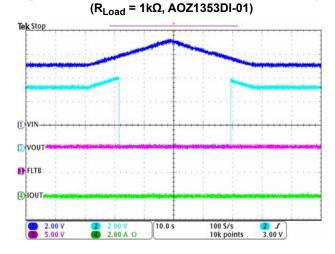
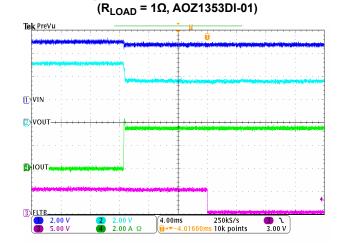




Figure 7. Input Over-Voltage Protection and Recovery



**Figure 8. Over-Current Protection** 

Rev. 1.2 February 2018 **www.aosmd.com** Page 7 of 16



### **Typical Performance Curves** (Continued)

 $T_A$  = 25°C,  $C_{OUT}$  = 20µF,  $R_{LIM}$  = 4.02kΩ, SS pin shorted to GND unless otherwise specified.

Figure 9. Output Hard Short and Thermal Shutdown (AOZ1353DI-01)





### **Typical Characteristics**

 $T_A = 25$ °C,  $V_{IN} = 5V$  unless otherwise specified.

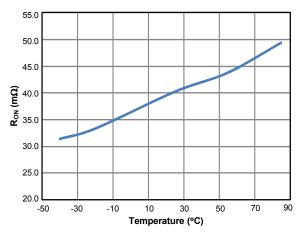



Figure 10. R<sub>ON</sub> vs. Temperature

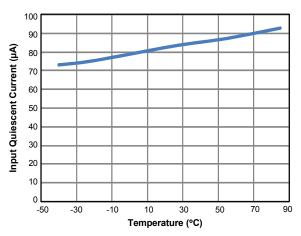



Figure 12. Input Quiescent Current vs. Temperature

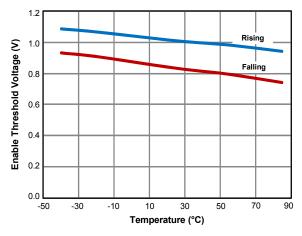



Figure 14. EN Threshold vs. Temperature

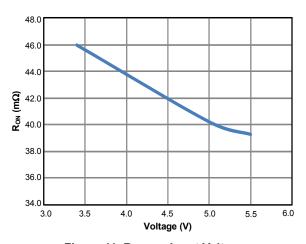



Figure 11. R<sub>ON</sub> vs. Input Voltage

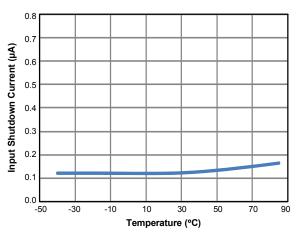



Figure 13. Input Shutdown Current vs. Temperature

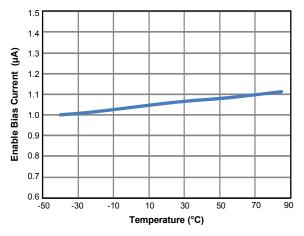



Figure 15. EN Bias Current vs. Temperature

Rev. 1.2 February 2018 **www.aosmd.com** Page 9 of 16



### **Typical Characteristics** (Continued)

 $T_A = 25$ °C,  $V_{IN} = 5V$  unless otherwise specified.

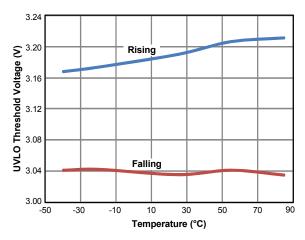



Figure 16. UVLO Threshold vs. Temperature

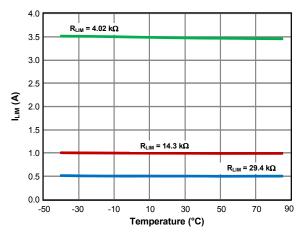



Figure 18. Current Limit Threshold vs. Temperature

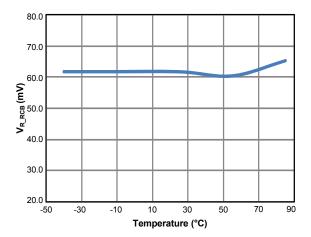



Figure 20. RCB Threshold (Falling) vs. Temperature

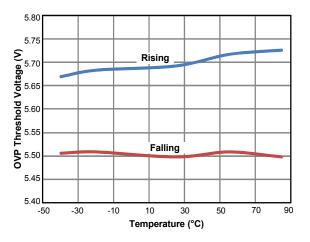



Figure 17. OVP Threshold vs. Temperature

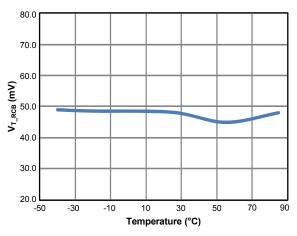



Figure 19. RCB Threshold (Rising) vs. Temperature

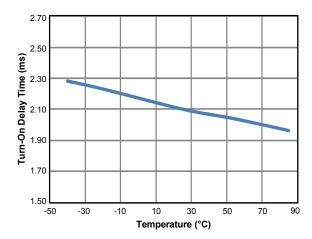



Figure 21. Turn-On Delay vs. Temperature

Rev. 1.2 February 2018 www.aosmd.com Page 10 of 16



### **Typical Characteristics** (Continued)

 $T_A$  = 25°C,  $V_{IN}$  = 5V unless otherwise specified.

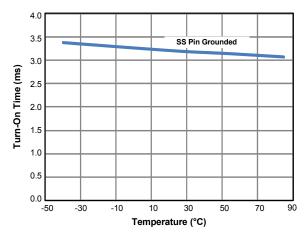



Figure 22. Turn-On Time vs. Temperature

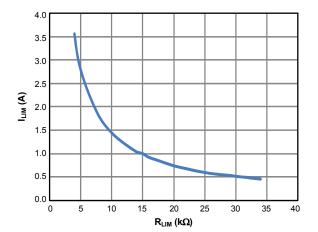



Figure 23. Current Limit vs.  $R_{\text{LIM}}$ 



#### **Functional Description**

The AOZ1353DI is a current limited power switch with over-voltage, over-current, reverse-current and thermal shutdown protections. The VOUT pin is rated 28V. The operating input voltage ranges from 3.4V to 5.5V. The switch current is rated up to 3.5A.

The device has true reverse-current blocking features that will prevent undesired current flow from output to its input in either enabled or disabled state.

#### **Enable**

The EN pin is the ON/OFF control for the power switch. The device is enabled when EN pin is high and not in under-voltage lockout state. The EN pin must be driven to a logic high or logic low state to guarantee operation. While disabled, the AOZ1353DI draws less than  $1\mu A$  from supply.

For AOZ1353DI-02, toggle EN pin to restart the device and clear fault flag after device latches off due to fault.

#### Input Under-Voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit monitors the input voltage. The power switch is only allowed to turn on when input voltage is higher than UVLO threshold. Otherwise the switch is off.

#### **Over-Voltage Protection (OVP)**

The voltages at VIN terminal is constantly monitored once the device is enabled. In case input voltage exceeds the over-voltage lockout threshold ( $V_{OVLO\_R}$ ), the power switch is either turned off immediately or kept off, depending on its initial state. AOZ1353DI-01 can restart when VIN drops below  $V_{OVLO\_F}$ .

## Programmable Current Limit and Over-Current Protection (OCP)

The AOZ1353DI implemented current limit to ensure that the current through the switch does not exceed current limit threshold set by the external resistor  $R_{\rm LIM}$ .

The current limit threshold can be estimated using the equation below:

 $I_{LIM} = 14300/R_{LIM}$  (A)

For example, for 1A current limit threshold, a 14.3k $\Omega$  R<sub>LIM</sub> resistor should be selected. 1% resistor is recommended for R<sub>LIM</sub>.

AOZ1353DI continuously limits the output current when output is overloaded, Under current-limiting, FLTB is pulled low after delay (T<sub>OCP\_FLTB</sub>). Severe overload causes power dissipation and die temperature to increase and may trigger thermal shutdown.

#### **True Reverse-Current Blocking Protection (TRCB)**

True reverse-current blocking prevents undesired current flow from output to input when power switch is in either on or off state. When device is enabled, power switch is quickly turned off whenever output voltage is higher than input voltage. The power switch is turned on again when output voltage falls below input by 70mV.

#### Fast Recovery (For AOZ1353DI-01 only)

Once RCB event is removed, power switch turns on again quickly. The recovery time is less than 100µs.

#### **Thermal Shutdown Protection**

Thermal shutdown protects device from excessive temperature. The power switch is turned off when the die temperature reaches thermal shutdown threshold of 140°C. There is a 20°C hysteresis. For AOZ1353DI-01 power switch is allowed to turn on again if die temperature drops below approximately 120°C.

#### **Soft Start**

The AOZ1353DI has soft-start circuitry to limit in-rush current due to large capacitive load. By default the turn-on time is 3.4ms when SS pin is connected to GND.

Fast turn-on time can be set by adding an external capacitor  $C_{SS}$  between SS pin and ground. The capacitor value is selected using Table 1.

Table 1. Turn-On Time Settings by C<sub>ss</sub>

| C <sub>ss</sub> (nF) | Turn-On Time (ms) |  |  |
|----------------------|-------------------|--|--|
| 1                    | 0.3               |  |  |
| 1.2                  | 0.4               |  |  |
| 2.2                  | 0.8               |  |  |
| 3.3                  | 1.2               |  |  |
| 4.7                  | 1.7               |  |  |
| 5.6                  | 1.9               |  |  |
| 6.8                  | 2.4               |  |  |
| 8.2                  | 2.8               |  |  |
| 10                   | 3.2               |  |  |
| 12                   | 3.4               |  |  |
| SS pin short to GND  | 3.4               |  |  |

#### Startup

The device is enabled when  $EN \ge V_{EN\_H}$  and input voltage is above UVLO threshold. The device first checks if any fault condition exists. When no fault exists, the power switch is turned on and the output is then ramped up. Power switch is kept off if fault condition was detected.



#### **Fault Reporting**

AOZ1353DI protects itself and load from the following fault condition: over-voltage, over-current, reverse-current, and over-temperature.

The FLTB pin is an open drain output. It is asserted low when either an over-current, or over-temperature condition occurs. The FLTB pin becomes high impedance when the fault conditions are removed. A pull-up resistor ( $R_{\rm FLTB}$ ) must be connected between FLTB to 5V to provide a logic signal.

When thermal shutdown is activated, FLTB is pulled low immediately to report fault condition to host. FLTB is pulled high once fault is removed.

In case of output overload, FLTB pin is pulled low about 12ms (T<sub>OCP\_FLTB</sub>) after device is in current- limiting. For AOZ1353DI-02 power switch is then turned off after another 12ms.

There is no fault reporting for UVLO, OVP and RCB event.

#### **Auto-restart or Latch-off**

**AOZ1353DI-01** (auto-restart version): The device will try to restart 24ms after the power switch is turned off and when OVP or thermal shutdown fault is removed.

Power switch is turned on immediately after a RCB event is removed.

**AOZ1353DI-02** (latch-off version): The device keeps off even after the fault condition is removed. Power switch can only be turned on again by either toggle EN pin or recycle the input supply.

#### **Input Capacitor Selection**

The input capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on to charge output capacitors and to limit input voltage drop. It is also to prevent high-frequency noise on the power line from passing through to the output. The input capacitor should be located as close to the pin as possible. A minimum of  $10\mu F$  ceramic capacitor should be used. However, higher capacitor value is strongly recommended to further reduce the transient voltage drop at the input.

#### **Output Capacitor Selection**

The output capacitor acts in a similar way. Also, the output capacitor has to supply enough current for a large load that it may encounter during system transient. This bulk capacitor must be large enough to supply fast transient load in order to prevent the output from dropping.

There is an upper limit for output capacitor for AOZ1353DI to ensure the output capacitor can be charged fully during start-up. This upper limit is set by the current limit level and soft-start time.

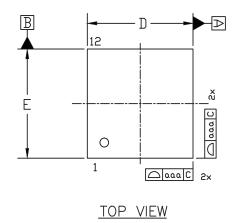
$$C_{out} = I_{LIM} \times (T_{ON} / VIN)$$

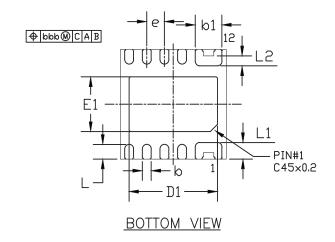
#### **Power Dissipation Calculation**

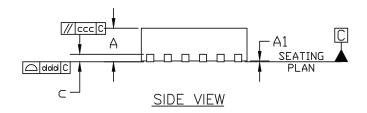
Calculate the power dissipation for normal load condition using the following equation:

Power Dissipated = 
$$R_{ON} \times (I_{OUT})^2$$

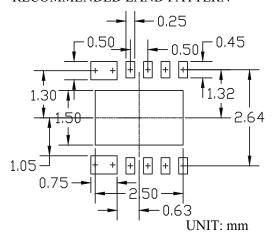
The worst case power dissipation occurs when the load current hits the current limit due to over-current. The power dissipation can be calculated using the following equation:


Power Dissipated =  $(VIN - VOUT) \times I_{LIM}$ 


#### **Layout Guidelines**


Good PCB layout is important for improving the thermal and overall performance of AOZ1353DI. To optimize the switch response time to output short-circuit conditions, keep all traces as short as possible to reduce the effect of unwanted parasitic inductance. Place the input and output bypass capacitors as close as possible to the VIN and VOUT pins. The input and output PCB traces should be as wide as possible for the given PCB space. Use a ground plane to enhance the power dissipation capability of the device.




### Package Dimensions, DFN3x3B\_12L, EP1\_S





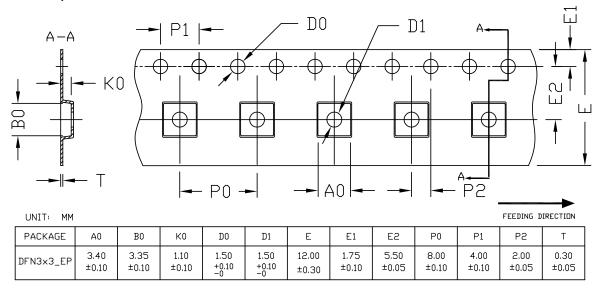


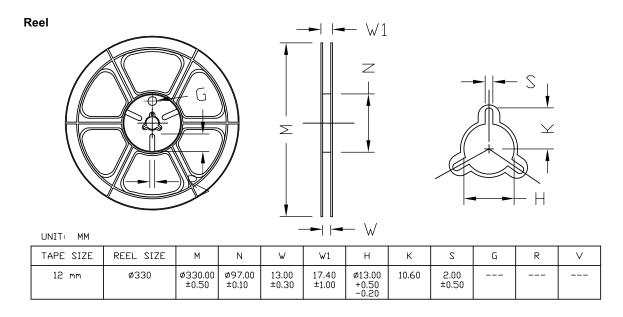
#### RECOMMENDED LAND PATTERN



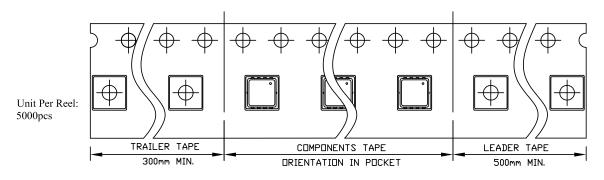
| SYMBOLS | DIMENSIONS IN MILLIMETERS |          |        | DIMENSIONS IN INCHES |       |       |
|---------|---------------------------|----------|--------|----------------------|-------|-------|
| STMBOLS | MIN                       | NOM      | MAX    | MIN                  | NOM   | MAX   |
| A       | 0.80                      | 0. 90    | 1.00   | 0.031                | 0.035 | 0.039 |
| A1      | 0.00                      | 0.02     | 0.05   | 0.000                | 0.001 | 0.002 |
| b       | 0. 20                     | 0. 25    | 0.30   | 0.008                | 0.010 | 0.012 |
| b1      | 0.70                      | 0. 75    | 0.80   | 0.028                | 0.030 | 0.032 |
| c       | 0. 195                    | 0. 203   | 0. 211 | 0.008                | 0.008 | 0.008 |
| D       | 2.90                      | 3.00     | 3. 10  | 0. 116               | 0.118 | 0.120 |
| D1      | 2.40                      | 2.50     | 2.60   | 0.094                | 0.098 | 0.102 |
| Е       | 2. 90                     | 3.00     | 3. 10  | 0.116                | 0.118 | 0.120 |
| E1      | 1.40                      | 1. 50    | 1.60   | 0.055                | 0.059 | 0.063 |
| e       |                           | 0. 50BSC |        | 0. 020BSC            |       |       |
| L       | 0.30                      | 0.40     | 0.50   | 0.012                | 0.016 | 0.020 |
| L1      | 0.35                      | 0.45     | 0. 55  | 0.014                | 0.018 | 0.022 |
| L2      | 0. 22                     | 0. 27    | 0.32   | 0.009                | 0.011 | 0.013 |
| aaa     | 0. 15                     |          |        | 0.006                |       |       |
| bbb     | 0.10                      |          |        | 0.004                |       |       |
| ccc     | 0.10                      |          |        | 0.004                |       |       |
| ddd     | 0.08                      |          |        | 0.003                |       |       |

#### **NOTE**


- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 3. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm. AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION b SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 4. COPLANARITY ddd APPLIERS TO THE TERMINALS AND ALL OTHER BOTTOM SURFACE METALLIZATION.


Rev. 1.2 February 2018 **www.aosmd.com** Page 14 of 16

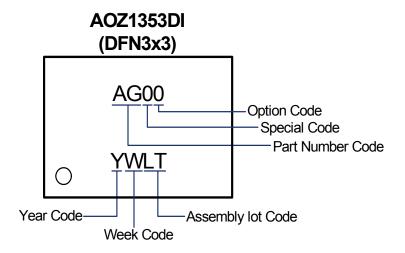



### Tape and Reel Drawing DFN3x3 EP

#### **Carrier Tape**






#### DFN3x3 EP TAPE Leader / Trailer & Orientation



Rev. 1.2 February 2018 **www.aosmd.com** Page 15 of 16



#### Part Marking



| Part Number  | Description   | Code |  |
|--------------|---------------|------|--|
| AOZ1353DI-01 | Green Product | AG01 |  |
| AOZ1353DI-02 | Green Product | AG02 |  |

#### LEGAL DISCLAIMER

Alpha and Omega Semiconductor makes no representations or warranties with respect to the accuracy or completeness of the information provided herein and takes no liabilities for the consequences of use of such information or any product described herein. Alpha and Omega Semiconductor reserves the right to make changes to such information at any time without further notice. This document does not constitute the grant of any intellectual property rights or representation of non-infringement of any third party's intellectual property rights.

#### LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

#### As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Rev. 1.2 February 2018 **www.aosmd.com** Page 16 of 16