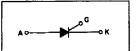
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960


Silicon Controlled Rectifier **Reverse Blocking Triode Thyristor**

.. designed for industrial and consumer applications such as power supplies, battery chargers, temperature, motor, light and welder controls.

- · Economical for a Wide Range of Uses
- High Surge Current ITSM = 300 Amps
 Low Forward "On" Voltage 1.2 V (Typ) @ ITM = 25 Amps
- Practical Level Triggering and Holding Characteristics 10 mA (Typ) @ T_C =
- Rugged Construction in Either Pressfit, Stud, or Isolated Stud
- Glass Passivated Junctions for Maximum Reliability

C230, 231 C230()3, 231()3 C232, 233 Series

> **SCRs** 25 AMPERES RMS 50 thru 600 VOLTS

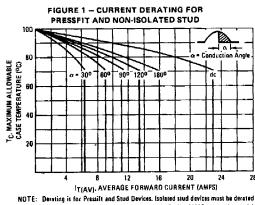
MAXIMUM RATINGS

Rating	Suffix	Symbol	Value	Unit	
Peak Repetitive Off-State Voltage, Note 1 (TC = -40 to +100°C)	F A	V _{DRM} and	50 100	Volts	
All Types	B	VRRM	200 400		
Non-Repetitive Reverse Voltage (T _C = -40 to 100°C) All Types	F A B D	VRSM	75 150 300 500 720	Volts	
Forward Current RMS	 "	IT(RMS)	25	Amps	
Peak Surge Current (One Cycle, 60 Hz, T _C = -40 to 100°C)		ITSM	250	Amps	
Circuit Fusing (T _C = -40 to 100°C, t = 1 to 8.3 ms)		I²t	260	A ² s	
Peak Gate Power		PGM	5	Watts	
Average Gate Power		PG(AV)	0.5	Watt	
Peak Forward Gate Current		IGM	2	Amps	
Operating Junction Temperature Range		TJ	-40 to +100	°C	
Storage Temperature Range		T _{stg}	-40 to +125	°C	
Stud Torque			30	In. Ib.	

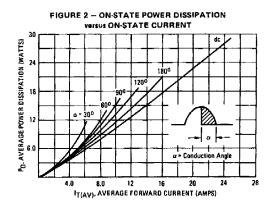
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case Pressfit and Stud Isolated Stud	R _B JC	1 1.15	°C/W

Note 1. VDRM and VRRM for all types can be applied on a continuous do basis without incurring damage. Ratings apply for zero or negative gate voltage, Devices shall not have a positive bias applied to the gate concurrently with a negative potential on the anode.


NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors


C230, 231 • C230()3, 231()3 • C232, 233 Series

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

Characteristic	i	Symbol	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current (Rated V _{DRM} or V _{RRM} , gate open) T _C = 25°C T _C = 100°C		DRM, IRRM	_	<u> </u>	10 1	μA mA
Forward "On" Voltage (I†M = 100 A Peak, Pulse Width ≤ 1 ms, Duty Cycle ≤	2%)	V _{TM}		_	1.9	Volts
Gate Trigger Current, C230, C230()3, C232 series (VD = 12 Vdc, RL = 120 Ohms) (VD = 12 Vdc, RL = 60 Ohms)	_C = -40°C	igt	_	_	25 40	mA
Gate Trigger Current, C231, C231()3, C233 (Continuous (VD = 12 Vdc, RL = 120 Ohms) (VD = 12 Vdc, RL = 60 Ohms) Tc	dc) c = -40°C	IGT	_	_	9 20	mA
	c = −40°C c = +100°C	Vg⊤	_ _ _ 0.2		1.5 2 —	Volts
Holding Current (VD = 24 V, gate open, IT = 0.5 A) To	= -40°C	! н		-	50 100	mA
Turn-On Time $(t_d + t_r)$ $(l_{TM} = 25 \text{ Adc}, l_{GT} = 40 \text{ mAdc}, V_D = \text{Rated V}_{DRM})$		^t gt	_	1	_	μ8
Turn-Off Time (I _{TM} = 10 A, I _R = 10 A, Pulse Width = 50 μ s, dv/dt = 20 V/ μ s, V _D = Rated V _{DRM}) T _C	c = 100°C	^t q	_	25 35		μs
Forward Voltage Application Rate (VD = Rated VDRM) To	c = 100°C	dv/dt	_	100	-	V/μs

NOTE: Derating is for Pressit and Stud Devices. Isolated stud devices must be derated an additional 15%. For example, the max T_C @ 16 A (180° conduction angle) is 70°C, a derating of 30°C. Isolated stud devices must be derated 34.5°C; therefore, the maximum T_C is 85.5°C.

