

# Fast Responding, 45-dB Range 500 MHz to 40 GHz Power Detector

**Preliminary Technical Data** 

**ADL6010** 

#### **FEATURES**

State-of-the-Art Broadband Detector Technology Schottky Diode Front End with on-Chip Linearization Boardband 50 ohm Input Impedance Accurate Response from 0.5 GHz to 40 GHz Input Range of -30 dBm to +15 dBm re  $50\Omega$  Unity Gain Scaled Linear in V/V Output Fast Incremental Envelope Response: >20MHz Low Power Consumption: 3.0 mA at 5V 2 mm  $\times$  2 mm, 6-lead LFCSP package

#### **APPLICATIONS**

High-precision Microwave Instrumentation
Point-to-Point Power-Level Control
Collision-Avoidance Systems

#### **GENERAL DESCRIPTION**

The ADL6010 is a versatile, broadband RF envelope detector. The envelope output voltage is presented as a voltage that is proportional to the envelope of the input signal. Absolute power measurement can be made with a simple low pass filter design at the output of the ADL6010.

The ADL6010 provides state-of-the-art accuracy and stability over time and temperature, in a simple 6-pin format. It features a novel detector cell using Schottky diodes and a proprietary linearizing system. The device has a specified input power, relative to a 50- $\Omega$  environment ranges, of -30 dBm to +15 dBm. Traditional diode-based detectors exhibit significant even-order nonlinearity, due to source loading, generating distortion

# RFIN 5 DETECTOR ANALOG SIGNAL PROCESSOR OND1

Figure 1. Functional block diagram

components which are reflected into the signal source. The ADL6010 detector does not exhibit this behavior – an important benefit in applications where a low-ratio coupler is used to extract a sample of the primary signal.

The supply voltage may range from 3.3 V up to 5.5 V, with no degradation in the response accuracy. The zero-signal current consumption is less than 3 mA.

The ADL6010 operates from  $-55^{\circ}$ C to  $+125^{\circ}$ C and is available in a 6-lead, 2 mm  $\times$  2 mm LFCSP package.

# **ADL6010**

# **Preliminary Technical Data**

# **TABLE OF CONTENTS**

| Features                 |                               |
|--------------------------|-------------------------------|
|                          | 1                             |
| Functional Block Diagram |                               |
| General Description      |                               |
| Revision History         | . Error! Bookmark not defined |
| Specifications           | 3                             |
| Absolute Maximum Ratings | 5                             |

| Thermal Resistance                          | 5  |
|---------------------------------------------|----|
| ESD Caution                                 | 5  |
| Pin Configuration and Function Descriptions | 6  |
| Typical Performance Characteristics         | 7  |
| Outline Dimensions                          | 10 |
| Ordering Guide                              | 10 |

# **SPECIFICATIONS**

 $T_A = 25$ °C, VPOS = 5V, unless otherwise stated.

Table 1.

| Input RFIN                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | A 41 1—                                         |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | MHz                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                     | GHz                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | Ω                                               |
| Input RFIN to output VOUT                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
| CW input, $T_A = +25^{\circ}C$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dB                                              |
| CW input, $T_A = +25^{\circ}C$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dB                                              |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dBm                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | dBm                                             |
| $VOUT = (Gain \times V_{IN}) + Intercept$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | V/V rms                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | V                                               |
| $P_{in} = +15 \text{ dBm}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | V                                               |
| $P_{in} = -30 \text{ dBm}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | V                                               |
| Input RFIN to output VOUT                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
| CW input, $T_A = +25^{\circ}C$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dB                                              |
| CW input, $T_A = +25^{\circ}C$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dB                                              |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dBm                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | dBm                                             |
| $VOLIT = (Gain \times V_{vv}) + Intercept$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V/V rms                                         |
| VOOT = (Gain × VIN) + intercept            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V                                               |
| D. = 115 dPm                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | V                                               |
| input Krin to output voor                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
| CW input T 125°C                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | dB                                              |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dB                                              |
| Cw input, 1 <sub>A</sub> = +25 C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dBm                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
| VOLT - (Cain VV ) : Intercept              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dBm                                             |
| $vOOT = (Gain \times v_{IN}) + Intercept$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V/V rms                                         |
| D 15 dD                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V                                               |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | V                                               |
| Input KFIN to output VOUT                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                 |
| GWI - T - OFFICE                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | l In                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dB                                              |
| CW input, $I_A = +25^{\circ}C$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dB                                              |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dBm                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dBm                                             |
| $VOUT = (Gain \times V_{IN}) + Intercept$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | V/V rms                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | V                                               |
| $P_{in} = +15 \text{ dBm}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | V                                               |
| $P_{in} = -30 \text{ dBm}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | V                                               |
|                                            | CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = $(Gain \times V_{IN}) + Intercept$ $P_{in} = +15 dBm$ $P_{in} = -30 dBm$ Input RFIN to output VOUT  CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = $(Gain \times V_{IN}) + Intercept$ $P_{in} = +15 dBm$ $P_{in} = -30 dBm$ Input RFIN to output VOUT  CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = $(Gain \times V_{IN}) + Intercept$ $P_{in} = +15 dBm$ $P_{in} = -30 dBm$ Input RFIN to output VOUT  CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = $(Gain \times V_{IN}) + Intercept$ $VOUT = (Gain \times V_{IN}) + Intercept$ VOUT = $(Gain \times V_{IN}) + Intercept$ $VOUT = (Gain \times V_{IN}) + Intercept$ | CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = (Gain × V <sub>IN</sub> ) + Intercept $P_{In} = +15 \text{ dBm}$ $P_{In} = -30 \text{ dBm}$ Input RFIN to output VOUT  CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = (Gain × V <sub>IN</sub> ) + Intercept $P_{In} = +15 \text{ dBm}$ $P_{In} = -30 \text{ dBm}$ Input RFIN to output VOUT  CW input, $T_A = +25^{\circ}C$ CW input, $T_A = +25^{\circ}C$ VOUT = (Gain × V <sub>IN</sub> ) + Intercept $P_{In} = +15 \text{ dBm}$ $P_{In} = -30 \text{ dBm}$ Input RFIN to output VOUT  CW input, $T_A = +25^{\circ}C$ VOUT = (Gain × V <sub>IN</sub> ) + Intercept $P_{In} = +15 \text{ dBm}$ $P_{In} = +15 \text{ dBm}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Input RFIN to output VOUT  CW input, TA = +25°C |

# **Preliminary Technical Data**

| Dynamic Range                        |                                           |        |     |     |         |
|--------------------------------------|-------------------------------------------|--------|-----|-----|---------|
| ±0.5 dB Error                        | CW input, $T_A = +25$ °C                  | 30     |     | dB  |         |
| ±1 dB Error                          | CW input, $T_A = +25$ °C                  |        | 35  |     | dB      |
| Maximum Input Level, ±1 dB           |                                           |        | 15  |     | dBm     |
| Minimum Input Level, ±1 dB           |                                           |        | -25 |     | dBm     |
| Conversion Gain                      | $VOUT = (Gain \times V_{IN}) + Intercept$ |        | 1   |     | V/V rms |
| Output Intercept                     |                                           |        | 0   |     | V       |
| Output Voltage, High Power In        | $P_{in} = +15 \text{ dBm}$                | 4      |     | V   |         |
| Output Voltage, Low Power In         | $P_{in} = -30 \text{ dBm}$                | 0.05   |     | V   |         |
| VOUT OUTPUT                          | Pin VOUT                                  |        |     |     |         |
| Maximum Output Voltage               |                                           |        | 4   |     | V       |
| Output Offset                        | No signal at RFIN                         | TBD mV |     | mV  |         |
| Available Output Current             |                                           | TBD mA |     | mA  |         |
| <b>Envelope Modulation Bandwidth</b> |                                           |        | 50  |     | MHz     |
| POWER SUPPLIES                       |                                           |        |     |     |         |
| Operating Range                      | -55°C ≤ T <sub>A</sub> ≤ 125°C            | 2.7    | 5.0 | 5.5 | V       |
| Quiescent Current                    |                                           |        | 3.0 |     | mA      |

#### **ABSOLUTE MAXIMUM RATINGS**

**Table Summary** 

Table 2.

| Parameter                    | Rating |
|------------------------------|--------|
| Supply Voltage, VPOS         | TBD    |
| RFIN                         | TBD    |
|                              |        |
| Maximum Junction Temperature | TBD    |
| Operating Temperature Range  | TBD    |
| Storage Temperature Range    | TBD    |
|                              |        |
|                              |        |
|                              |        |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### THERMAL RESISTANCE

 $\theta_{JA}$  is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

**Table 3. Thermal Resistance** 

| Package Type | θја | θ <sub>JC</sub> | Unit |
|--------------|-----|-----------------|------|
| TBD          | TBD | TBD             | °C/W |

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# **ADL6010**

### PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

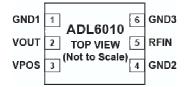



Figure 2.Pin Configuration

#### **Table 4. Pin Function Descriptions**

|               |          | 1                                                                                                                                                     |
|---------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No.       | Mnemonic | Description                                                                                                                                           |
| 1, 4, 6, EPAD | GND      | Device Ground Pins. Pin 1, 4 and 6 are ground pins and the metal slug on the underside of the chip must be connected to a low impedance ground plane. |
| 2             | VOUT     | Envelop Peak Output.                                                                                                                                  |
| 3             | VPOS     | Supply Voltage Pin. The operational range is from 2.5 V to 5.5 V.                                                                                     |
| 5             | RFIN     | Signal Input Pin. This pin is ac-coupled and has an input impedance of approximately 50 ohms.                                                         |

#### TYPICAL PERFORMANCE CHARACTERISTICS

Vpos = 5V; single-ggended input drive,  $T_A$ = -40°C (Blue), +25°C (Green) and + 85°C (Red), input signal is a sine wave (CW), unless otherwise indicated.

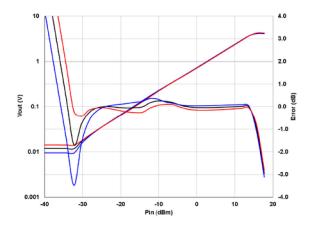



Figure 3 V<sub>OUT</sub> and Conformance Error vs. P<sub>in</sub> and Temperature at 1GHz.

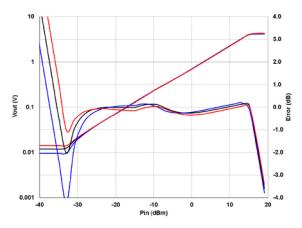



Figure 4 V<sub>OUT</sub> and Conformance Error vs. P<sub>in</sub> and Temperature at 5GHz.

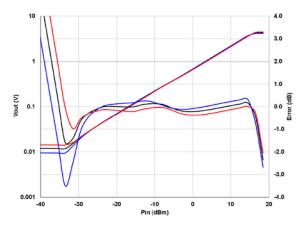



Figure 5 V<sub>OUT</sub> and Conformance Error vs. P<sub>in</sub> and Temperature at 10GHz.

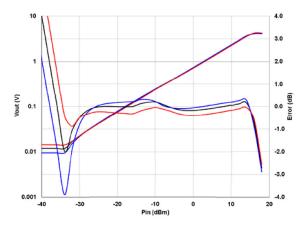



Figure 5 V<sub>OUT</sub> and Conformance Error vs. P<sub>in</sub> and Temperature at 15GHz.

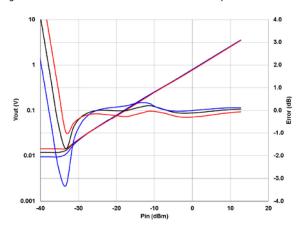



Figure 7  $V_{OUT}$  and Conformance Error vs.  $P_{in}$  and Temperature at 20GHz (Data Truncated by Measurement Setup).

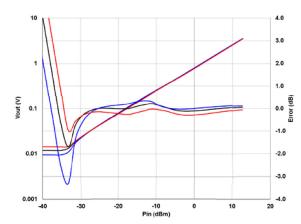



Figure 8  $V_{\text{OUT}}$  and Conformance Error vs.  $P_{\text{in}}$  and Temperature at 25GHz. (Data Truncated by Measurement Setup).

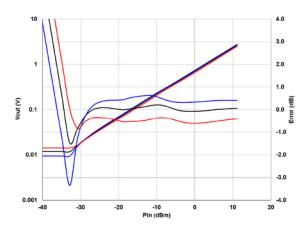



Figure 9  $V_{OUT}$  and Conformance Error vs.  $P_{in}$  and Temperature at 30GHz (Data Truncated by Measurement Setup).

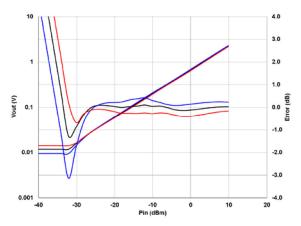



Figure 10  $V_{OUT}$  and Conformance Error vs.  $P_{in}$  and Temperature at 35GHz (Data Truncated by Measurement Setup).

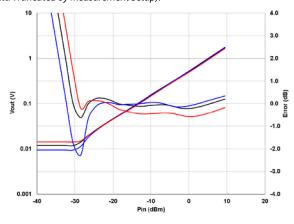



Figure 11  $V_{OUT}$  and Conformance Error vs.  $P_{in}$  and Temperature at 40GHz (Data Truncated by Measurement Setup).

#### **EVALUATION BOARD**

The ADL6010-EVALZ is a fully populated, 4-layer, Rogers 4003-based evaluation board. For normal operation, it requires a 5V/27mA power supply. The 5V power supply must be connected to the VPOS and GND test loops. The RF input

signal is applied to the 2.92 mm connector (RFIN). The output voltage is available on the SMA connector (VOUT) or on the test loop (V\_VOUT). Configuration options for the evaluation board are listed in Table 5.

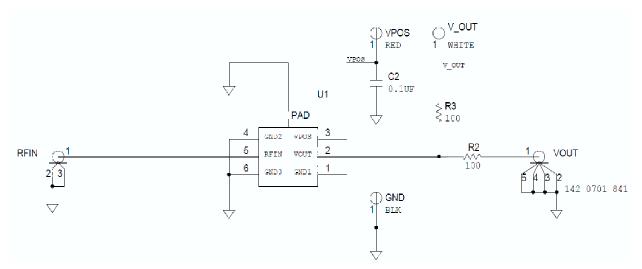



Figure 13 ADL6010 Evaluation Board Schematics

Table 5. Evaluation Board Configuration Options

| Component | Function/Notes                                                                                                                                                    | Default Value                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| R2, R3    | Output interface. A 100 ohm series resistor should be used in the presence of large capacitive loads. R3 can be replaced with a 0 ohm resistor.                   | R2 = $100 \Omega$ (size: 0402)<br>R3 = $100 \Omega$ (size: 0402) |
| C2        | Bypass capacitor. It provides supply ac decoupling by forming a return path for the ac signal and reduces the noise at the input end. The nominal value is 0.1µF. | $C2 = 0.1 \mu F \text{ (size: 0402)}$                            |
| RFIN      | RF Input. Southwest microwave 2.92 mm connector is used for input interface.                                                                                      |                                                                  |

#### **OUTLINE DIMENSIONS**

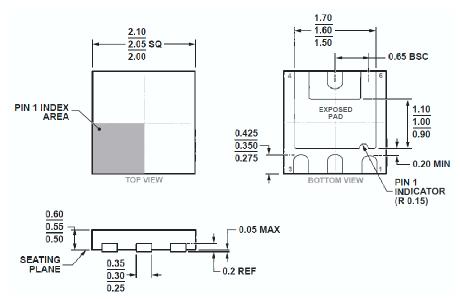



Figure 14. 6-Lead Lead Frame Chip Scale Package [LFCSP\_UD] 2 mm x 2 mm Body, Ultra Thin, Dual Lead (CP-6-7) Dimensions shown in millimeters.

#### **ORDERING GUIDE**

| Model           | Temperature Range | Package Description                  | Package Option | Ordering Quantity |
|-----------------|-------------------|--------------------------------------|----------------|-------------------|
| ADL6010ACPZN-R2 | −40°C to +85°C    | 6-Lead Lead Frame Chip Scale Package | CP-6-7         | 250               |
| ADL6010ACPZN-R7 | −40°C to +85°C    | 6-Lead Lead Frame Chip Scale Package | CP-6-7         | 1500              |
| ADL6010SCPZN-R2 | −55°C to +125°C   | 6-Lead Lead Frame Chip Scale Package | CP-6-7         | 250               |
| ADL6010SCPZN-R7 | −55°C to +125°C   | 6-Lead Lead Frame Chip Scale Package | CP-6-7         | 1500              |
| ADL6010-EVALZ   |                   | Evaluation Board                     |                | 1                 |