Data Sheet

FEATURES

Internally matched to $\mathbf{5 0 \Omega}$ input and output
Internally biased
Operating frequency: $\mathbf{7 0 0} \mathbf{~ M H z}$ to $1000 \mathbf{~ M H z}$
Gain: $\mathbf{2 0 ~ d B}$
OIP3: 45 dBm
P1 dB: 27 dBm
Noise figure: 5 dB
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP
Power supply: 5 V

APPLICATIONS

CDMA2000, WCDMA, and GSM base station transceivers and high power amplifiers

GENERAL DESCRIPTION

The ADL5322 is a high linearity GaAs driver amplifier that is internally matched to 50Ω for operation in the 700 MHz to 1000 MHz frequency range. The amplifier, which has a gain of 20 dB , is specially designed for use in the output stage of a cellular base station radio or as an input preamplifier in a multicarrier base station power amplifier. Matching and biasing are all on-chip. The ADL5322 is available in a Pb -free, $3 \mathrm{~mm} \times$ $3 \mathrm{~mm}, 8$-lead LFCSP package with an operating temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Figure 1.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
REVISION HISTORY
1/14—Rev. 0 to Rev. A:
Changes to Figure 2 5
Added Figure 12, Renumbered Sequentially 7
Added Exposed Pad Notation to Outline Dimensions 11
Changes to Ordering Guide 11
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Basic Connections 8
CDMA2000 Driving Application 8
Evaluation Board 10
Outline Dimensions 11
Ordering Guide 11

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE		700		1000	MHz
GAIN vs. Frequency vs. Temperature vs. Voltage vs. Frequency vs. Temperature vs. Voltage vs. Frequency vs. Temperature vs. Voltage	$\begin{aligned} & \text { Frequency }=850 \mathrm{MHz} \\ & 832 \mathrm{MHz} \text { to } 870 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}) \\ & \text { Frequency }=900 \mathrm{MHz} \\ & 869 \mathrm{MHz} \text { to } 894 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}) \\ & \text { Frequency }=950 \mathrm{MHz} \\ & 925 \mathrm{MHz} \text { to } 960 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}) \\ & \hline \end{aligned}$	19 18.6 18.3	$\begin{aligned} & \hline 20.3 \\ & \pm 0.125 \\ & \pm 1 \\ & \pm 0.1 \\ & 19.9 \\ & \pm 0.125 \\ & \pm 1 \\ & \pm 0.1 \\ & 19.6 \\ & \pm 0.125 \\ & \pm 1.1 \\ & \pm 0.1 \\ & \hline \end{aligned}$		dB dB
P1 dB vs. Frequency vs. Temperature vs. Voltage vs. Frequency vs. Temperature vs. Voltage vs. Frequency vs. Temperature vs. Voltage	$\begin{aligned} & \text { Frequency }=850 \mathrm{MHz} \\ & 832 \mathrm{MHz} \text { to } 870 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}) \\ & \text { Frequency }=900 \mathrm{MHz} \\ & 869 \mathrm{MHz} \text { to } 894 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}) \\ & \text { Frequency }=950 \mathrm{MHz} \\ & 925 \mathrm{MHz} \text { to } 960 \mathrm{MHz} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 5 \mathrm{~V}, @ 5 \%(4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}) \end{aligned}$	27.0 27.3 26.7	$\begin{aligned} & 27.7 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.3 \\ & 27.9 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.4 \\ & 27.5 \\ & \pm 0.2 \\ & \pm 1 \\ & \pm 0.4 \end{aligned}$		dBm dBm
NOISE FIGURE	Frequency $=830 \mathrm{MHz}$ to 960 MHz		5		dB
INPUT RETURN LOSS	Frequency $=830 \mathrm{MHz}$ to 960 MHz		-10		dB
OUTPUT RETURN LOSS	Frequency $=830 \mathrm{MHz}$ to 960 MHz		-10		dB
OIP3 vs. Frequency vs. Temperature vs. Voltage vs. Frequency vs. Temperature vs. Voltage vs. Frequency vs. Temperature vs. Voltage	```Carrier spacing \(=1 \mathrm{MHz}\), \(\mathrm{P}_{\text {out }}=5 \mathrm{dBm}\) per carrier Frequency \(=850 \mathrm{MHz}\) 832 MHz to 870 MHz \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) 5 V , @ \(5 \%\) (4.75 V to 5.25 V) Frequency \(=900 \mathrm{MHz}\) 869 MHz to 894 MHz \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) 5 V , @ \(5 \%\) (4.75 V to 5.25 V) Frequency \(=950 \mathrm{MHz}\) 925 MHz to 960 MHz \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) 5 V , @ \(5 \%\) (4.75 V to 5.25 V)```		$\begin{aligned} & 44.8 \\ & \pm 0.25 \\ & \pm 3.0 \\ & \pm 0.5 \\ & 45.3 \\ & \pm 0.25 \\ & \pm 2.7 \\ & \pm 0.8 \\ & 44.4 \\ & \pm 0.25 \\ & \pm 2.2 \\ & \pm 0.8 \end{aligned}$		dBm dBm
POWER SUPPLY Supply Voltage Supply Current Operating Temperature	$\mathrm{P}_{\text {OUT }}=5 \mathrm{dBm}$	$\begin{array}{r} 4.75 \\ -40 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 320 \end{aligned}$	$\begin{array}{r} 5.25 \\ +85 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	6 V
Input Power (re: 50Ω)	18 dBm
Equivalent Voltage	1.8 V rms
θ_{JC} (Soldered)	$28.5^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,5$	VCC	Positive 5 V Supply Voltage. Bypass these three pins with independent power supply decoupling networks (100 pF, 10 nF, and $10 \mu \mathrm{~F})$. $3,6,7$
GND	Device Ground.	
4	RFOUT	RF Output. Internally matched to 50Ω.
8	RFIN	RF Input. Internally matched to 50Ω.
N/A	EP	Exposed Paddle. Connect to the ground plane via a low impedance path.

Table 4. S-Parameters

Frequency	ADL5322 (1, 1)	ADL5322 (1, 2)	ADL5322 (2, 1)	ADL5322 (2, 2)
700.0 MHz	$0.210 / 109.457$	$0.002 / 97.018$	$+11.221 /-158.622$	$0.436 / 150.470$
720.0 MHz	$0.195 / 104.437$	$0.002 / 93.284$	$+11.108 /-166.579$	$0.392 / 145.211$
740.0 MHz	$0.179 / 99.101$	$0.002 / 87.856$	$+11.013 /-174.596$	$0.345 / 137.443$
760.0 MHz	$0.165 / 93.363$	$0.002 / 86.137$	$10.931 / 177.282$	$0.295 / 133.051$
780.0 MHz	$0.151 / 86.953$	$0.002 / 78.668$	$10.856 / 169.006$	$0.242 / 125.612$
800.0 MHz	$0.138 / 79.928$	$0.002 / 74.072$	$0.781 / 160.613$	$0.187 / 116.434$
820.0 MHz	$0.125 / 71.950$	$0.002 / 68.940$	$10.698 / 152.065$	$0.130 / 102.897$
840.0 MHz	$0.114 / 62.829$	$0.002 / 62.269$	$10.493 / 143.342$	$0.079 / 76.154$
860.0 MHz	$0.103 / 52.162$	$0.002 / 56.742$	$10.361 / 125.489$	$0.061 / 18.090$
880.0 MHz	$0.095 / 39.531$	$0.002 / 56.696$	$10.210 / 116.239$	$+0.098 /-26.962$
900.0 MHz	$0.090 / 24.952$	$0.003 / 43.549$	$9.033 / 106.889$	$+0.153 /-46.741$
920.0 MHz	$0.088 / 9.188$	$0.003 / 37.254$	$9.637 / 97.326$	$+0.211 /-58.300$
940.0 MHz	$+0.090 /-7.350$	$0.003 / 29.904$	$9.364 / 77.609$	$+0.269 /-66.606$
960.0 MHz	$+0.095 /-23.642$	$0.003 / 24.334$	$9.081 / 67.342$	$+0.376 /-78.914$
980.0 MHz	$+0.104 /-39.131$	$0.003 / 16.521$		$+0.424 /-83.911$
1.000 GHz	$+0.115 /-53.477$	$0.003 / 8.139$		

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Gain vs. Frequency, $V_{C C}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 4. P1 dB vs. Frequency, $V_{C C}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 5. OIP3 vs. Frequency, $V_{C C}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 6. Noise Figure vs. Frequency, Multiple Devices, $V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 7. P1 dB vs. Frequency, $V_{C C}=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and $5.25 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 8. OIP3 vs. Frequency, $V_{C C}=4.75 \mathrm{~V}, 5 \mathrm{~V}$, and $5.25 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 9. Distribution of OIP3 at 850 MHz

Figure 10. Input S11 and Output S22 Return Loss vs. Frequency

Figure 11. Distribution of OIP3 at 950 MHz

Figure 12. Supply Current vs. $P_{\text {OUT }}$ and Temperature $V_{C C}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C}$, $+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

BASIC CONNECTIONS

Figure 15 shows the basic connections for operating the ADL5322. Each of the three power supply lines should be decoupled with $10 \mu \mathrm{~F}, 10 \mathrm{nF}$, and 100 pF capacitors. Pin 3, Pin 6, Pin 7, and the exposed paddle under the device should all be connected to a low impedance ground plane. If multiple ground planes are being used, these should be stitched together with vias under the device to optimize thermal conduction. See recommended land pattern in Figure 13.

Figure 13. Recommended Land Pattern

CDMA2000 DRIVING APPLICATION

Figure 14 shows a plot of the spectrum of an ADL5323 driving at 4 -carrier CDMA2000 signal at 0 dBm per carrier (total carrier power $=6 \mathrm{dBm}$), centered at 880 MHz . At 750 kHz and 1.98 MHz offset, adjacent channel power ratios of -59 dBc and -84 dBc (measured in 30 kHz with respect to the 1.22 MHz carrier) are observed. At 4 MHz carrier offset, -73 dBc is measured in a 1 MHz bandwidth $(-133 \mathrm{dBm} / \mathrm{Hz})$. Note that the spectrum of the four carriers is slightly rounded due the frequency response of the cavity-tuned filter that was used to filter out the noise and distortion of the source signal.

Figure 14. Spectrum of 4 Adjacent CDMA2000 Carriers Centered at 880 MHz; Total Carrier Power $=6 \mathrm{dBm}$ (0 dBm per Carrier)

Figure 15. Basic Connections

Figure 16 shows how ACP varies with output power level. The close-in ACP is a function of the signal coding and is unaffected by output headroom at these power levels. The ACP measured at 1.98 MHz carrier offset is -72 dBc at 10 dBm output power (12 dB below the required 60 dBc). At 4 MHz carrier offset, the noise and distortion measured in a 1 MHz bandwidth is -75 dBm at 6 dBm (total) output power (0 dBm per carrier). In a 50 dBm transmitter, this corresponds to an antenna-referred output power of $-31 \mathrm{dBm}(1 \mathrm{MHz})$, which is 18 dB below what is required by the CDMA2000 standard.

Figure 16. CDMA2000 ACP vs. Output Power per Carrier; 4 Adjacent Carriers

ADL5322

EVALUATION BOARD

Figure 18 shows the schematic of the ADL5322 evaluation board. The board is powered by a single supply in the 4.75 V to 5.25 V range. The power supply is decoupled on each of the three power supply pins by $10 \mu \mathrm{~F}, 10 \mathrm{nF}$, and 100 pF capacitors. See Table 5 for exact evaluation board component values. Note that all three VCC pins (Pin 1, Pin 2, and Pin 5) should be independently bypassed as shown in Figure 18 for proper operation.

Figure 17. Evaluation Board Component Side View

Table 5. Evaluation Board Components

Component	Function	Default Value
DUT1	Driver amplifier	ADL5322
C1, C12, C16	Low frequency bypass capacitors	$10 \mu \mathrm{~F}, 0603$
C3, C11, C17	Low frequency bypass capacitors	$10 \mathrm{nF}, 0402$
C2, C10, C18	High frequency bypass capacitors	$100 \mathrm{pF}, 0402$
C8, C9, C13, C14, R3	Open	Open, 0402
R2, R4	AC coupling capacitors	$100 \mathrm{pF}, 0402$

Figure 18. Evaluation Board Schematic

OUTLINE DIMENSIONS

Figure 19. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin, Dual Lead (CP-8-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model $^{\mathbf{1}}$	Temperature Range	Package Description	Package Option	Branding	Ordering Quantity
ADL5322ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead LFCSP_VD, 7" Tape and Reel	CP-8-2	OP	1500
ADL5322ACPZ-WP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead LFCSP_VD, Waffle Pack	CP-8-2	OP	50
ADL5322-EVALZ		Evaluation Board			1

[^0]
NOTES

[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

