AiT Semiconductor Inc.

DESCRIPTION

A6500 series is a group of positive voltage output, low power consumption, low dropout voltage regulator. A6500 can provide output value in the range of 1.2V~4.5V every 0.1V step. It also can be customized on command.

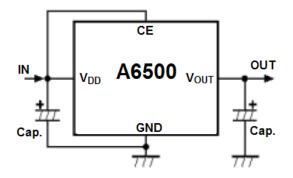
A6500 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module with discharge capability.

A6500 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within±2%.

A6500 is available in SOT-25 package.

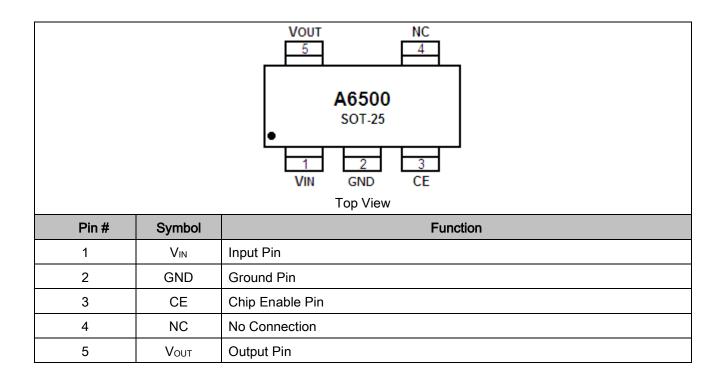
ORDERING INFORMATION

Package Type	Part Number		
		A6500E5R-XX	
SOT-25		A6500E5VR-XX	
	XX: Output Voltage		
Note	25=2.5V, 33=3.3V		
	R: Tape & Reel		
	V: Halogen free Package		
AiT provides all RoHS products			
Suffix " V " means Halogen free Package			


FEATURES

- Low Dropout Voltage: 0.46V@ 500mA(Typ.)
- Low Power Consumption: 75uA (Typ.)
- Low Output Noise (47uV_{RMS})
- Standby Mode: 0.1uA
- High Ripple Rejection: 66dB@ 100Hz(Typ.)
- Low Temperature Coefficient: ±100ppm/°C
- Build-In chip enable and discharge circuit
- Excellent Line Regulation: 0.05%/V
- Output Voltage Range: 1.2V~4.5V (customized on command every 0.1V step)
- Highly accurate: ±2% (±1% customized)
- Output Current Limit
- Available in SOT-25 Package

APPLICATION


- Power Source for Cellular Phone and Various Kind of PCSs
- Battery Powered Equipment
- Power Management of MP3, PDA, DSC, Mouse, PS2 Games
- Reference Voltage Source
- Regulation after Switching Power

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Max Input Voltage	10V
T _J , Junction Temperature	125°C
Output Current	500mA
Power Dissipation	250mW
Ts, Storage Temperature	45°C~150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	8V
Ambient Temperature	-40°C to 85°C

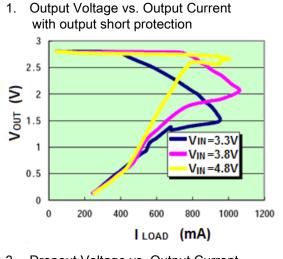
THERMAL RESISTANCE

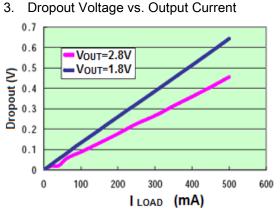
Package	θյΑ	өлс	
SOT-25	250°C/W	130°C/W	

NOTE: Thermal Resistance is specified with approximately 1 square of 1 oz copper.

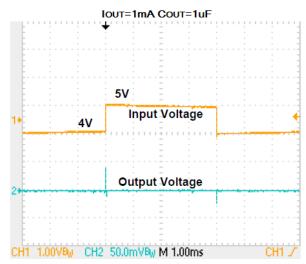
ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit	
Input Voltage	VIN				8	V	
Output Voltage	Vout	V _{IN} = Set V _{OUT} + 1V 1mA≦ I _{OUT} ≦ 30mA	V _{оит} х0.98	V _{OUT1}	V _{оит} х1.02	V	
Maximum Output Current	Іоит (Мах.)	$V_{IN} - V_{OUT} = 1V$	500			mA	
Dreneut Valtere		І _{ОUT} = 100mA		88	120	mV	
Dropout Voltage	VDROP ^{Note1}	І _{ОUT} = 300mA		270	350		
Vou⊤≧2.8V		I _{OUT} = 500mA		460	600		
	ΔVουτ	I _{ОUT} = 40mA		0.05		0/ 11/	
Line Regulation	$\Delta V_{\text{IN}} \times V_{\text{OUT}}$	2.8V ≦ V _{IN} ≦ 8V		0.05	0.2	%/V	
Load Regulation	ΔV _{OUT} / ΔΙ _{OUT}	V _{IN} = Set V _{OUT} + 1V 1mA ≦ I _{OUT} ≦ 500mA		20	40	mV	
Supply Current	lss	V _{IN} = Set V _{OUT} + 1V		75	90	uA	
Supply Current (Standby)	Istandby	V _{IN} =Set V _{OUT} + 1V V _{CE} =GND		0.1	1.0	uA	
Output Voltage Temperature Coefficiency	ΔVout ΔT × Vout	I _{ОUT} = 30mA		±100		ppm/°C	
Ripple Rejection	PSRR	F = 100H _Z Ripple = 0.5V _{P-P} V _{IN} = Set V _{OUT} + 1V		65		dB	
Short Current Limit	I _{LIM}	V _{OUT} = 0V		200		mA	
CE Pull down Resistance	Rpd		2.0	5.0	10.0	MΩ	
CE Input Voltage "H"	V _{CEH}		1.5		V _{IN}	V	
CE Input Voltage "L"	VCEL		0		0.25	V	
Output Noise	EN	BW=10Hz~100kHz		47		uV _{RMS}	

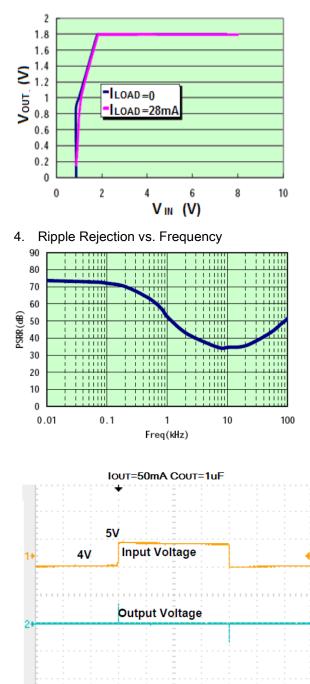

(Test Condition: C_{IN} = 1uF, C_{OUT} = 3.4uF, T_A =25°C, unless otherwise specified.)


 $NOTE1: \ V_{DROP}=V_{IN}1-(V_{OUT}2^*0.98) \ V_{OUT}2 \ is the output voltage when \ V_{IN}=V_{OUT}1+1.0V \ and \ I_{OUT}=300 mA \ or \ I_{OUT}=500 mA.$

VIN1 is the input voltage at which the output voltage becomes 98% of VOUT1 after gradually decreasing the input voltage.

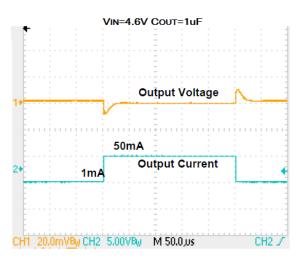


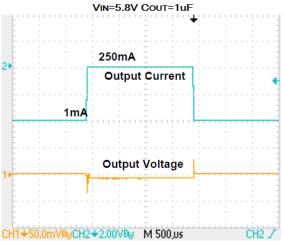
TYPICAL PERFORMANCE CHARACTERISTICS

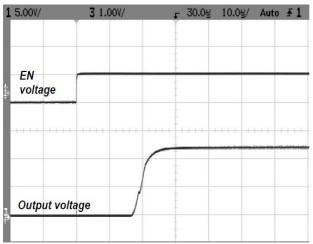


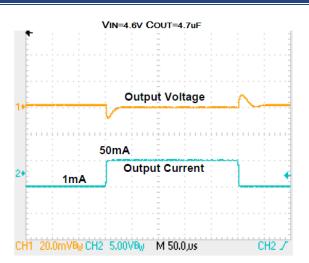
5. Line Transient Response

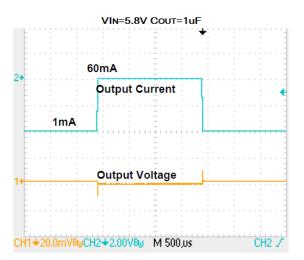
2. Output Voltage vs. Input Voltage


CH1 1.00VBy CH2 50.0mVBy M 1.00ms

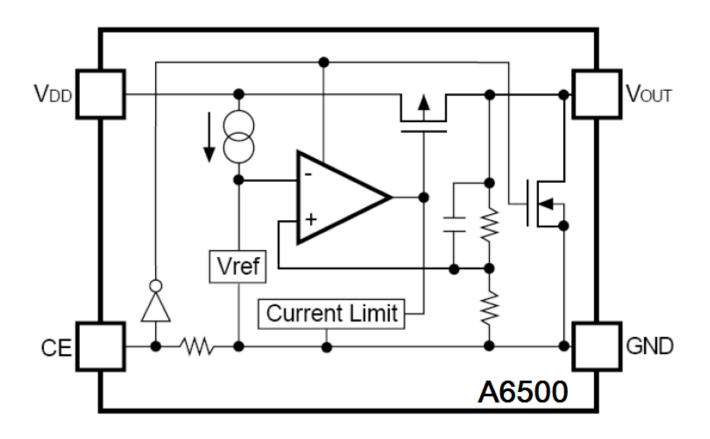

6. Load Transient Response


AiT Semiconductor Inc. www.ait-ic.com


A6500 LOW DROPOUT VOLTAGE REGULATOR LOW NOISE FAST RESPONSE 500mA LDO REGULATOR



7. Startup response



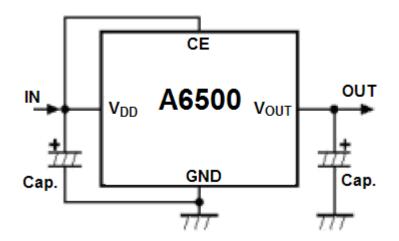
8. Shutdown response

1	5.00V/	3 1.00V/	F 2.00g	1.00g/ Aut	to £1
Į.			-		
			ļ		
÷.	EN voltage		Ť.		
1					
3	Output volta	ge	-		
			+		

BLOCK DIAGRAM

DETAILED INFORMATION

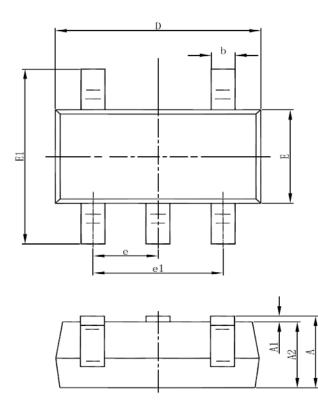
A6500 series is a group of positive voltage output, low noise, low power consumption, low dropout voltage regulator.

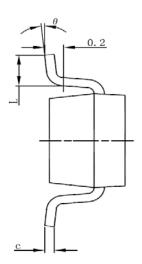

A6500 can provide output value in the range of 1.2V~4.5V every 0.1V step. It also can be customized on command.

A6500 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module. A6500 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within±2%.

Typical Application Circuit

Input capacitor (C_{IN} = 1uF) is recommended in all application circuit.


Output capacitor (C_{OUT} = 3.3uF/4.7uF) is recommended in all application to assure the stability of circuit



PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

Symbol	Min	Max	
A	1.000	1.300	
A1	0.100	0.250	
A2	0.800	0.900	
b	0.300	0.500	
с	0.100	0.200	
D	2.700	3.100	
E	1.500	1.800	
E1	3.100	2.500	
е	0.950(BSC)		
e1	1.700	2.100	
L	0.300	0.600	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or serve property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.