

2931-150

150 Watts, 38 Volts, 50μs, 4% Radar 2900-3100 MHz

Preliminary

GENERAL DESCRIPTION

The 2931-150 is an internally matched, COMMON BASE bipolar transistor capable of providing 150 Watts of pulsed RF output power at 50µs pulse width, 4% duty factor across the 2900 to 3100 MHz band. The transistor prematch and test fixture has been optimized through the use of Pulsed Automated Load Pull. This hermetic ceramic sealed transistor is specifically designed for S-band radar applications. It utilizes gold metallization and emitter ballasting to provide high reliability and supreme ruggedness.

CASE OUTLINE 55KS-1 Common Base

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation

Device Dissipation @ 25°C¹ 500 W

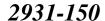
Maximum Voltage and Current

Collector to Base Voltage (BV $_{ces}$) 65 V Emitter to Base Voltage (BV $_{ebo}$) 3.0 V Collector Current (I $_c$) 15.0 A

Maximum Temperatures

Storage Temperature -65 to +200 °C Operating Junction Temperature +200 °C

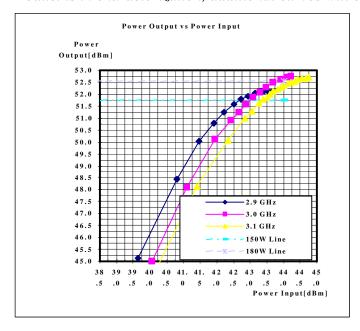
ELECTRICAL CHARACTERISTICS @ 25°C

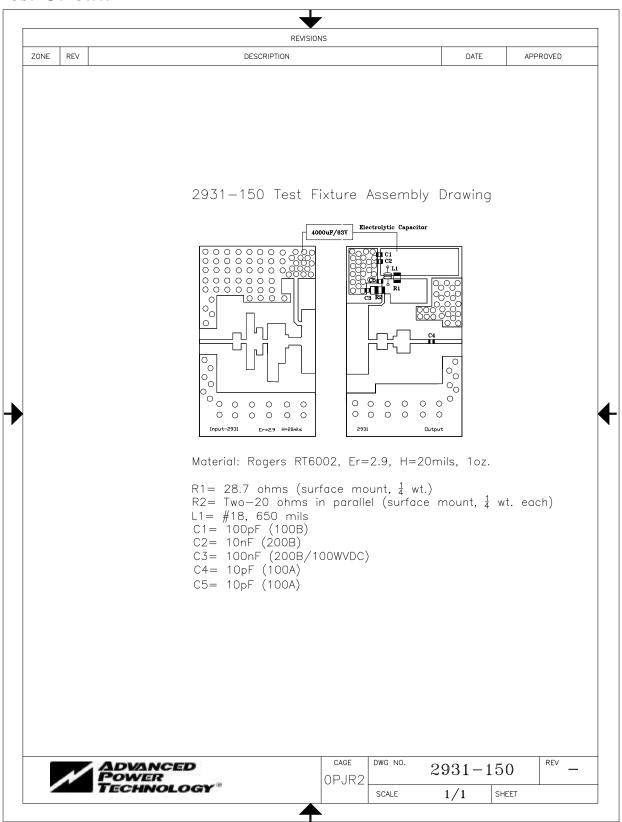

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
P _{out}	Power Output	F=2900-3100 MHz	150			W
P _{in}	Power Input	$V_{cc} = 38 \text{ Volts}$			21.7	W
P_g	Power Gain	Pulse Width = $50 \mu s$	8.3	8.7		dB
$\eta_{\rm c}$	Collector Efficiency	Duty Factor = 4 %	45	50		%
R _l	Return Loss		7			dB
P_d	Pulse Droop				0.6	dB
t_r	Rise Time				150	nS
VSWR ₁	Load Mismatch Tolerance ¹	$F = 3100 \text{ MHz}, P_0 = 150 \text{W}$			2:1	

FUNCTIONAL CHARACTERISTICS @ 25°C

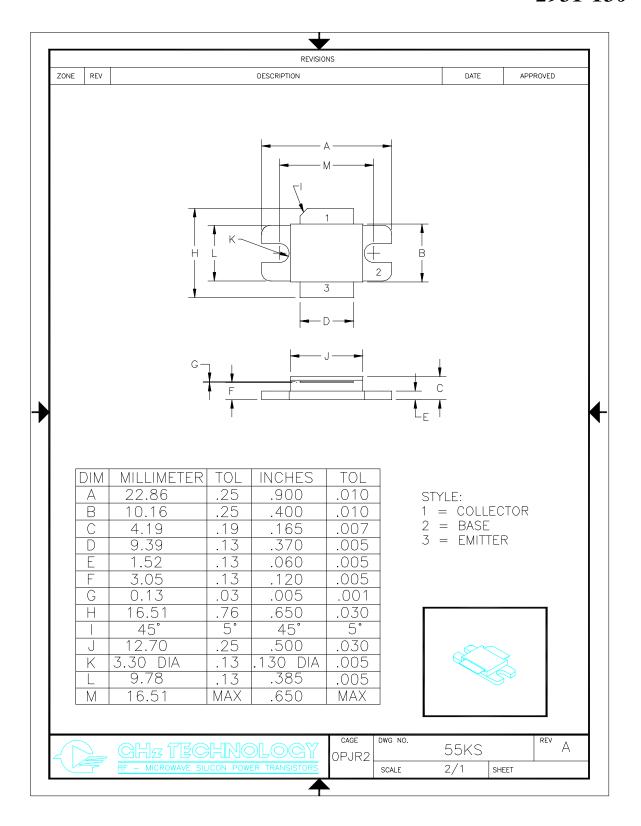
$\mathrm{BV}_{\mathrm{ebo}}$	Emitter to Base Breakdown	Ie = 30 mA	3.0			V
BV_{ces}	Collector to Emitter Breakdown	Ic = 120 mA	65			V
h_{FE}	DC – Current Gain	Vce = 5V, $Ic = 600 mA$	18	60		
θjc^1	Thermal Resistance				0.35	°C/W

NOTE: 1. At rated output power and pulse conditions


Issue 2, April 2005


Vcc = 38 Volts, Pulse Width = 50μ s, Duty = 4 % 62754-2.

Product is in characterization, additional curves will be inserted at the conclusion.



Impedance curves will be added at the completion of the characterization.

Test Circuit

2931-150

