- Member of the Texas Instruments Widebus+ ${ }^{\text {TM }}$ Family
- Optimized for $1.8-\mathrm{V}$ Operation and is $3.6-\mathrm{V}$ I/O Tolerant to Support Mixed-Mode Signal Operation
- I ${ }_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.8 ns at 1.8 V
- Low Power Consumption, 40- $\mu \mathrm{A}$ Max Icc

description/ordering information

This 32-bit edge-triggered D-type flip-flop is operational at $0.8-\mathrm{V}$ to $2.7-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$, but is designed specifically for $1.65-\mathrm{V}$ to $1.95-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74AUCH32374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as four 8 -bit flip-flops, two 16 -bit flip-flops, or one 32 -bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off• }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA $_{\mathbf{A}}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	LFBGA - GKE	Tape and reel	SN74AUCH32374GKER	MK374

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

GKE PACKAGE

 (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
A	1Q2	1Q1	$1 \overline{\mathrm{OE}}$	1CLK	1D1	1D2
B	1Q4	1Q3	GND	GND	1D3	1D4
C	1Q6	1Q5	$V_{C C}$	$\mathrm{V}_{\text {CC }}$	1D5	1D6
D	1Q8	1Q7	GND	GND	1D7	1D8
E	2Q2	2Q1	GND	GND	2D1	2D2
F	2Q4	2Q3	V_{CC}	V_{CC}	2D3	2D4
G	2Q6	2Q5	GND	GND	2D5	2D6
H	2Q7	2Q8	$2 \overline{O E}$	2CLK	2D8	2D7
J	3Q2	3Q1	$3 \overline{\mathrm{OE}}$	3CLK	3D1	3D2
K	3Q4	3Q3	GND	GND	3D3	3D4
L	3Q6	3Q5	V_{CC}	$\mathrm{V}_{\text {CC }}$	3D5	3D6
M	3Q8	3Q7	GND	GND	3D7	3D8
N	4Q2	4Q1	GND	GND	4D1	4D2
P	4Q4	4Q3	$V_{\text {CC }}$	V_{CC}	4D3	4D4
R	4Q6	4Q5	GND	GND	4D5	4D6
T	4Q7	4Q8	$4 \overline{\mathrm{O}}$	4CLK	4D8	4D7

FUNCTION TABLE (each flip-flop)

INPUTS			OUTPUT
$\overline{\mathrm{OE}}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

To Seven Other Channels

To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high-impedance or power-off state, V_{O} (see Note 1)
-0.5 V to 3.6 V

Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$.. 50 mA

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		0.8	2.7	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	V_{CC}		V
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		0	V
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.95 V		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	
V_{1}	Input voltage		0	3.6	V
V_{O}	Output voltage	Active state	0	V_{CC}	V
		3-state	0	3.6	V
IOH	High-level output current	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		-0.7	mA
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$		-3	
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$		-5	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		-8	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-9	
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$		0.7	mA
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$		3	
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$		5	
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		8	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		9	
$\Delta t / \Delta v$	Input transition rise or fall rate			20	ns/V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V Cc	MIN TYP†	MAX	UNIT
V_{OH}	${ }^{\mathrm{I}} \mathrm{OH}=-100 \mu \mathrm{~A}$	0.8 V to 2.7 V	$\mathrm{V}_{\mathrm{CC}}-0.1$		V
	$\mathrm{I}^{\mathrm{OH}}=-0.7 \mathrm{~mA}$	0.8 V	0.55		
	$\mathrm{OH}=-3 \mathrm{~mA}$	1.1 V	0.8		
	$\mathrm{OH}=-5 \mathrm{~mA}$	1.4 V	1		
	$\mathrm{OH}=-8 \mathrm{~mA}$	1.65 V	1.2		
	$\mathrm{OH}=-9 \mathrm{~mA}$	2.3 V	1.8		
VOL	$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$	0.8 V to 2.7 V		0.2	V
	$\mathrm{l} \mathrm{OL}=0.7 \mathrm{~mA}$	0.8 V	0.25		
	$\mathrm{I}^{\mathrm{OL}}=3 \mathrm{~mA}$	1.1 V		0.3	
	$\mathrm{IOL}=5 \mathrm{~mA}$	1.4 V		0.4	
	$\mathrm{IOL}=8 \mathrm{~mA}$	1.65 V		0.45	
	$\mathrm{IOL}=9 \mathrm{~mA}$	2.3 V		0.6	
II \quad All inputs	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	0 to 2.7 V		± 5	$\mu \mathrm{A}$
${ }^{1} \mathrm{BHL}^{\ddagger}$	$\mathrm{V}_{1}=0.35 \mathrm{~V}$	1.1 V	10		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{I}}=0.47 \mathrm{~V}$	1.4 V	15		
	$\mathrm{V}_{\mathrm{I}}=0.57 \mathrm{~V}$	1.65 V	20		
	$\mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$	2.3 V	40		
${ }^{1} \mathrm{BH} \mathrm{H}^{\S}$	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	1.1 V	-5		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{I}}=0.9 \mathrm{~V}$	1.4 V	-15		
	$\mathrm{V}_{1}=1.07 \mathrm{~V}$	1.65 V	-20		
	$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	2.3 V	-40		
'BHLOI'	$\mathrm{V}_{\mathrm{I}}=0$ to V_{CC}	1.3 V	75		$\mu \mathrm{A}$
		1.6 V	125		
		1.95 V	175		
		2.7 V	275		
${ }^{\text {I BHHO}}{ }^{\text {\# }}$	$\mathrm{V}_{\mathrm{I}}=0$ to V_{CC}	1.3 V	-75		$\mu \mathrm{A}$
		1.6 V	-125		
		1.95 V	-175		
		2.7 V	-275		
Ioff	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	0		± 10	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.7 V		± 10	$\mu \mathrm{A}$
IcC	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND, $\quad \mathrm{IO}=0$	0.8 V to 2.7 V		40	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	2.5 V	3		pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.5 V	5		pF

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. IBHL should be measured after lowering V_{IN} to GND and then raising it to $\mathrm{V}_{\text {IL }}$ max.
§ The bus-hold circuit can source at least the minimum high sustaining current at $\mathrm{V}_{I H}$ min. $I_{B H H}$ should be measured after raising $\mathrm{V}_{I N}$ to V_{CC} and then lowering it to V_{IH} min.
IA An external driver must source at least IBHLO to switch this node from low to high.
\# An external driver must sink at least IBHHO to switch this node from high to low.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
$f_{\text {max }}$			85	250		250		250			250		MHz
$t_{\text {pd }}$	CLK	Q	7.3	1	4.5	0.8	2.9	0.7	1.5	2.8	0.7	2.2	ns
ten	$\overline{\mathrm{OE}}$	Q	7	1.2	5.3	0.8	3.6	0.8	1.5	2.9	0.7	2.2	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Q	8.2	2	7.1	1	4.8	1.4	2.7	4.5	0.5	2.2	ns

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \dagger$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$\mathrm{V}_{C C}=1.2 \mathrm{~V}$	$\mathrm{V}_{C C}=1.5 \mathrm{~V}$	$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	$\mathrm{V}_{C C}=2.5 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP	TYP	TYP			
$\mathrm{C}_{\mathrm{pd}}{ }^{\ddagger}$ (each output)	Power dissipation capacitance	Outputs enabled, 1 output switching		$\begin{aligned} & 1 \mathrm{f} \text { data }=5 \mathrm{MHz} \\ & 1 \mathrm{f}_{\mathrm{clk}}=10 \mathrm{MHz} \\ & 1 \mathrm{f}_{\text {out }}=5 \mathrm{MHz} \\ & \mathrm{OE}=\mathrm{GND} \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	24	24	24.1	26.2	31.2	pF
C_{pd} (Z)	Power dissipation capacitance	Outputs disabled, 1 clock and 1 data switching	$\begin{aligned} & 1 \mathrm{f} \text { data }=5 \mathrm{MHz} \\ & 1 \mathrm{f} \mathrm{Clk}=10 \mathrm{MHz} \\ & \mathrm{f}_{\text {out }}=\text { not } \\ & \mathrm{switching} \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	7.5	7.5	8	9.4	13.2	pF	
C_{pd} § (each clock)	Power dissipation capacitance	Outputs disabled, clock only switching	$\begin{aligned} & 1 \mathrm{f} \text { data }=0 \mathrm{MHz} \\ & 1 \mathrm{f} \mathrm{Clk}=10 \mathrm{MHz} \\ & \mathrm{f}_{\text {out }}=\text { not } \\ & \text { switching } \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ & \hline \end{aligned}$	13.8	13.8	14	14.7	17.5	pF	

\dagger Total device $\mathrm{C}_{p d}$ for multiple (n) outputs switching and (y) clocks inputs switching $=\left\{n * C_{p d}\right.$ (each output) $\}+\left\{y^{*} C_{p d}\right.$ (each clock) $\}$.
$\ddagger \mathrm{C}_{\text {pd }}$ (each output) is the $\mathrm{C}_{\text {pd }}$ for each data bit (input and output circuitry) as it operates at 5 MHz (Note: the clock is operating at 10 MHz in this test, but its ICC component has been subtracted out).
§ C_{pd} (each clock) is the C_{pd} for the clock circuitry only as it operates at 10 MHz .

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

TEST	S1
tpLH/tpHL tpLZ/tpZL tPHZ/tPZH	$\begin{gathered} \text { Open } \\ 2 \times \mathrm{V}_{\mathrm{CC}} \\ \text { GND } \end{gathered}$

V_{CC}	C_{L}	R_{L}	V_{Δ}
0.8 V	15 pF	$2 \mathrm{k} \Omega$	0.1 V
$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	500Ω	0.15 V

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, slew rate $\geq 1 \mathrm{~V} / \mathrm{ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as t_{pd} -
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74AUCH32374GKER | ACTIVE | LFBGA | GKE | 96 | 1000 | None | SNPB | Level-3-220C-168 HR |
| SN74AUCH32374ZKER | ACTIVE | LFBGA | ZKE | 96 | 1000 |
 no Sb/Br) $)$ | SNAGCU | Level-3-250C-168 HR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GKE (R-PBGA-N96)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-205 variation CC.
D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-205 variation CC.
D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

