New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081

U.S.A.

BLU45/12

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

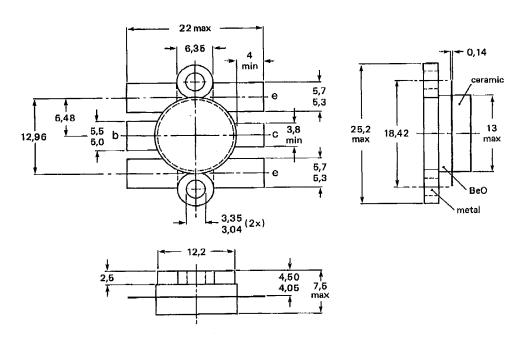
U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor in SOT-119 envelope primarily intended for use in mobile radio transmitters in the 470 MHz communications band.

Features

- multi-base structure and emitter-ballasting resistors for an optimum temperature profile,
- internal matching to achieve an optimum wideband capability and high power gain.
- · gold metallization ensures excellent reliability.

The transistor has a 6-lead flange envelope with a ceramic cap. All leads are isolated from the flange,


QUICK REFERENCE DATA

R.F. performance up to	T _h = 25 °C in a c	common-emitter	class-B circuit		
mode of operation	V _{CE} V	f MHz	P _L W	Gp dB	η _C %
narrow band; c.w.	12,5	470	45	> 4,8	> 55

MECHANICAL DATA

Dimensions in mm

SOT-119 (see Fig. 1).

Torque on screw:

min, 0,6 Nm (6 kg.cm) max. 0,75 Nm (7,5 kg.cm)

Recommended screw: cheese-head 4-40 UNC/2A

Heatsink compound must be applied and evenly distributed.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

BLU45/12

RATINGS

Collector-base voltage (open emitter) peak value	V _{СВОМ}	max.	36 V
Collector-emitter voltage (open base)	v_{CEO}	max.	16,5 V
Emitter-base voltage (open collector)	V_{EBO}	max.	4 V
Collector current d.c. or average	Ic	max.	9 A

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	LDO	
Collector current		
d.c. or average	lc	max. 9 A
(peak value); f > 1 MHz	¹ CM	max, 27 A
Total power dissipation		
at T _{mb} = 25 °C; f > 1 MHz	P _{tot}	max. 87 W
Storage temperature	T _{stg}	-65 to + 150 °C
Operating junction temperature	Τj	max. 200 °C

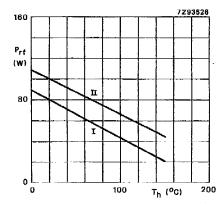


Fig. 2 Power/temperature derating curves.

- I Continuous operation (f > 1 MHz).
- II Short-time operation during mismatch (f > 1 MHz).

MAXIMUM THERMAL RESISTANCE

Dissipation = 54 W ; $T_{amb} = 25 ^{\circ}\text{C}$	
Francisco de la companya de la compa	

From junction to mounting base (r.f. operation) $R_{th j-mb}$ max. 1,7 K/W From mounting base to heatsink $R_{th mb-h}$ max. 0,2 K/W

BLU45/12

CHARACTERISTICS

$T_j = 25$ °C unless otherwise specified
Collector-base breakdown voltage open emitter; I _C = 100 mA
Collector-emitter breakdown voltage open base; I _C = 200 mA
Emitter-base breakdown voltage open collector; I _E = 20 mA
Collector cut-off current VBE = 0; VCE = 16 V
Second breakdown energy L = 25 mH; f = 50 Hz; R_{BE} = 10 Ω
D.C. current gain V _{CE} = 10 V; I _C = 8 A
Collector capacitance at $f = 1 \text{ MHz}$ $I_E = I_e = 0$; $V_{CB} = 12.5 \text{ V}$
Feedback capacitance at f = 1 MHz I _C = 0, V _{CE} = 12,5
Collector-flange capacitance

V(BR)CBO	min.	36 V
V _{(BR)CEO}	min.	16,5 V
V _{(BR)EBO}	min.	4 V
ICES	max,	44 mA
ESBR	min,	15 mJ
hFE	min. typ.	15 60
C _c	typ.	170 pF
Cre	typ.	100 pF
C _{re} C _{cf}	typ.	3 pF

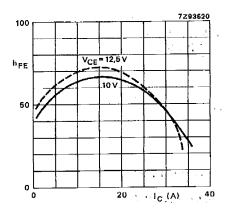


Fig. 3 D.C. current gain versus collector current; $T_j = 25$ °C.

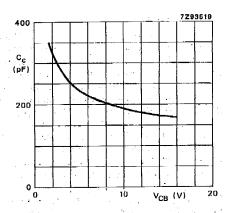


Fig. 4 Output capacitance versus V_{CB} ; $I_E = i_\theta = 0$; f = 1 MHz.