VS-5.MT...KPbF, VS-9.MT...KPbF, VS-11.MT...KPbF Series

www.vishay.com

Vishay Semiconductors

Three Phase Controlled Bridge (Power Modules), 55 A to 110 A

PRODUCT SUMMARY								
lo	55 A to 110 A							
V _{RRM}	800 V to 1600 V							
Package	MT-K							
Circuit	Three phase bridge							

FEATURES

 Package fully compatible with the industry standard INT-A-PAK power modules series

COMPLIANT

- High thermal conductivity package, electrically insulated case
- Excellent power volume ratio
- 4000 V_{RMS} isolating voltage
- UL E78996 approved 😱
- Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

A range of extremely compact, encapsulated three phase controlled bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and heavy duty applications.

MAJOR RA	TINGS AND CHARACTE	RISTICS						
SYMBOL	CHARACTERISTICS	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS			
		55	90	110	A			
lo	T _C	85	85	85	°C			
1	50 Hz	390	950	1130	A			
IFSM	60 Hz	410	1000	1180	A			
l ² t	50 Hz	770	4525	6380	A ² s			
14	60 Hz	700	4130	5830	A-s			
l²√t		7700	45 250	63 800	A²√s			
V _{RRM}	Range		800 to 1600		V			
T _{Stg}	Range		-40 to 125					
TJ	Range	°C						

ELECTRICAL SPECIFICATIONS

VOLTAGE F	RATINGS				
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM} /I _{DRM} , MAXIMUM AT T _J = 125 °C mA
	80	800	900	800	
	100	1000	1100	1000	
VS-5.MTK	120	1200	1300	1200	10
	140	1400	1500	1400	
	160	1600	1700	1600	
	80	800	900	800	
VS-9.MTK	100	1000	1100	1000	
VS-9.IVITK VS-11.MTK	120	1200	1300	1200	20
VO-11.IVI1R	140	1400	1500	1400	
	160	1600	1700	1600	

Revision: 27-Feb-14

1

Document Number: 94353

VS-5.MT...KPbF, VS-9.MT...KPbF, VS-11.MT...KPbF Series

www.vishay.com

Vishay Semiconductors

FORWARD CONDUCTION								
PARAMETER	SYMBOL		TEST CON	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS	
Maximum DC output current at	I _O	120° rect (conduction and	ıle	55	90	110	Α
case temperature	10	120 1000.	sonadotion ang	85	85	85	°C	
		t = 10 ms	No voltage		390	950	1130	
Maximum peak, one-cycle forward, non-repetitive on state surge current	I _{TSM}	t = 8.3 ms	reapplied		410	1000	1180	А
	15M	t = 10 ms	$100\%V_{RRM}$		330	800	950	~
-		t = 8.3 ms	reapplied	Initial $T_{I} = T_{I}$ max.	345	840	1000	
		t = 10 ms	No voltage	initiai 1j – 1jiniax.	770	4525	6380	
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		700	4130	5830	A ² s
Maximum r r for fability		t = 10 ms	100 % V _{RRM}		540	3200	4510	73
		t = 8.3 ms reapplied		500	2920	4120		
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms	to 10 ms, no vo	oltage reapplied	7700	45 250	63 800	A²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x 1	τ x I _{T(AV)} < I < π	x I _{T(AV)}), T _J maximum	1.17	1.09	1.04	v
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(A)})$	_{V)}), T _J maximun	n	1.45	1.27	1.27	v
Low level value on-state slope resistance	r _{t1}	(16.7 % x 1	τ x I _{T(AV)} < I < π	x I _{T(AV)}), T _J maximum	12.40	4.10	3.93	mΩ
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(A)})$	_{//)}), T _J maximun	n	11.04	3.59	3.37	1115.2
Maximum on-state voltage drop	V _{TM}	I _{pk} = 150 A	, T _J = 25 °C, t _p	2.68	1.65	1.57	V	
Maximum non-repetitve rate of rise of turned on current	dl/dt		, from 0.67 V _{DR} Α, t _r < 0.5 μs, t _r	150			A/µs	
Maximum holding current	Ι _Η		J = 25 °C, anode supply = 6 V, resistive load, gate open circuit 200					mA
Maximum latching current	١L	T _J = 25 °C,	anode supply	= 6 V, resistive load		400		

BLOCKING

DECOMING						
PARAMETER	SYMBOL	TEST CONDITIONS	9.MTK	11.MTK	UNITS	
RMS isolation voltage	VISOL	T_J = 25 °C all terminal shorted, f = 50 Hz, t = 1 s		4000		V
Maximum critical rate of rise of off-state voltage	dV/dt ⁽¹⁾	$T_J = T_J$ maximum, linear to 0.67 V _{DRM} , gate open circuit		500		V/µs

Note

 $^{(1)}$ Available with dV/dt = 1000 V/µs, to complete code add S90 i. e. 113MT160KBS90

TRIGGERING										
PARAMETER	SYMBOL	TEST CO	NDITIONS	5.MTK	9.MTK	11.MTK	UNITS			
Maximum peak gate power	P _{GM}				10		w			
Maximum average gate power	P _{G(AV)}				2.5		vv			
Maximum peak gate current	I _{GM}	$T_J = T_J$ maximum			2.5		А			
Maximum peak negative gate voltage	- V _{GT}				10					
		T _J = - 40 °C	Anode supply = 6 V,	4.0			V			
Maximum required DC gate voltage to trigger	V _{GT}	T _J = 25 °C		2.5						
		T _J = 125 °C		1.7						
		T _J = - 40 °C	resistive load		270					
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		150			mA			
		T _J = 125 °C		80						
Maximum gate voltage that will not trigger	V_{GD}	T _ T movimum rates	tV applied		0.25		v			
Maximum gate current that will not trigger	I _{GD}	ij = ij maximum, ratec	T _J = T _J maximum, rated V _{DRM} applied 6							

Revision: 27-Feb-14

2

Document Number: 94353

VS-5.MT...KPbF, VS-9.MT...KPbF, VS-11.MT...KPbF Series

www.vishay.com

Vishay Semiconductors

THERMAL AND MECH	ANICAL	SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	5.MTK	9.MTK	11.MTK	UNITS	
Maximum junction operating and storage temperature range	T _J , T _{Stg}			- 40 to 125			
		DC operation per module	0.18	0.14	0.12		
Maximum thermal resistance,	Р	DC operation per junction	1.07	0.86	0.70	Ī	
junction to case	R _{thJC}	120 °C rect. conduction angle per module	0.19	0.15	0.12	к/w	
		120 °C rect. conduction angle per junction	1.17	0.91	10.00		
Maximum thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface smooth, flat and grased		0.03			
Mounting to heatsink		A mounting compound is recommended and		4 to 6			
torque ± 10 % to terminal		the torque should be rechecked after a period of	3 to 4			Nm	
Approximate weight		3 hours to allow for the spread of the compound. Lubricated threads.		225		g	

DEVICES	SINUSOIDAL CONDUCTION AT T _J MAXIMUM						RECTANGULAR CONDUCTION AT TJ MAXIMUM				UNITS
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
5.MTK	0.072	0.085	0.108	0.152	0.233	0.055	0.091	0.117	0.157	0.236	
9.MTK	0.033	0.039	0.051	0.069	0.099	0.027	0.044	0.055	0.071	0.100	K/W
11.MTK	0.027	0.033	0.042	0.057	0.081	0.023	0.037	0.046	0.059	0.082	

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

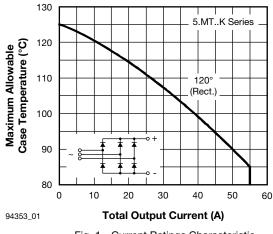
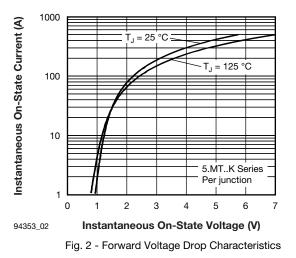
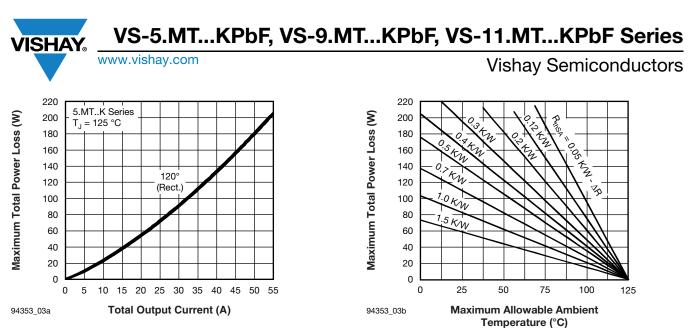
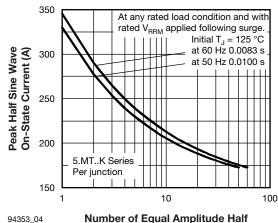





Fig. 1 - Current Ratings Characteristic

Cycle Current Pulses (N) Fig. 4 - Maximum Non-Repetitive Surge Current

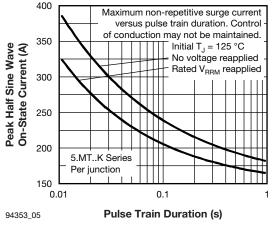


Fig. 5 - Maximum Non-Repetitive Surge Current

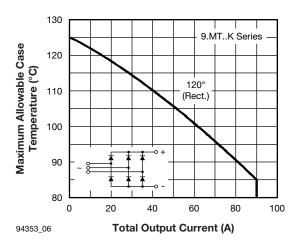


Fig. 6 - Current Ratings Characteristic

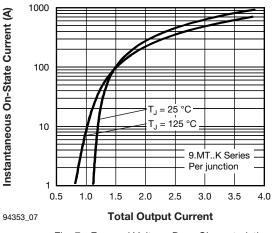


Fig. 7 - Forward Voltage Drop Characteristics

4

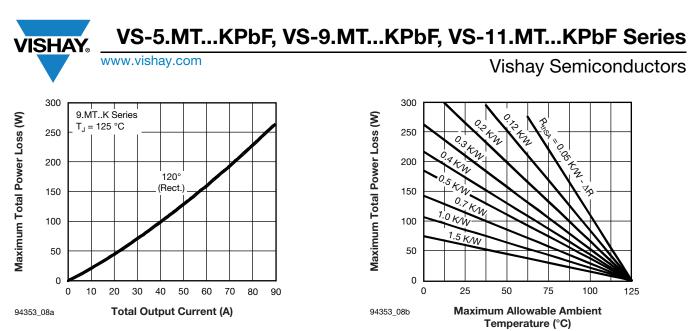


Fig. 8 - Total Power Loss Characteristics

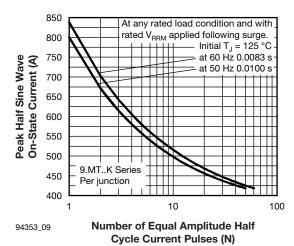


Fig. 9 - Maximum Non-Repetitive Surge Current

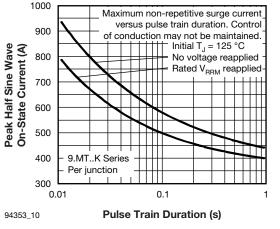
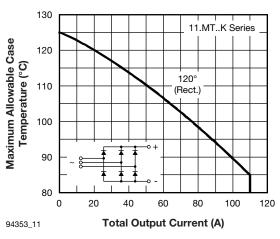
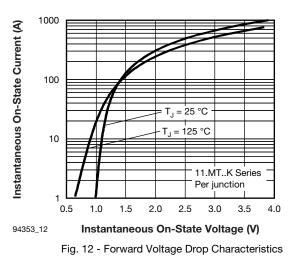
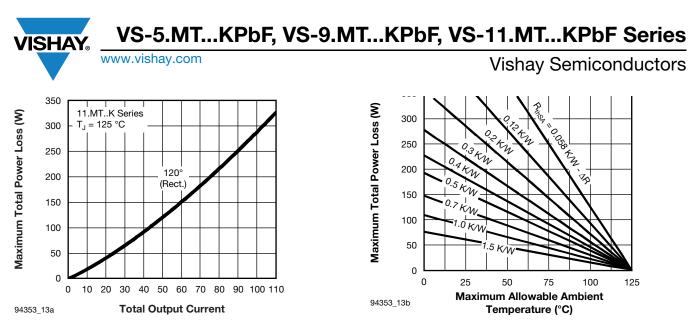
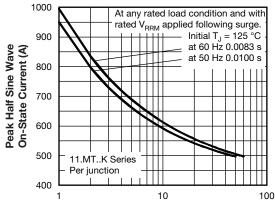
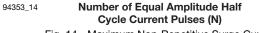




Fig. 10 - Maximum Non-Repetitive Surge Current




Revision: 27-Feb-14


5

Document Number: 94353

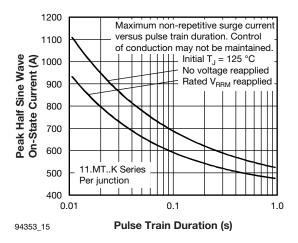
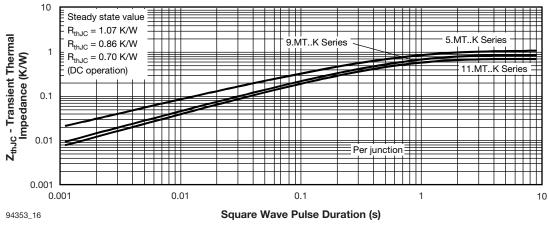
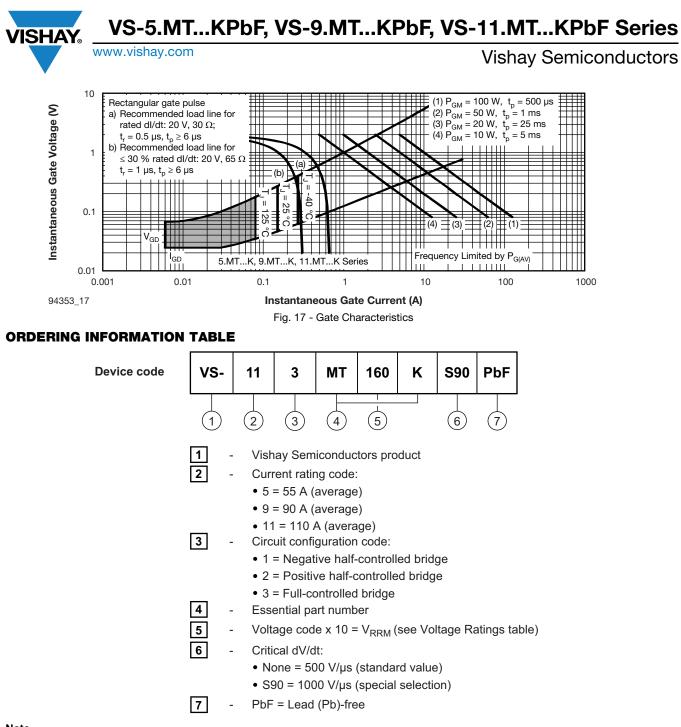
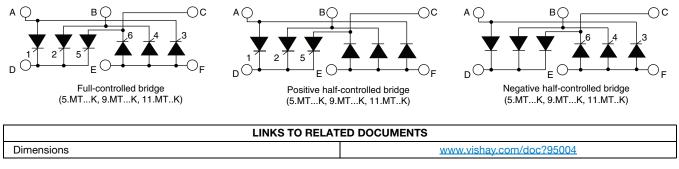




Fig. 15 - Maximum Non-Repetitive Surge Current


6

Note

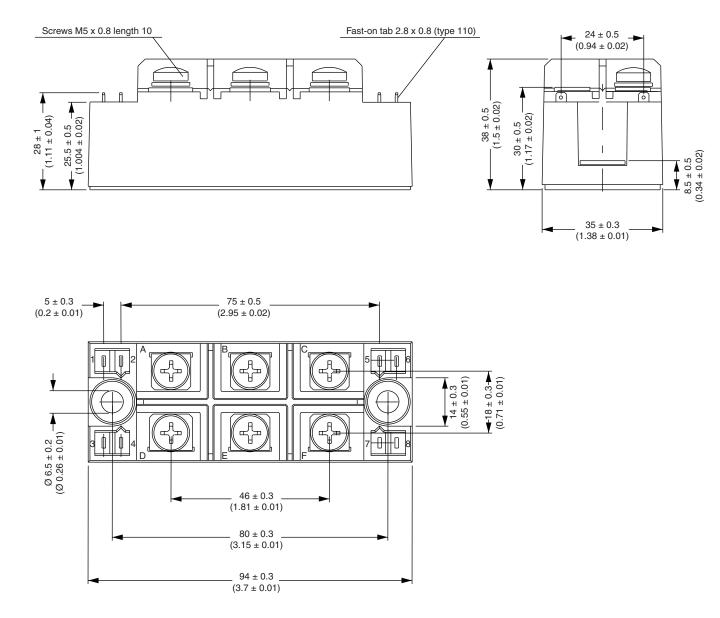
To order the optional hardware go to <u>www.vishay.com/doc?95172</u>

CIRCUIT CONFIGURATION

Revision: 27-Feb-14

7

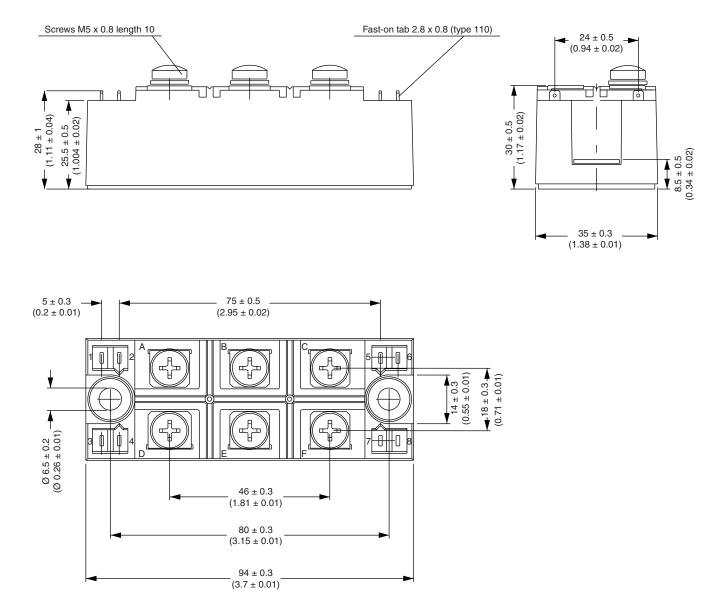
Document Number: 94353



Vishay Semiconductors

MTK (with and without optional barrier)

DIMENSIONS WITH OPTIONAL BARRIERS in millimeters (inches)


SHAY

Vishay Semiconductors MTK (with and without optional barrier)

DIMENSIONS WITHOUT OPTIONAL BARRIERS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

<u>VS-52MT140KPBF</u> <u>VS-52PF120</u> <u>VS-53MT120KPBF</u> <u>VS-51MT120KPBF</u> <u>VS-51MT160KPBF</u> <u>VS-52PFR120</u> <u>VS-53MT160KPBF</u> <u>VS-52MT160KPBF</u> <u>VS-111MT100KPBF</u> <u>VS-111MT160KPBF</u> <u>VS-112MT80KPBF</u> <u>VS-111MT80KPBF</u> <u>VS-111MT120KPBF</u> <u>S371-23956-02</u> <u>VS-113MT80KPBF</u> <u>VS-53MT80KPBF</u> <u>VS-51MT80KPBF</u> <u>VS-</u>