

Order

Now

SLVSE06 – JANUARY 2018

TPSM846C24 4.5-V to 15-V Input, 0.5-V to 2-V Output, 35-A Power Module

Technical

Documents

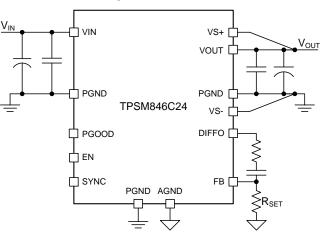
1 Features

- Complete Integrated 35-A Power Solution
- Pin Compatible With TPSM846C23 (PMBus)
- Stackable up to 70 A With Current Sharing
- Output Voltage Range 0.5 V to 2 V
- Output Voltage Accuracy as Tight as 0.5%
- 15 mm × 16 mm Footprint (6.4 mm Maximum Height)
- 300-kHz to 1-MHz Switching Frequency
- Synchronization to an External Clock
- Differential Remote Sense
- Power-Good Output
- Prebias Output Monotonic Start-up
- Fixed 3-ms Soft-Start / Soft-Stop Time
- Overcurrent Protection
- Operating IC Junction Range: -40°C to +125°C
- Operating Ambient Range: -40°C to +105°C
- Enhanced Thermal Performance: 8.7°C/W
- Meets EN55022 Class A Emissions
- Create a Custom Design Using the TPSM846C24 With the WEBENCH[®] Power Designer

2 Applications

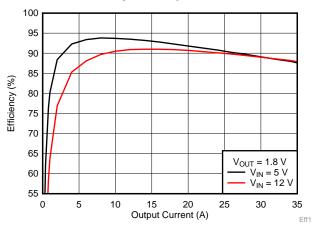
- Compact PCI / PCI Express / PXI Express
- Broadband and Communications Infrastructure
- Automated Test and Medical Equipment
- DSP, FPGA, and ASIC Point-of-Load Applications

3 Description


The TPSM846C24 is a 35-A, fixed-frequency, stepdown power module. The module incorporates the controller, power MOSFETs, inductor, and associated components into a rugged, thermally enhanced, surface-mount package. The user supplies the input and output capacitors along with a few other passive components to set the operating parameters of the module. Two modules can be configured to work in parallel to provide up to a 70-A, two-phase power solution.

The 15 mm \times 16 mm component footprint is easy to solder onto a printed circuit board and allows a compact, point-of-load design.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPSM846C24	MOL (59)	15 mm × 16 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2018, Texas Instruments Incorporated

Efficiency vs Output Current

Simplified Schematic

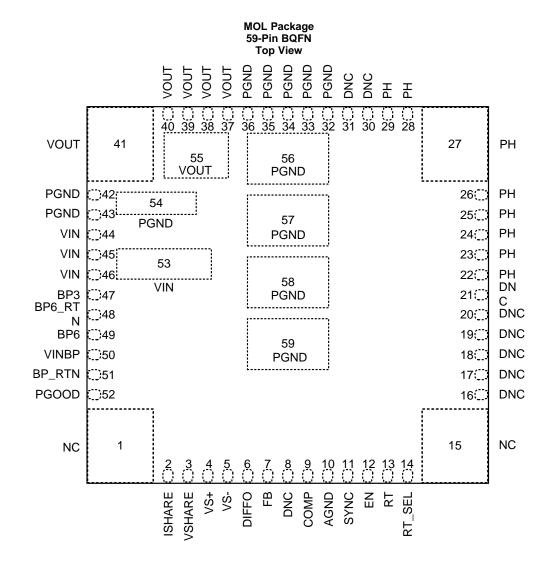
Texas Instruments

www.ti.com

Table of Contents

1	Feat	tures 1
2	Арр	lications1
3	Des	cription1
4	Rev	ision History2
5	Pin	Configuration and Functions 3
6	Spe	cifications5
	6.1	Absolute Maximum Ratings 5
	6.2	ESD Ratings 5
	6.3	Recommended Operating Conditions 5
	6.4	Thermal Information 6
	6.5	Electrical Characteristics 6
	6.6	Switching Characteristics 8
	6.7	Typical Characteristics (V _{IN} = 12 V) 9
	6.8	Typical Characteristics (V _{IN} = 5 V) 10
7	Deta	ailed Description 11
	7.1	Overview 11
	7.2	Functional Block Diagram 11
	7.3	Feature Description 12

	7.4	Device Functional Modes	20
8	Арр	lication and Implementation	21
	8.1	Typical Application	21
9	Pow	er Supply Recommendations	24
10	Lay	out	24
	10.1	Layout Guidelines	24
	10.2	Layout Example	25
	10.3	Package Specifications	26
	10.4	EMI	26
	10.5	Mounting and Thermal Profile Recommendation	28
11	Dev	ice and Documentation Support	29
	11.1	Device Support	29
	11.2	Receiving Notification of Documentation Updates	29
	11.3	Community Resources	29
	11.4	Trademarks	29
	11.5	Electrostatic Discharge Caution	29
	11.6	Glossary	29
12		hanical, Packaging, and Orderable	
	Info	rmation	30


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
January 2018	*	Initial release

5 Pin Configuration and Functions

TEXAS INSTRUMENTS

www.ti.com

Pin Functions

	PIN		
NAME	NO.	I/O	DESCRIPTION
AGND	10	G	Analog ground for the controller circuitry. This pin is internally connected to PGND.
BP_RTN	51	G	Return path for VINBP and BP3. This pin is internally connected to PGND, pad 59.
BP3	47	0	Output of the internal 3.3-V regulator. Bypass this pin with a minimum of 2.2-µF to BP_RTN. Can be used as a pullup termination voltage for PGOOD and EN signals.
BP6	49	0	Output of the internal 6.5-V regulator that powers the driver stage of the device. Bypass this pin with a minimum of 2.2 μ F to BP6_RTN.
BP6_RTN	48	G	Power ground return path for BP6 bypass cap.
COMP	9	0	Output of the error amplifier.
DIFFO	6	0	Output of the remote sense differential amplifier. This provides remote sensing for output voltage reporting and the voltage control loop.
DNC	8, 16, 17, 18, 19, 20, 21, 30, 31	Ι	Do Not Connect. Do not connect these pins to AGND, PGND to a different DNC pin or to any other voltage. These pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.
EN	12	I	EN pin. To enable, pull this pin up to a voltage less than 5.5 V using a 10-k Ω resistor. Pull this pin to AGND to disable the device.
FB	7	Ι	Feedback pin for the control loop.
ISHARE	2	Ι	Current sharing signal for parallel operation.
NC	1, 15	-	Not Connected. These pins are internally isolated from any signal and all other pins. Each pin must be soldered to a pad on the PCB. These pins can be left isolated, or connected to AGND or PGND.
PGND	32, 33, 34, 35 36, 42, 43, 54 56, 57, 58, 59	G	Power ground of the device. This is the return current path for the power stage of the device. Connect these pins to the bypass capacitors associated with VIN and VOUT. Connect pads 56, 57, 58, and 59 to the PCB ground planes using multiple vias for optimal thermal performance. All pins must be connected together externally with a copper plane or pour directly under the device.
PGOOD	52	0	Power-good indicator. This pin is an open-drain output, which asserts low during any fault conditions. Requires a pullup resistor.
PH	22, 23, 24, 25 26, 27, 28, 29	0	Phase switch node. Do not connect any external components to these pins or tie them to a pin of a different function.
RT	13	Ι	Frequency-setting resistor. To operate the device at its default switching frequency, make no connection to this pin. To operate at a different switching frequency, connect a resistor from this pin to AGND.
RT_SEL	14	Ι	RT resistor select. To operate the device at its default switching frequency, connect this pin to AGND. To operate at a different switching frequency, let this pin float.
SYNC	11	I/O	Frequency synchronization pin. In a stand-alone application or as the Master device in a parallel configuration, the SYNC pin is configured as a SYNC-IN pin and power conversion is synchronized to the rising edge of a 50% duty cycle external clock applied to this pin. For a slave device in a parallel configuration, power conversion is synchronized to the falling edge of the incoming clock.
VIN	44, 45, 46, 53	-	Input switching voltage pins. These pins supply voltage to the power switches of the converter.
VINBP	50	Ι	Input power to the controller circuitry. Bypass this pin with a minimum of 1-µF to BP_RTN. This pin is internally connected to VIN.
VOUT	37, 38, 39, 40, 41, 55	0	Output voltage. These pins are connected to the internal output inductor. Connect these pins to the output load and connect external bypass capacitors between these pins and PGND.
VS+	4	Ι	Positive input of the remote sense amplifier. Connect this pin to VOUT at the load for best voltage regulation. Do not let this pin float.
VS-	5	Ι	Negative input of the remote sense amplifier. Connect this pin to ground at the load for best voltage regulation. Do not let this pin float.
VSHARE	3	I/O	Voltage sharing signal for parallel operation.

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	MIN	MAX	UNIT
	VIN	-0.3	18	
	VIN < 2-ms transient		19	
Input voltage	VIN–PH (VIN TO PH differentially)	-0.3	25	V
input voltage	FB	-0.3	3.6	V
	VS+, VS–, RT, EN, SYNC, PGOOD, ISHARE, RT_SEL	-0.3	7	
	BP6_RTN, BP_RTN, AGND	-0.3	0.3	
	РН	-1	25	
Output voltogo	PH < 100-ns transient	-5	25	V
Output voltage	BP6, COMP, DIFFO, VSHARE	-0.3	7	V
	BP3	-0.3	3.6	
Operating IC junction temperature	Operating IC junction temperature, T _J		150	°C
Storage temperature, T _{stg}		-55	150	°C
Mechanical shock	Alechanical shock		500	G
Mechanical vibration			10	G

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatio discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	NOM	MAX	UNIT
	VIN	4.5	12	15	
Input voltage	SYNC		3.3	6.5	V
	EN, PGOOD pullup voltage		3.3	5.5	
Output voltage	V _{OUT}	0.5		2	V
Output current	I _{OUT}	0		35	А
Frequency		300	500	1000	kHz
Tomporatura	Operating ambient temperature	-40		105	°C
Temperature	Operating IC junction temperature	-40		125	°C

TPSM846C24

STRUMENTS

EXAS

6.4 Thermal Information

		TPSM846C24	
	THERMAL METRIC ⁽¹⁾	MOL (QFN)	UNIT
		59 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾	8.7	°C/W
ΨJT	Junction-to-top characterization parameter ⁽³⁾	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter ⁽⁴⁾	4.3	°C/W

(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) The junction-to-ambient thermal resistance, $R_{\theta JA}$, applies to devices soldered directly to a 100 mm × 100 mm, 6-layer PCB with 2 oz. copper and natural convection cooling. Additional airflow reduces $R_{\theta JA}$.

(3) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature, T_J, of a device in a real system, using a procedure described in JESD51-2A (section 6 and 7). T_J = $\psi_{JT} \times Pdis + T_T$; where Pdis is the power dissipated in the device and T_T is the temperature of the top of the device.

(4) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature, T_J, of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). T_J = ψ_{JB} × Pdis + T_B; where Pdis is the power dissipated in the device and T_B is the temperature of the board 1mm from the device.

6.5 Electrical Characteristics

Over -40°C to 105°C free-air temperature range, $V_{IN} = 12 \text{ V}$, $V_{OUT} = 1.2 \text{ V}$, $I_{OUT} = I_{OUT(max)}$, $f_{SW} = 500 \text{ kHz}$, $C_{IN1} = 4 \times 22 \mu\text{F}$, 25 V, 1210 ceramic; $C_{IN2} = 2 \times 330 \mu\text{F}$, 25 V, electrolytic bulk; $C_{OUT1} = 4 \times 47 \mu\text{F}$, 6.3 V, 1210 ceramic; $C_{OUT2} = 2 \times 470 \mu\text{F}$, 6.3 V, polymer bulk (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
INPUT V	OLTAGE (V _{IN})					
V _{IN}	Input voltage	Over I _{OUT} range	4.5		15	V
		V _{IN} rising		4.5		V
V _{IN_UVLO}	V _{IN} undervoltage lock out	V _{IN} falling		4		v
I _{VIN}	Input operating current	EN = 0 V		7.7	12	mA
OUTPUT	VOLTAGE (V _{OUT})					
	V _{OUT} adjustable range ⁽¹⁾	Over I _{OUT} range	0.5		2	V
		R_{SET} = Not loaded, T_{J} = 25°C, I_{OUT} = 0 A	-1%		1%	
	Setpoint voltage tolerance	R_{SET} = 10 kΩ, 1%, T_{J} = 25°C, I_{OUT} = 0 A ⁽²⁾	-1.5%		1.5%	
	Temperature variation	$0^{\circ}C < T_{J} < 85^{\circ}C, I_{OUT} = 0 A^{(1)}$	-0.5%		0.5%	
V _{OUT}		$-40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{OUT}} = 0 \text{ A}^{(1)}$	-1%		1%	
	Line regulation	4.5 V < V _{IN} < 15 V, I _{OUT} = 0 A		±0.05%		
	Load regulation	Over I _{OUT} range, using remote sense		±0.2%		
	Output voltage ripple	20-MHz bandwidth		13		mV
OUTPUT	CURRENT					
I _{OUT}	Output current	Natural Convection. See SOA graph for derating over temperature.	0		35	А
001	Overcurrent threshold			42		А
I _{OC(acc)}	Overcurrent accuracy		-15%		15%	
		$(I_{OUT1} - I_{OUT2}) \div I_{TOTAL}, I_{OUT} \ge 20 \text{ A per module}^{(1)}$	-15%		15%	
I _{SH(acc)}	Output current share accuracy	$(I_{OUTx} - I_{TOTAL}) \div 2$, $I_{OUT} < 20$ A per module ⁽¹⁾	-3		3	А
SOFT ST	ART / STOP					
t _{SStart}	Internal soft-start time			3		ms
t _{SStop}	Internal soft-stop time			3		ms
ENABLE	(EN)					
		Enable high voltage	1.3			V
V _{EN}	Enable threshold voltage	Enable low voltage			0.8	V
	Hysteresis on Enable			170		mV

(1) Specified by design.

(2) The stated limit of the set-point tolerance includes the tolerance of both the internal voltage reference and the internal adjustment resistor. The overall output voltage tolerance is affected by the tolerance of the external R_{SET} resistor.

Electrical Characteristics (continued)

Over -40° C to 105°C free-air temperature range, V_{IN} = 12 V, V_{OUT} = 1.2 V, I_{OUT} = I_{OUT(max)}, f_{SW} = 500 kHz, C_{IN1} = 4 × 22 µF, 25 V, 1210 ceramic; C_{IN2} = 2 × 330 µF, 25 V, electrolytic bulk; C_{OUT1} = 4 × 47 µF, 6.3 V, 1210 ceramic; C_{OUT2} = 2 × 470 µF, 6.3 V, polymer bulk (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
POWER (GOOD (PGOOD) AND OVERVOL	TAGE / UNDERVOLTAGE THR	RESHOLD ⁽³⁾				
		V _{IN} = 4 V, V _{OUT} = 0 V, I _{PGOO}	_{DD} = 5 mA			0.3	
	PGOOD output low voltage					0.8	V
			Good		95		%Vo
PGOOD		V _{OUT} rising	Fault		112		%Vo
	PGOOD thresholds		Good		105		%Vo
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	%V _O					
PERFOR	MANCE						
			V _{OUT} = 0.8 V		83%		
		V _{IN} = 12 V, I _{OUT} = 25 A			87%		
F ((),	ciency ⁽⁴⁾		V _{OUT} = 1.8 V		90%		
Efficiency			V _{OUT} = 0.8 V		84%		
		V _{IN} = 5 V, I _{OUT} = 25 A	V _{OUT} = 1.2 V		88%		
			V _{OUT} = 1.8 V		91%		
					60		mV
		$C_{OUT} = 1000 \ \mu F,$	Recovery time		60		μs
Transient	response (4)				40		mV
Transient			Recovery time		60		μs
					27		mV
			Recovery time		60		μs
INTERNA	L LDO (BP6, BP3) ⁽³⁾					1	
V _{BP6}	BP6 regulator output voltage	$7.5V \le V_{IN} \le 15 V$, switching		5.85	6.4	6.95	V
V _{BP6 (DO)}	Dropout voltage	$(V_{VIN} - V_{BP6}), V_{IN} = 4.5 \text{ V}, \text{ sv}$	witching			400	mV
V _{BP3}	BP3 regulator output voltage	$V_{IN} \ge 4.5 V$		3	3.2	3.4	V
THERMA	L SHUTDOWN						
T _{SD}					145	160	°C
T _{HYST}	Thermal shutdown hysteresis				25		°C
CAPACIT	ANCE						
0	Evternel input essesites se	ceramic		88			
C _{IN}	External input capacitance	non-ceramic			660		μF
		ceramic ⁽⁵⁾		188			
C _{OUT}	External output capacitance	non coromia ⁽⁵⁾		940		4000 ⁽⁶⁾	μF
		non-ceramic (*/	ESR ⁽⁷⁾			5	mΩ

(3) Functionality Verified. Limits specified at internal IC test.

(4) Specified by design.

(5) The minimum required output capacitance consists of 4 × 47-μF ceramic capacitors and 2 × 470-μF, 10-mΩ ESR (5 mΩ equivalent).

(6) The proper frequency compensation network values are determined by the total amount of output capacitance (see Setting the Compensation Network).

(7) The maximum ESR refers to the combined equivalent ESR of all non-ceramic output capacitors. For example, two 10-m Ω ESR capacitors have a combined equivalent ESR of 5 m Ω .

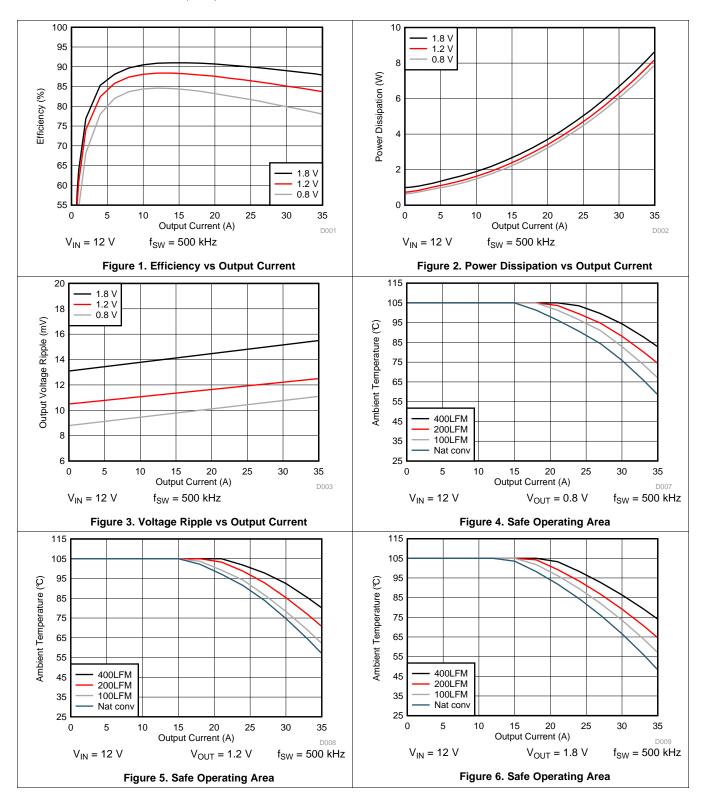
SLVSE06-JANUARY 2018

6.6 Switching Characteristics

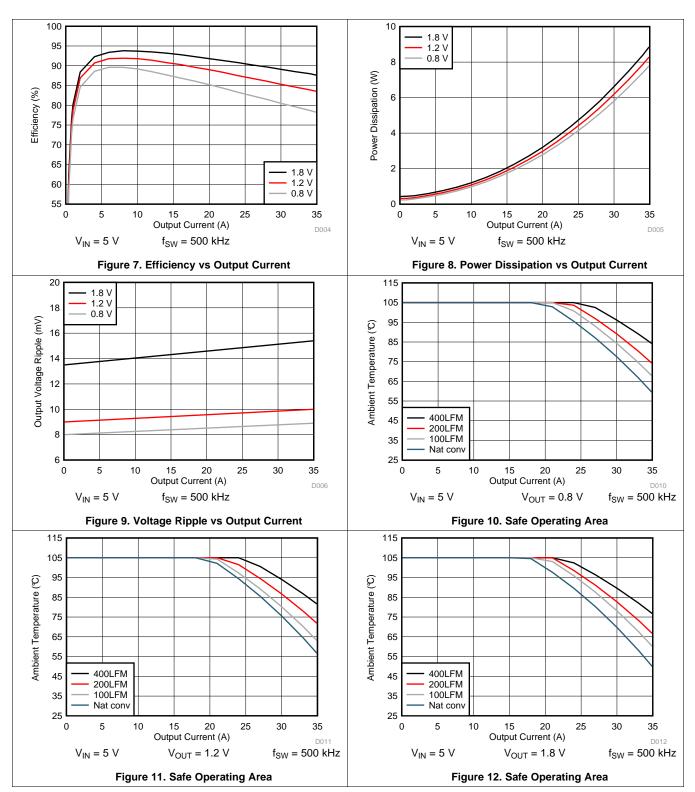
Over -40°C to 105°C free-air temperature range, $V_{IN} = 12 \text{ V}$, $V_{OUT} = 1.2 \text{ V}$, $I_{OUT} = I_{OUT(max)}$, $f_{SW} = 500 \text{ kHz}$, $C_{IN1} = 4 \times 22 \text{-}\mu\text{F}$, 25-V, 1210 ceramic; $C_{IN2} = 2 \times 330 \text{-}\mu\text{F}$, 25-V, electrolytic bulk; $C_{OUT1} = 4 \times 47 \text{-}\mu\text{F}$, 6.3-V, 1210 ceramic; $C_{OUT2} = 2 \times 470 \text{-}\mu\text{F}$, 6.3-V, polymer bulk (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OSCILLA	TOR				·	
		Factory default setting. R _{RT} = open; RT_SEL grounded	425	500	575	
fsw	Switching frequency	R _{RT} = 68.1 kΩ, 1%; RT_SEL open	255	300	345	kHz
,	0 1 7	R _{RT} = 20.0 kΩ, 1%; RT_SEL open	850	1000	1150	
		Adjustment range	300		1000	
PWM					·	
t _{ON-MIN}	Minimum on-time ⁽¹⁾			50	100	ns
t _{OFF-MIN}	Minimum off-time ⁽¹⁾	$f_{SW} = 1 \text{ MHz}$		515	560	ns
SYNCHR	ONIZATION					
V _{IH(sync)}	High-level input voltage ⁽²⁾		2.2			V
V _{IL(sync)}	Low-level input voltage ⁽²⁾				0.8	V
D _{SYNC}	Sync input duty cycle	f_{SW} = 300 kHz to 1 MHz		50%		
fsync	Sync frequency range		300		1000	kHz

(1) Specified by design.


(2) Functionality Verified. Limits specified at internal IC test.

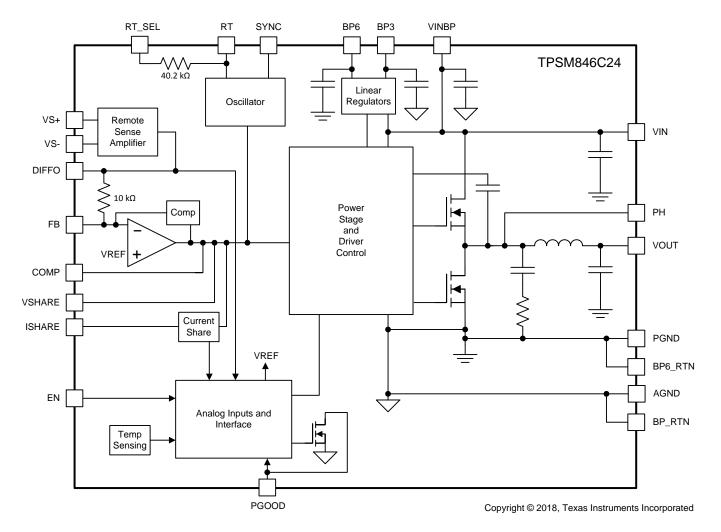
www.ti.com


6.7 Typical Characteristics (V_{IN} = 12 V)

 V_{IN} = 12 V, T_A = 25°C, f_{SW} = 500 kHz (unless otherwise specified). Safe operating area curves were measured using a Texas Instruments evaluation module (EVM).

6.8 Typical Characteristics ($V_{IN} = 5 V$)

 V_{IN} = 5 V, T_A = 25°C, f_{SW} = 500 kHz (unless otherwise specified). Safe operating area curves were measured using a Texas Instruments evaluation module (EVM).



7 Detailed Description

7.1 Overview

The TPSM846C24 device is a 35-A, high-performance, synchronous buck power module, enabling high-power density and minimal PCB area. This device implements the industry-standard fixed switching frequency, voltage-mode control with input feed-forward topology that responds instantly to input voltage change. The TSPM846C24 device can be synchronized to the external clock to eliminate beat noise and reduce EMI and EMC. Monotonic prebias capability eliminates concerns about damaging sensitive loads. Two TPSM846C24 devices can be paralleled together to provide up to 70-A load. Current sensing for overcurrent protection and current sharing between two devices are implemented by sampling a small portion of the power-stage current which provides accurate information independent of the device temperature.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Minimum Capacitance Requirements

For proper operation, the minimum required input capacitance network consists of four $22-\mu$ F (or two $47-\mu$ F) ceramic capacitors plus a $330-\mu$ F bulk capacitor. See capacitors C1 thru C5 in Figure 13. Place the ceramic capacitors as close as possible to the VIN pins. The ground return path of the capacitors must connect to PGND pins 42, 43, 54, and 59 of the TPSM846C24.

The minimum required output capacitance network consists of four $47-\mu F$ (or two $100-\mu F$) ceramic capacitors plus two $470-\mu F$, low-ESR polymer capacitors. See capacitors C10 thru C15 in Figure 13. The combined ESR of the polymer capacitors must not be greater than 5 m Ω . Place the ceramic capacitors as close as possible to the VOUT and PGND pins of the module. This minimum network insures good transient response and minimal ripple amplitude. The total amount of output capacitance determines the values of the frequency compensation network. For more details see the Setting the Compensation Network section.

Additionally, the analog power path (VINBP) requires its own bypass network consisting of a 10-nF ceramic capacitor (C8 in Figure 13) and 1- μ F ceramic capacitor (C7 in Figure 13) connected directly across pins 50 and 51 of the module. For proper operation, the two internal power supply rails of the module must also be bypassed. The 6.5-V rail (BP6) requires a 4.7- μ F ceramic capacitor (C6 in Figure 13) placed across pins 48 and 49 of the module with short, direct traces. The 3.3-V rail (BP3) requires a 2.2- μ F ceramic capacitor (C9 in Figure 13) placed very close to pins 47 and 51.

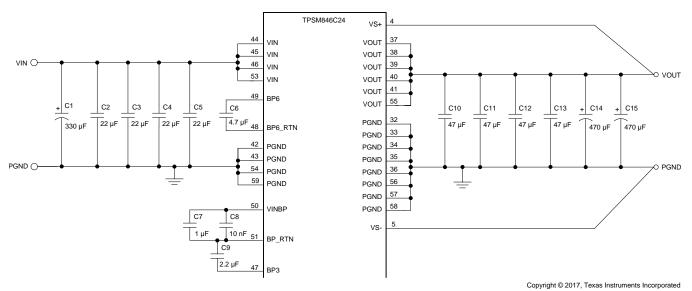
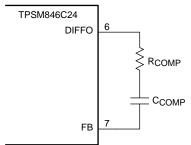


Figure 13. Required Capacitor Schematic



Feature Description (continued)

7.3.2 Setting the Compensation Network

. .

The TPSM846C24 requires an external series resistor and capacitor compensation network to be connected between the DIFFO pin (pin 6) and the FB pin (pin 7). These are R_{COMP} and C_{COMP} in Figure 14. The value of these components is determined by the total amount of output capacitance and the switching frequency. TI recommends only ceramic and low-ESR, polymer-type capacitors are. Place these components as close as possible to the module and away from noisy signal traces. Suggested values for R_{COMP} and C_{COMP} for some typical values of output capacitance are given in Table 1. Final values should be determined by testing system stability using standard power supply evaluation techniques.

Copyright © 2017, Texas Instruments Incorporated

Figure 14. Compensation Components

Table 1.	Recommended	Compensation	Components

TOTAL C _{OUT} (μF)									
		300 - 4	00 kHz	400 - 600 kHz		600 - 1000 kHz		TYPICAL C _{OUT}	
MIN	MAX	R _{COMP} C _{COMP}		R _{COMP}	C _{COMP}	R _{COMP}	C _{COMP}	Ceramic	Polymer
1000	1500	1.0 kΩ	1000 pF	665 Ω	1500 pF	499 Ω	2200 pF	4 × 47 μF	2 × 470 µF
1500	3000	665 Ω	1500 pF	499 Ω	2200 pF	249 Ω	4700 pF	4 × 47 μF	4 × 470 µF
3000	5000	499 Ω	2200 pF	249 Ω	4700 pF	124 Ω	6800 pF	4 × 47 μF	$4 \times 1000 \ \mu F$

STRUMENTS

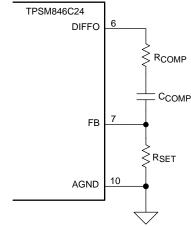
EXAS

7.3.3 Transient Response

The TPSM846C24 is designed to have an exceptional output voltage transient response to output current load steps. Table 2 shows the voltage deviation for several transient conditions.

C _{IN} = 4x 22 μF Ceramic, 2x 330 μF Electrolytic										
V 00	N 00	£ (1-1 1-)	_		(VOLTAGE ⁽¹⁾				
V _{OUT} (V)	V _{IN} (V)	f _{SW} (kHz)	R _{COMP}	C _{COMP}	CERAMIC	NON-CERAMIC ⁽²⁾	DEVIATION (mV)			
	г	500	499 Ω	2200 pF	4 × 47 μF	4 × 470 μF	33			
0.0	5	500	249 Ω	4700 pF	4 × 47 μF	4 × 1000 μF	22			
0.6	40	500	249 Ω	4700 pF	4 × 47 μF	4 × 470 μF	24			
	12	750	124 Ω	6800 pF	4 × 47 μF	4 × 1000 μF	18			
	r	500	499 Ω	2200 pF	4 × 47 μF	4 × 470 μF	37			
0.0	5	750	124 Ω	6800 pF	4 × 47 μF	4 × 1000 μF	19			
0.8	12	500	499 Ω	2200 pF	4 × 47 μF	4 × 470 μF	33			
		500	249 Ω	4700 pF	4 × 47 μF	4 × 1000 μF	20			
		500	665 Ω	1500 pF	4 × 47 µF	2 × 470 µF	48			
	5	500	499 Ω	2200 pF	4 × 47 μF	4 × 470 μF	38			
1.0		500	249 Ω	4700 pF	4 × 47 µF	4 × 1000 μF	26			
1.0		500	665 Ω	1500 pF	4 × 47 µF	2 × 470 µF	41			
	12	500	499 Ω	2200 pF	4 × 47 µF	4 × 470 μF	32			
		750	499 Ω	2200 pF	4 × 47 µF	2 × 470 µF	26			
		500	665 Ω	1500 pF	4 × 47 μF	2 × 470 μF	38			
1.2	5	750	499 Ω	2200 pF	4 × 47 μF	2 × 470 µF	34			
1.2	10	500	665 Ω	1500 pF	4 × 47 μF	2 × 470 µF	39			
	12	500	499 Ω	2200 pF	4 × 47 μF	4 × 470 μF	35			
	F	300	1.0 kΩ	1000 pF	4 × 47 μF	2 × 470 μF	50			
2	5	500	665 Ω	1500 pF	4 × 47 μF	2 × 470 μF	38			
2	12	300	1.0 kΩ	1000 pF	4 × 47 μF	2 × 470 μF	57			
	12	500	665 Ω	1500 pF	4 × 47 μF	2 × 470 µF	42			

Table 2. Output Voltage Transient Response


(1) 50% load step at 2.5 A/μs.
 (2) The combined equivalent ESR of all non-ceramic output capacitance must be ≤ 5 mΩ.

(1)

7.3.4 Setting the Output Voltage

The TPSM846C24 output voltage adjustment range is 0.5 V to 2 V. The adjustment method requires a resistor, R_{SET} , connected between the FB pin and AGND as shown in Figure 15. Equation 1 can be used to calculate the R_{SET} value for a given output voltage, V_{OUT} . Additionally, the R_{SET} value can be selected from Table 3.

Copyright © 2017, Texas Instruments Incorporated

Figure 15. RSET Resistor

$$R_{SET} = \frac{5}{(V_{OUT} - 0.5)} \quad (k\Omega)$$

 Table 3. Standard R_{SET} Resistor Values

V _{OUT} (V)	R _{SET} (kΩ)	V _{OUT} (V)	R _{SET} (kΩ)
0.5	open	1.3	6.19
0.6	49.9	1.4	5.49
0.7	24.9	1.5	4.99
0.8	16.5	1.6	4.53
0.9	12.4	1.7	4.12
1	10	1.8	3.83
1.1	8.25	1.9	3.57
1.2	7.15	2.0	3.32

7.3.5 Differential Remote Sense

The TPSM846C24 device implements a differential remote-sense amplifier to provide excellent load regulation by cancelling IR-drop in high-current applications. The VS+ and VS– pins must be Kelvin-connected to the output capacitor bank directly at the load, and routed back to the device as a tightly coupled differential pair. Ensure that these traces are isolated from fast switching signals and high current paths on the final PCB layout, as these can add differential-mode noise.

The TPSM846C24 devices are designed to operate from 300 kHz to 1 MHz.

7.3.6.2 Synchronization

The TPSM846C24 device can synchronize to an external clock that is $\pm 20\%$ of the free-running frequency set by R_{RT}. It is required that the external clock waveform is a square wave with a duty cycle of 50%.

The TPSM846C24 is set to a default switching frequency of 500 kHz. To operate the TPSM846C24 at the default switching frequency, connect the RT_SEL pin (pin 14) to AGND and leave the RT pin (pin 13) open. To change the switching frequency, leave the RT_SEL pin open, and connect a resistor from the RT pin (R_{RT}) to AGND.

7.3.6.2.1 Stand-Alone Device Synchronization

7.3.6 Switching Frequency and Synchronization

Use Equation 2 to calculate the R_{RT} resistor value.

7.3.6.1 Setting the Switching Frequency

When power is applied, if no external clocking signal is present on the SYNC pin, the device operates at the switching frequency set by the internal or an external timing resistor. If an external clock signal that meets the specification of the Synchronization section of the *Switching Characteristics* table is applied to the SYNC pin, the device synchronizes to the leading edge of the applied waveform. The rising edge of the PH node lags the rising edge of the clocking waveform by approximately 500 ns. The external clock must be a 50% duty-cycle square wave. The external clock frequency must be with $\pm 20\%$ of the free-running frequency set by the R_{RT} resistor. It is permissible for the SYNC signal to become active after the module has powered-up. If this is done, there is a small disturbance in the output voltage while the module locks to the SYNC clock. If the SYNC signal is lost during operation, the module quickly detects the loss and reverts to switching at the frequency set by the R_{RT} resistor. A disturbance occurs in the output voltage upon loss of SYNC.

7.3.6.2.2 Paralleled Devices Synchronization

When two TPSM846C24 devices are paralleled, the SYNC pins of the master and the slave must be supplied with a 50% duty cycle clock signal at the desired switching frequency. The master device locks to the rising edge of the clock; the slave locks to the falling edge. The 50% duty cycle requirement insures the modules operate 180° out of phase to minimize ripple. Both the master and slave module must have an R_{RT} resistor present whose value sets a switching frequency within ±20% of the SYNC clock frequency. See the *Parallel Application* section of the datasheet for more information when paralleling devices.

Copyright © 2018, Texas Instruments Incorporated

7.3.7 Prebiased Output Start-Up

The TPSM846C24 devices prevent current from being discharged from the output during start-up when a prebiased output condition exists. If the output is prebiased, no PH pulses occur until the internal soft-start voltage rises above the error-amplifier input voltage (FB pin). As soon as the soft-start voltage exceeds the error-amplifier input, and PH pulses start. The device limits synchronous rectification after each PH pulse with a narrow on-time. The on-time of the low-side MOSFET slowly increases on a cycle-by-cycle basis until 128 pulses have been generated and the synchronous rectifier runs fully complementary to the high-side MOSFET. This approach prevents the sinking of current from a prebiased output, and ensures the output-voltage start-up and ramp-to-regulation sequences are smooth and monotonic.

If the prebias voltage is close to or exceeds the V_{OUT} setpoint voltage, the mandatory 128 switching cycles, as previously described, may induce a non-monotonic dip in the output voltage. The output voltage quickly recovers to the setpoint value once the 128 cycle interval is completed.

These devices respond to a prebiased output overvoltage condition immediately upon VIN powered up and when the BP6 regulator voltage is above the BP6 UVLO of 3.73 V (typical).

7.3.8 Power-Good (PGOOD) Indicator

The TPSM846C24 has a built-in power-good signal (PGOOD) which indicates whether the output voltage is within its regulation range. The PGOOD pin is an open drain output that requires a pullup resistor to a voltage source of 5.5 V or less. The recommended pullup resistor value is between 10 k Ω and 100 k Ω . Once the output voltage rises above 95% of the set voltage, the PGOOD pin rises to the pullup voltage level. The PGOOD pin is pulled low when the output voltage drops lower than 88% or rises higher than 112% of the nominal set voltage.

The PGOOD signal can be connected to the EN pin of a different device to provide additional controlled turnon and turnoff sequencing.

The PGOOD signal is pulled low when the FB pin is prebiased to higher than 5% above the regulation level. This level of prebias is unusual and it is beneficial to flag a warning in this situation.

NOTE

The presence of a pullup voltage at the PGOOD pin before input voltage is applied, may cause the PGOOD pin to be pulled above a logic low voltage level. This is due to the limited pulldown capability in an un-powered condition. If this is not desired, increase the pullup resistance or reduce the external pullup supply voltage.

7.3.9 Linear Regulators BP3 and BP6

The TPSM846C24 device has two onboard linear regulators to provide suitable power for the internal circuitry of the device. Bypass the BP3 and BP6 pins externally for the converter to function properly. The BP3 pin requires a minimum of 2.2 μ F of capacitance connected to BP_RTN. The BP6 pin requires a minimum 4.7 μ F of capacitance connected to BP6_RTN.

The use of the internal regulators to power other circuits is not recommended because the loads placed on the regulators might adversely affect operation of the controller.

NOTE

Place bypass capacitors as close as possible to the device pins, with a minimum return loop back to ground and keep the return loop away from fast switching voltage and main current path. For more information, see the *Layout* section. Poor bypassing can degrade the performance of the regulator.

7.3.10 Parallel Application

Two TPSM846C24 devices can be paralleled for increased output current up to 70 A. Multiple connections must be made between the paralleled devices and the component selection is slightly different than for a stand-alone TPSM846C24 device. Figure 16 shows a typical schematic for two TPSM846C24 devices in parallel. Parallel operation can be evaluated using the TPSM846C24DEVM-007 evaluation board.

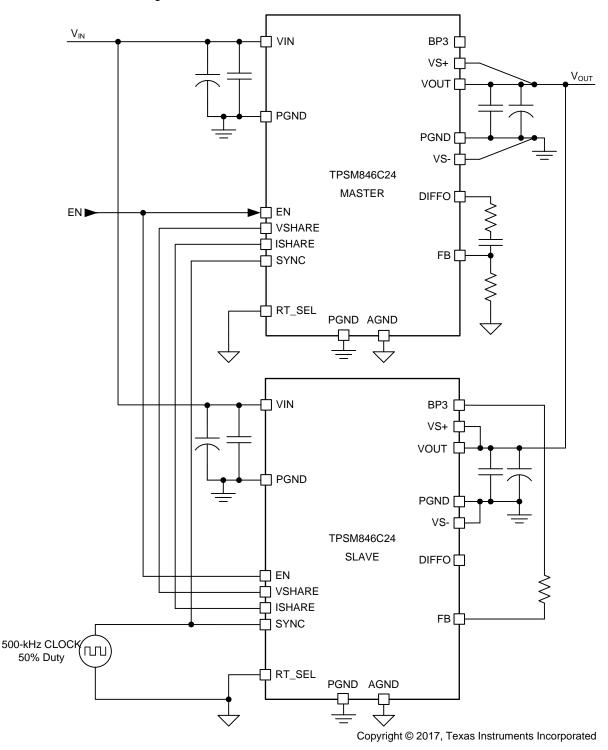


Figure 16. TPSM846C24 Parallel

7.3.11 Parallel Operation

To operate two TPSM846C24 devices in parallel, one of the devices must act as the master and the other act as a slave. To configure one of the devices as the slave device, connect a $1-k\Omega$ resistor between the device FB pin and BP3 pin. Additionally, the SYNC, VSHARE, and ISHARE pins of both devices must be connected as shown in Figure 16. Both devices share the same VSHARE voltage. Essentially, the internal COMP voltage is shared between the two devices by connecting the VSHARE pin of each device together. By connecting the ISHARE pins of each device, the sensed current in each phase is compared, then the error current is added into the internal COMP. The resulting voltage is compared with the PWM ramp to generate the PWM pulse. This current sharing loop maintains the current balance between devices.

In addition to sharing the same internal COMP voltage, the VSHARE pin is also used for fault communication between the loop master and slave devices. The VSHARE pin voltage is pulled low if any device encounters any fault conditions so that the other device sharing VSHARE pin is alerted and stops switching accordingly.

When configured for parallel operation, the SYNC pins of the master and the slave must be supplied with a 50% duty cycle clock signal at the desired switching frequency. The master device locks to the rising edge of the clock; the slave locks to the falling edge. The 50% duty cycle requirement insures the modules operate 180° out of phase to minimize ripple. Both the master And Slave module must have an R_{RT} resistor present whose value sets a switching frequency within ±20% of the SYNC clock frequency.

An optional high-frequency capacitor can be added between the VSHARE pin and ground in noisy systems, but the capacitance must not exceed 10 pF.

If operating conditions result in an on-time pulse width of \leq 150 ns, jitter may be observed on the master and slave PH pins. The addition of a 10-k Ω resistor in series with the ISHARE connection between the devices helps to reduce, but may not eliminate, the jitter.

7.3.12 Overtemperature Protection

An internal temperature sensor based off the bandgap reference protects the TPSM846C24 device from thermal runaway. The internal thermal shutdown threshold, T_{SD} , is fixed at 145°C (typical). When the device senses a temperature above T_{SD} , power conversion stops until the sensed junction temperature decreases by the amount of the thermal shutdown hysteresis, T_{HYST} (25°C typical). The response to an over temperature fault is to shut down and then restart.

7.3.13 Overcurrent Protection

Both low-side overcurrent and high-side short circuit protection are implemented. The low-side MOSFET average current is compared to the fault threshold. High-side pulses are terminated on a cycle-by-cycle basis whenever the current through the high-side MOSFET exceeds the fixed short-circuit threshold.

When either a low-side overcurrent or high-side short-circuit threshold is exceeded in a switching cycle, a counter is incremented. If no overcurrent condition is detected in a switching cycle, the counter is decremented. If the counter counts to three, an overcurrent fault condition is declared, and the output shuts down and restarts after approximately 21 ms.

7.3.14 Output Overvoltage and Undervoltage Protection

The TPSM846C24 device includes both output-overvoltage protection and output undervoltage protection capability by comparing the FB pin voltage to internal pre-set voltages.

If the FB pin voltage rises above the output overvoltage-protection threshold, the device terminates normal switching and turns on the low-side MOSFET to discharge the output capacitor and prevent further increases in the output voltage. The device declares an OV fault and enters continuous-restart-hiccup mode. The TPSM846C24 device responds to the output overvoltage condition immediately upon VIN powered up and BP6 regulator voltage above its own UVLO of 3.73 V (typical).

If the FB pin voltage falls below the undervoltage protection level after soft start has completed, the device terminates normal switching and forces both the high-side and low-side MOSFETs off, and begins a hiccup timeout delay prior to restart.

Copyright © 2018, Texas Instruments Incorporated

7.4 Device Functional Modes

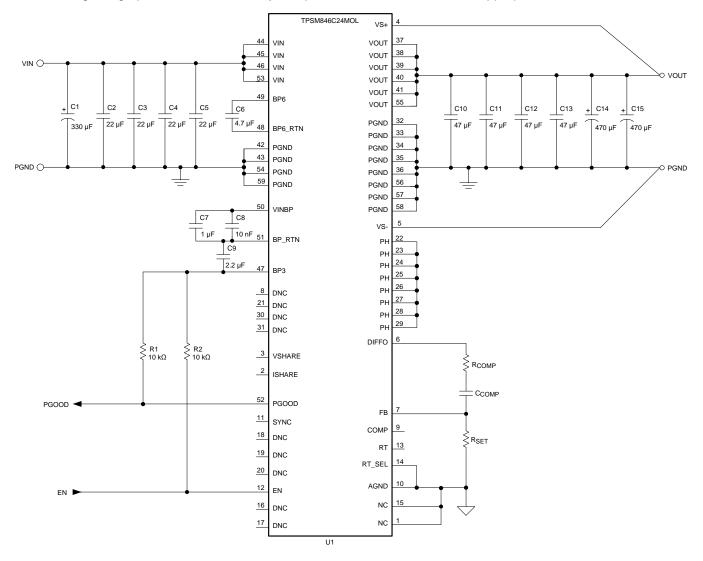
7.4.1 Active Mode

The TPSM846C24 device operates in continuous conduction mode (CCM) at a fixed frequency, regardless of the output current. For the first 128 switching cycles, the low-side MOSFET on-time is slowly increased to prevent excessive current sinking in the event the device is started with a prebiased output. Following the first 128 clock cycles, the low-side MOSFET on-times are fully complementary.

7.4.2 Shutdown Mode

The TPSM846C24 uses the EN pin to enable or disable power conversion. The EN pin must be pulled high to allow power conversion.

The EN pin provides electrical ON and OFF control for the TPSM846C24. When the EN pin voltage is below the EN low threshold, the device is in shutdown mode. In shutdown mode the stand-by current is 7.7 mA typically with $V_{IN} = 12$ V. The TPSM846C24 also employs undervoltage lockout protection. If V_{IN} is below the UVLO level, the output of the regulator is turned off.


8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Typical Application

The TPSM846C24 is a highly-integrated, synchronous step-down DC-DC power module. The TPSM846C24 converts a higher DC-input voltage to a lower DC-output voltage, with a maximum output current of 35 A. Use the following design procedure to select key component values and select the appropriate features.

Copyright © 2017, Texas Instruments Incorporated

Figure 17. Typical Application Schematic

Typical Application (continued)

8.1.1 Design Requirements

For this design example, use the parameters listed in Table 4 and follow the design procedures below.

	<u> </u>								
DESIGN PARAMETER	VALUE								
Input voltage V _{IN}	12 V typical								
Output voltage V _{OUT}	1.2 V								
Output current rating	35 A								
Key care-abouts	Small footprint, high efficiency, PGOOD signal								

Table 4. Design Parameters

8.1.2 Detailed Design Procedure

8.1.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPSM846C24 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.1.2.2 Setting the Output Voltage

The output voltage of the TPSM846C24 is designed to be set by the R_{SET} resistor. Use Equation 3 to calculate the R_{SET} resistor value.

$$\mathsf{R}_{\mathsf{SET}} = \frac{5}{(\mathsf{V}_{\mathsf{OUT}} - 0.5)} \quad (\mathsf{k}\Omega) \tag{3}$$

To set the output voltage to 1.2 V, using Equation 3, the calculated value of R_{SET} is 7.14 k Ω . The nearest E96 resistor value is 7.15 k Ω

8.1.2.3 Input and Output Capacitance

The minimum required input capacitance network consists of four 22- μ F (or two 47- μ F) ceramic capacitors plus a 330- μ F bulk capacitor. The minimum required output capacitance network consists of four 47- μ F (or two 100- μ F) ceramic capacitors plus two 470- μ F, low ESR polymer capacitors. The combined ESR of the polymer capacitors must not be greater than 5 m Ω . Additional input and output capacitors can be added to improve ripple or transient response.

In this design example, the minimum required input and output capacitance is used.

8.1.2.4 Selecting the Compensation Components

The TPSM846C24 requires an external series resistor and capacitor compensation network to be connected between the DIFFO pin (pin 6) and the FB pin (pin 7). The value of these components is determined by the total amount of output capacitance.

In this design example, the value of R_{COMP} and C_{COMP} is selected from Table 1 based on the total amount of output capacitance of 1120 μ F. R_{COMP} = 1 k Ω and C_{COMP} = 1000 pF.

8.1.2.5 Setting the Switching Frequency

The TPSM846C24 is set to a default switching frequency of 500 kHz. To operate the TPSM846C24 at the default switching frequency, connect the RT_SEL pin (pin 14) to AGND and leave the RT pin (pin 13) open.

In this design example, the switching frequency is selected to operate at the default switching frequency of 500 kHz by connecting RT_SEL pin to AGND and the R_{RT} resistor is left open.

8.1.2.6 Power Good (PGOOD)

Applications requiring voltage rail sequencing can benefit from the PGOOD signal present with the TPSM846C24. The PGOOD pin is an open-drain output. When the output voltage is typically between 95% and 105% of the setpoint, the PGOOD pin pulldown is released and the pin floats, requiring an external pullup resistor for a high signal. A $10-k\Omega$ pullup resistor is placed between the PGOOD pin and the BP3 rail.

8.1.2.7 ON/OFF Control (EN)

The EN signal is used to turn the power conversion function of the module ON and OFF. The EN signal is an active high signal; that is, the EN pin must be pulled high for power conversion to occur. The EN pin requires an external pullup resistor for a high signal. A $10-k\Omega$ pullup resistor is placed between the EN pin and the BP3 rail

VIN (5 V/div) VIN (5 V/div) VOUT (500 mV/div) VOUT (500 mV/div) PGOOD (2 V/div) PGOOD (2 V/div) EN (2 V/div) EN (2 V/div) 4+ 4 -Time (1 ms/div) Time (1 ms/div) V_{OUT} = 1.2 V $V_{IN} = 12 V$ $V_{IN} = 12 V$ $I_{OUT} = 10 \text{ A}$ $V_{OUT} = 1.2 V$ $I_{OUT} = 10 A$ Figure 19. Shut-down Waveform Figure 18. Start-up Waveforms

8.1.3 Application Curves

9 Power Supply Recommendations

The TPSM846C24 device is designed to operate from an input voltage supply between 4.5 V and 15 V. This supply must be well regulated. These devices are not designed for split-rail operation. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is PCB layout and grounding scheme. See the recommendations in the *Layout* section.

10 Layout

10.1 Layout Guidelines

Layout is critical for good power-supply design. Figure 20 and Figure 21 show top-side and bottom-side PCBlayout configuration for recommended component placement. Additional power, ground and signal layers are present in any PCB design. A list of PCB layout considerations using these devices is listed as follows:

- Place the input bypass capacitors as close as physically possible to the VIN and PGND pins. Additionally, a high-frequency bypass capacitor on the VIN pins can help reduce switching spikes. This capacitor can be placed on the bottom side of the PCB directly underneath the device to keep a minimum loop.
- The BP6 bypass capacitor carries a large switching current for the gate driver. Bypassing the BP6 pin to BP6_RTN with a low-impedance path is very critical to the stable operation of the TPSM846C24 device. Place the BP6 high-frequency bypass capacitor as close as possible to the device pins 48 and 49.
- The VINBP and BP3 pins also require good local bypassing. Place bypass capacitors as close as possible to the device pins and BP_RTN. Poor bypassing on the VINBP and BP3 pins can degrade the performance of the device.
- Place signal components as close as possible to the pins to which they are connected. These components include the feedback resistors and the RT resistor. Keep these components away from fast switching voltage and current paths. Terminate these components to AGND with a minimum return loop.
- Route the VS+ and VS- lines from the output capacitor bank at the load back to the device pins as a tightly coupled differential pair. These traces must be kept away from switching or noisy areas which can add differential-mode noise.
- Use caution when routing of the SYNC, VSHARE and ISHARE traces for parallel configurations. The SYNC trace carries a rail-to-rail signal and must be routed away from sensitive analog signals, including the VSHARE, ISHARE, RT, and FB signals. The VSHARE and ISHARE traces must also be kept away from fast switching voltages or currents formed by the VIN, PH, and BP6 pins.

10.2 Layout Example

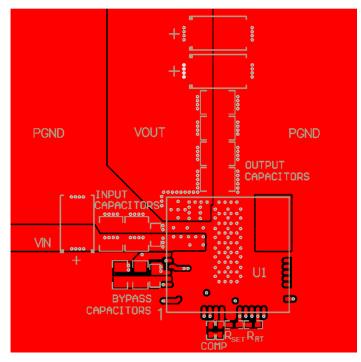


Figure 20. PCB Top-side Layout Recommendation

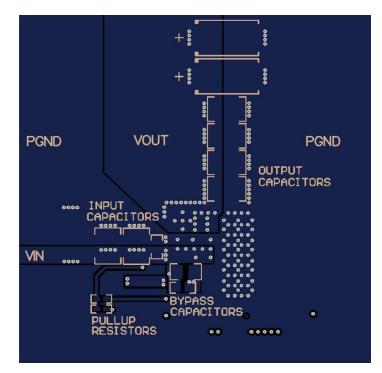
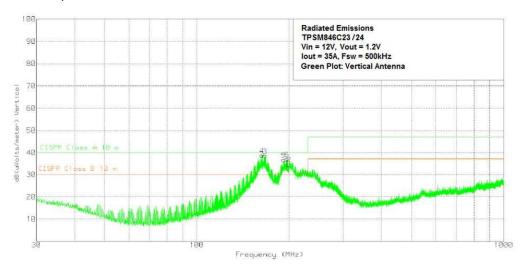


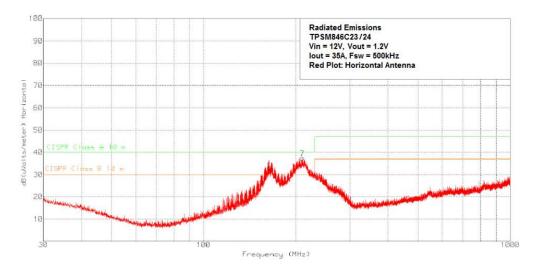
Figure 21. PCB Bottom-side Layout Recommendation

NSTRUMENTS

Texas

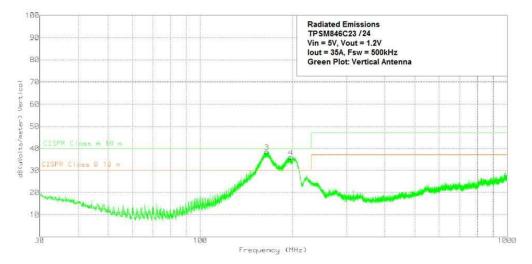

www.ti.com

10.3 Package Specifications


	VALUE	UNIT	
Weight		3.92	grams
Flammability	Meets UL 94 V-O		
MTBF Calculated Reliability	Per Bellcore TR-332, 50% stress, T _A = 40°C, ground benign	26.6	MHrs

10.4 EMI

The TPSM846C24 is compliant with EN55022 Class A radiated emissions. Figure 22 to Figure 25 show typical examples of radiated emissions plots for the TPSM846C24. The EMI plots were taken using an EVM with a resistive load and input power was provided using a lead acid battery. All graphs show plots of the antenna in the horizontal and vertical positions.



EMI (continued)

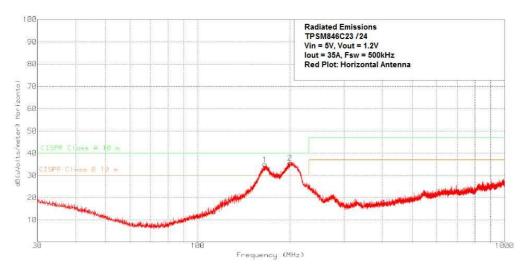
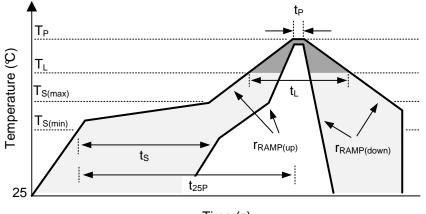



Figure 25. Radiated Emissions 5-V Input, 1.2-V Output, 35-A Load Horizontal Antenna

10.5 Mounting and Thermal Profile Recommendation

Proper mounting technique adequately covers the exposed thermal pad with solder. Excessive heat during the reflow process can affect electrical performance. Figure 26 shows the recommended reflow-oven thermal profile. Proper post-assembly cleaning is also critical to device performance. Refer to *Power Module MSL Ratings and Reflow Ratings* for more information.

Time (s)

Figure 26. Recommended Reflow-Oven Thermal Profile

	PARAMETER	MIN	ТҮР	MAX	UNIT					
RAMP UP AND RAMP DOWN										
r _{RAMP(up)}	Average ramp-up rate, $T_{S(max)}$ to T_P			3	°C/s					
r _{RAMP(down)}	Average ramp-down rate, T_P to $T_{S(max)}$			6	°C/s					
PRE-HEAT										
Ts	Preheat temperature	150		200	°C					
ts	Preheat time, $T_{S(min)}$ to $T_{S(max)}$	60	60 120							
REFLOW										
TL	Liquidous temperature		217		°C					
T _P	Peak temperature			260	°C					
tL	Time maintained above liquidous temperature, TL	60		150	S					
t _P	Time maintained within 5°C of peak temperature, T_P	20		30	S					
t _{25P}	Total time from 25°C to peak temperature, T _P			480	S					

Table 5. Recommended Thermal Profile Parameters

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPSM846C24 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

14-Feb-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPSM846C24MOLR	ACTIVE	QFM	MOL	59	350	RoHS (In Work) & Green (In Work)	Call TI	Call TI	-40 to 105	TPSM846C24	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

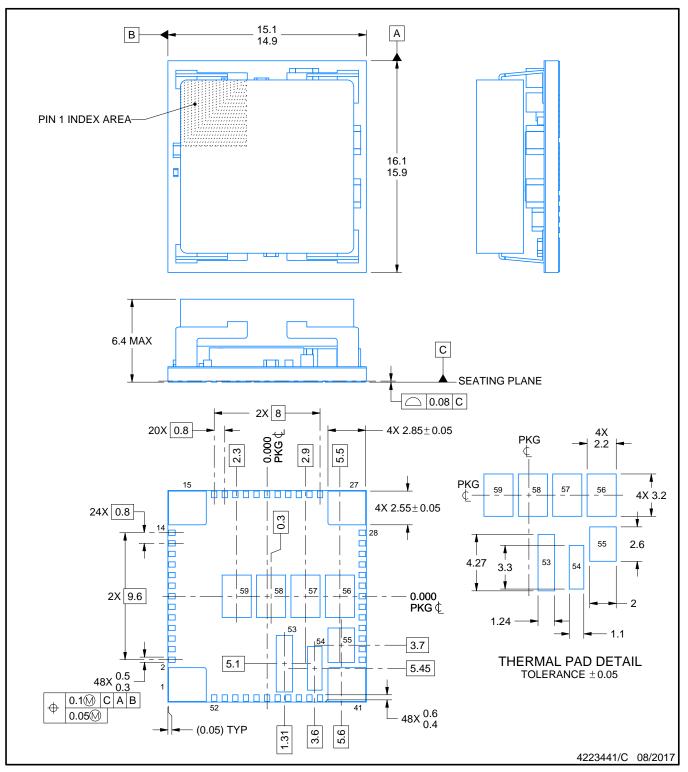
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

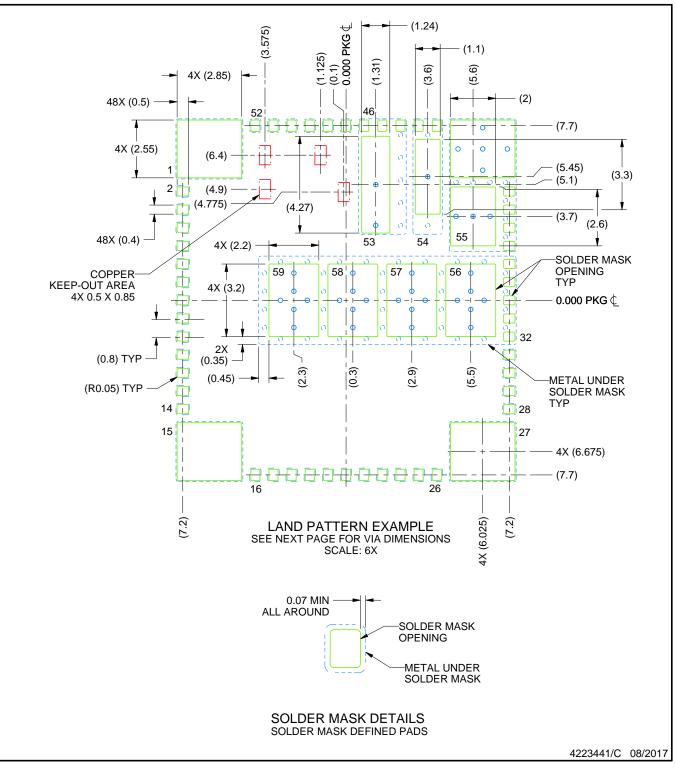
PACKAGE OUTLINE

QFM - 6.4 mm max height

PLASTIC QUAD FLAT MODULE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.


3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.

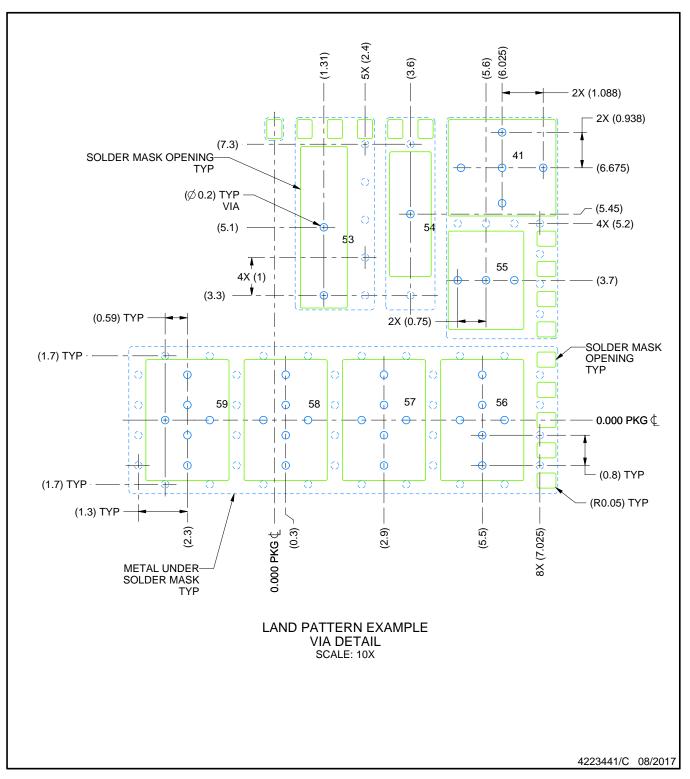
EXAMPLE BOARD LAYOUT

QFM - 6.4 mm max height

PLASTIC QUAD FLAT MODULE

NOTES: (continued)

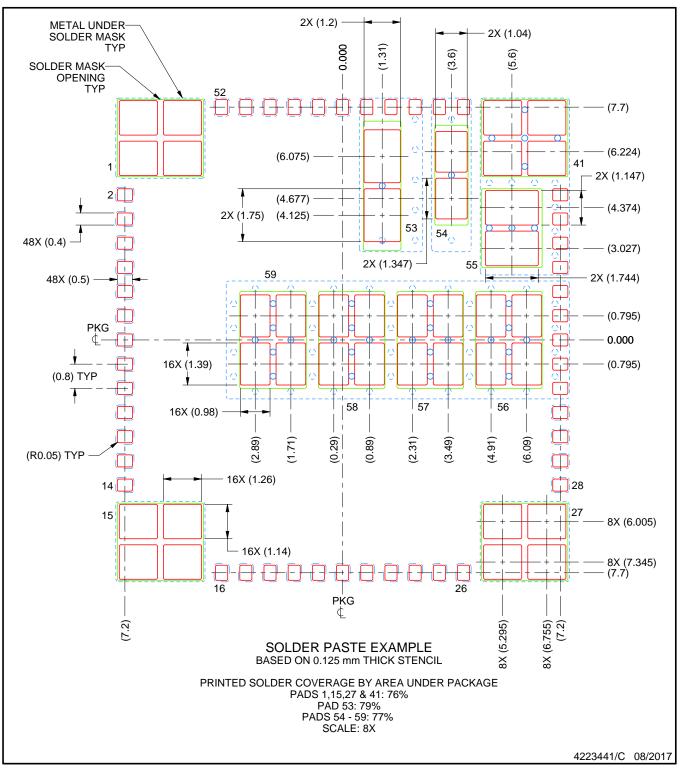
4. This package is designed to be soldered to the thermal pads on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).


5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE BOARD LAYOUT

QFM - 6.4 mm max height

PLASTIC QUAD FLAT MODULE



EXAMPLE STENCIL DESIGN

QFM - 6.4 mm max height

PLASTIC QUAD FLAT MODULE

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated