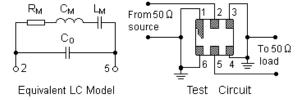
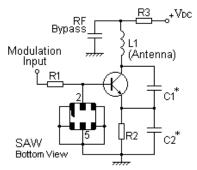


The **ACTR8002/868.35/DCC6C** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **DCC6C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **868.350** MHz.

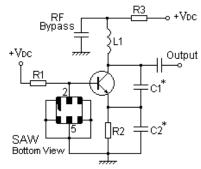
2.


1.Package Dimension (DCC6C)

Pin	Configuration		
2	Input / Output		
5	Output / Input		
1,3,4,6	Ground		


Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	0.6	ш	1.1
В	1.5	F	3.0
С	1.5	G	3.0
D	1.8		

3.Equivalent LC Model and Test Circuit

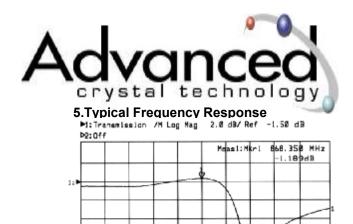


4.Typical Application Circuits

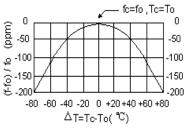
1) Low-Power Transmitter Application

2) Local Oscillator Application

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.


ISO9001: 2000 Registered

For quotations or further information please contact us at:


Issue : 1.1 C1 Date : March 2010

3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

http://www.actcrystals.com

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

Center 868.350 MHz

7-1.Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	0	dBm
DC Voltage Between Terminals	±30V	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature	+250	°C

Span 1.500 MHz

7-2. Electronic Characteristics							
			_				

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Centre Frequency (+25 °C)	Absolute Frequency	fc	868.200		868.500	MHz
	Tolerance from 868.350 MHz	Δf_{C}		±150		kHz
Insertion Loss		ΙL		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U		9,400		
	$50 \ \Omega$ Loaded Q	QL		1,500		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.03		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	Rм		19	29	Ω
	Motional Inductance	L _M		32.7328		μН
	Motional Capacitance	См		1.0273		fF
	Shunt Static Capacitance	C 0	2.1	2.4	2.7	pF

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered

 For quotations or further information please contact us at:
 Issue : 1.1 C1

 3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK
 Date : March 2010

 <u>http://www.actcrystals.com</u>

i CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The centre frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, \overline{T}_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (non-motional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered

Issue : 1.1 C1 Date : March 2010

For quotations or further information please contact us at: 3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

http://www.actcrystals.com