SNVS395C-NOVEMBER 2010-REVISED APRIL 2013

LP2953QML Adjustable Micropower Low-Dropout Voltage Regulators

Check for Samples: LP2953QML, LP2953QML-SP

FEATURES

- Output Voltage Adjusts from 1.23V to 29V
- Ensured 250 mA Output Current
- Extremely Low Quiescent Current
- Low Dropout Voltage
- Extremely Tight Line and Load Regulation
- Very Low Temperature Coefficient
- Current and Thermal Limiting
- Reverse Battery Protection
- 50 mA (Typical) Output Pulldown Crowbar
- Auxiliary Comparator Included with CMOS/TTL Compatible Output Levels. Can be used for Fault Detection, Low Input Line Detection, etc.

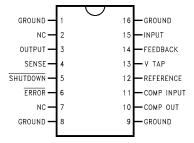
APPLICATIONS

- High-Efficiency Linear Regulator
- Regulator with Under-Voltage Shutdown
- Low Dropout Battery-Powered Regulator
- Snap-ON/Snap-OFF Regulator

DESCRIPTION

The LP2953A is a micropower voltage regulator with very low quiescent current (130 µA typical at 1 mA load) and very low dropout voltage (typ. 60 mV at light load and 470 mV at 250 mA load current). It is ideally suited for battery-powered systems. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.

The LP2953A retains all the desirable characteristics of the LP2951, but offers increased output current, additional features, and an improved shutdown function.


The internal crowbar pulls the output down quickly when the shutdown is activated.

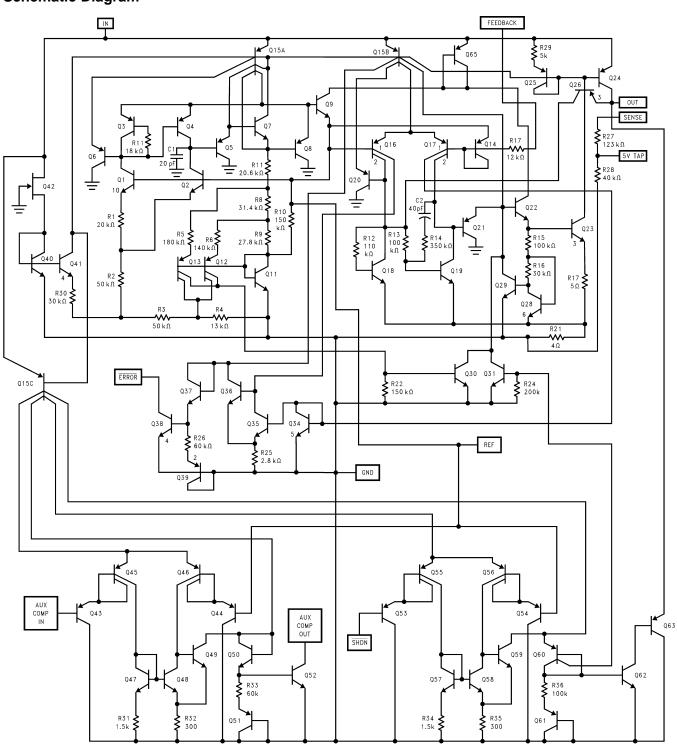
The error flag goes low if the output voltage drops out of regulation.

Reverse battery protection is provided.

The internal voltage reference is made available for external use, providing a low-T.C. reference with very good line and load regulation.

Connection Diagram

Note: Pins 1, 8, 9, 16 must be shorted together on customer PC board application


Figure 1. 16-Pin CFP Package

AAA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Schematic Diagram

Block Diagram

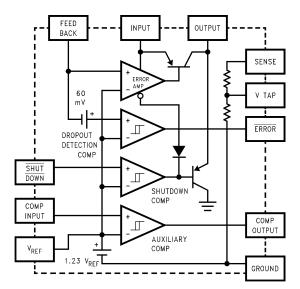


Figure 2. LP2953

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings(1)

Storage Temperature Range			-65°C ≤ T _A ≤ +150°C
Operating Temperature Range	-55°C ≤ T _A ≤ +125°C		
Maximum Junction Temperature			+150°C
Lead Temp. (Soldering, 5 seconds)			260°C
Power Dissipation (2)			Internally Limited
Input Supply Voltage			-20V to +30V
Feedback Input Voltage (3)			-0.3V to +5V
Comparator Input Voltage (4)			-0.3V to +30V
Shutdown Input Voltage (4)			-0.3V to +30V
Comparator Output Voltage (4)			-0.3V to +30V
		16LD CFP "WG" (device 01) (Still Air)	134°C/W
		16LD CFP "WG" (device 01) (500LF/Min Air flow)	81°C/W
The area of Decision	θ_{JA}	16LD CFP "GW" (device 02) (Still Air)	140°C/W
Thermal Resistance		16LD CFP "GW" (device 02) (500LF/Min Air flow)	90°C/W
		16LD CFP "WG" (device 01) ⁽⁵⁾	7°C/W
	θ_{JC}	16LD CFP "GW" (device 02)	15°C/W
Declara Mainht (Tunian)	16LD CFP	"WG" (device 01)	360mg
Package Weight (Typical)	16LD CFP	"GW" (device 02)	410mg
ESD Rating ⁽⁶⁾	<u>, </u>		2 KV

- (1) Abs. Max Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see Electrical Characteristics. The specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.
- (3) When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.
- (4) May exceed the input supply voltage.
- (5) The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using θ_{JA}, rather than θ_{JC}, thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out the package, since the thermal resistance of the leadframe material is very poor, relative to the material of the package base. The stated θ_{JC} thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package base and the printed circuit board. The user must determine the value of the additional thermal resistance and must combine this with the stated value for the package, to calculate the total allowed power dissipation for the device.
- (6) Human body model, 1.5 KΩ in series with 100 pF.

Quality Conformance Inspection

Table 1. Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

LP2953A Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$ Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

Parameter V _O Output Voltage		Test Conditions	Notes	Min	Max	Units	Sub- groups
				4.975	5.025	V	1
Vo	Output Voltage			4.94	5.06	V	2, 3
		1mA ≤ I _L ≤ 250mA		4.93	5.07	V	1, 2, 3
ΔV_{O} / V_{O}	Output Voltage Line	$V_I = 6V$ to $30V$			0.1	%	1
	Regulation				0.2	%	2, 3
ΔV _O / V _O		1 4 m A to 050 m A			0.16	%	1
	Output Voltage Load Regulation	$I_L = 1$ mA to 250mA			0.2	%	2, 3
					0.16	%	1
		$I_L = 0.1 \text{mA}$ to 1 mA			0.2	%	2, 3
		1 4 7 4	0 (1)		100	mV	1
		$I_L = 1mA$	See ⁽¹⁾		150	mV	2, 3
		I 50 A	0 (1)		300	mV	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Daniel Mallana	$I_L = 50 \text{mA}$	See ⁽¹⁾		420	mV	2, 3
V _I - V _O	Dropout Voltage	I 400 A	See ⁽¹⁾		400	mV	1
		$I_L = 100 \text{mA}$	See(1)		520	mV	2, 3
		L 050 A	0 (1)		600	mV	1
		$I_L = 250 \text{mA}$	See ⁽¹⁾		800	mV	2, 3

⁽¹⁾ Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1V differential. At very low values of programmed output voltage, the input voltage minimum of 2V (2.3V over temperature) must be observed.

LP2953A Electrical Characteristics DC Parameters (continued)

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$ Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

	Parameter	Test Conditions	Notes	Min	Max	Units	Sub- groups
		I _L = 1mA	See ⁽²⁾		170	μΑ	1
I_{Gnd}		IL = IIIIA	See		200	μΑ	2, 3
		I _I = 50mA	See ⁽²⁾		2.0	mA	1
	Ground Pin Current	IL = SOTIA	See		2.5	mA	2, 3
	Ground Fill Current	I _L = 100mA	See ⁽²⁾		6.0	mA	1
		IL = TOOTIA	See		8.0	mA	2, 3
		1 - 250mA	See ⁽²⁾		28	mA	1
		$I_L = 250 \text{mA}$	See		33	mA	2, 3
	Ground Pin Current at	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	See ⁽²⁾		210	μΑ	1
I _{Gnd}	Dropout	$V_{I} = 4.5V, I_{L} = 100\mu A$	See (-)		240	μΑ	2, 3
I _{Gnd}	Ground Pin Current at Shutdown		See ⁽²⁾⁽³⁾		140	μΑ	1
	0	V 0V			500	mA	1
I _{Limit}	Current Limit	$V_O = 0V$			530	mA	2, 3
$\Delta V_{O} / \Delta P_{D}$	Thermal Regulation		See ⁽⁴⁾		0.2	%/W	1
V	Defenses Valtage		C = = (5)	1.215	1.245	V	1
V_{Ref}	Reference Voltage	erence Voltage See ⁽⁵⁾		1.205	1.255	V	2, 3
		V 0.5V/1-0V/			0.1	%	1
A)/ /)/	Reference Voltage Line	$V_1 = 2.5V \text{ to } 6V$			0.2	%	2, 3
ΔV_{Ref} / V_{Ref}	Regulation	V CV 45 20V			0.1	%	1
		$V_I = 6V \text{ to } 30V$			0.2	%	2, 3
ΔV _{Ref} / V _{Ref}	Reference Voltage Load	L 0.45 200A			0.4	%	1
	Regulation	$I_{Ref} = 0$ to $200\mu A$			0.6	%	2, 3
	Feedback Pin Bias				40	nA	1
I _{B FB}	Current				60	nA	2, 3
	Output "Off" Pulldown		See ⁽⁶⁾	30		mA	1
I _{O Sink}	Current		See	20		mA	2, 3

Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, (2) output load current, and current through the external resistive divider (if used).

 $V_{Shutdown} \le 1.1V$, $V_{O} = V_{O}(Nom)$. Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at $V_I = V_O(Nom) + 15V$ (3W pulse) for T = 10 mS. $V_{Ref} \le V_O \le (V_I - 1V)$, 2.3V $\le V_I \le 30V$, 100 μ A $\le I_L \le 250$ mA. $V_{Shutdown} \le 1.1V$, $V_O = V_O(Nom)$.

LP2953A Electrical Characteristics Dropout Detection Comparator Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$ Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

Parameter		Test Conditions No		Min	Max	Units	Sub- groups
	Output "High" Lookogo	V 20V			1.0	μΑ	1
Гон	Output "High" Leakage	$V_{OH} = 30V$			2.0	μΑ	2, 3
V	Output "Low" Voltage	V 4V I Comp 400vA			250	mV	1
V _{OL}	Output "Low" Voltage	$V_I = 4V$, I_O Comp = 400μ A			400	mV	2, 3
				-320	-150	mV	1
V _{Th Max}	Upper Threshold Voltage		See ⁽¹⁾	-380	-130	mV	2
				-380	-120	mV	3
				-450	-280	mV	1
$V_{Th\ Min}$	Lower Threshold Voltage		See ⁽¹⁾	-640	-180	mV	2
				-640	-155	mV	3

⁽¹⁾ Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal V_{Ref} measured at V_I = V_O(Nom) + 1V. To express these thresholds in terms of output voltage change, multiply by the Error amplifier gain, which is V_O/ V_{Ref} = (R1 + R2)/R2 (refer to Figure 31).

LP2953A Electrical Characteristics SHUTDOWN Input Parameters

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$ Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

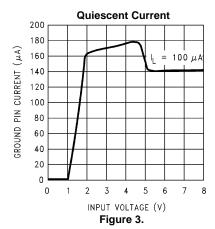
Parameter		Test Conditions	Notes	Min	Max	Units	Sub- groups
				-7.5	7.5	mV	1
V _{IO}	Input Offset Voltage	Referred to V _{Ref}		-10	10	mV	2
				-12	12	mV	3
				-30	30	nA	1
I _{IB}	Input Bias Current	V _I Comp = 0 to 5V		-50	50	nA	2
				-75	75	nA	3

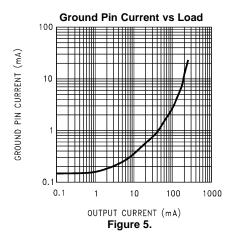
LP2953A Electrical Characteristics Auxillary Comparator Parameters

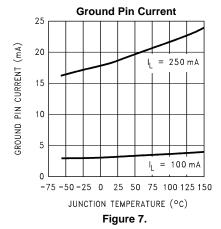
The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$ Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin.

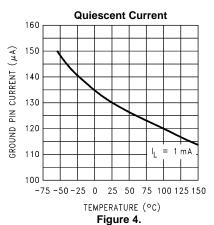
Parameter		Test Conditions	Notes	Min	Max	Units	Sub- groups
				-7.5	7.5	mV	1
V _{IO}	Input Offset Voltage	Referred to V _{Ref}		-10	10	mV	2
				-12	12	mV	3
I _{IB}				-30	30	nA	1
	Input Bias Current	V _I Comp = 0 to 5V		-50	50	nA	2
				-75	75	nA	3
					1.0	μΑ	1
Іон	Output "High" Leakage	$V_{OH} = 30V$, $V_I Comp = 1.3V$			2.0	μΑ	2
					2.2	μΑ	3
V _{OL}					250	mV	1
	Output "Low" Voltage	V_I Comp = 1.1 V , I_O Comp = 400 μ A			400	mV	2
					420	mV	3

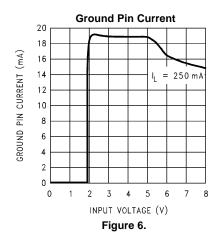
LP2953A Electrical Characteristics DC Drift Parameters

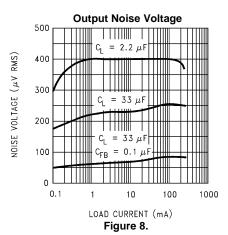

The following conditions apply, unless otherwise specified. $V_I = 6V$, $I_L = 1mA$, $C_L = 2.2\mu F$, $V_O = 5V$ Feedback pin is tied to 5V Tap pin. Output pin is tied to Output Sense Pin. Δ calculations performed on QMLV devices at group B , subgroup 5.

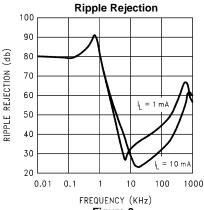

Parameter V _I - V _O Dropout Voltage		Test Conditions	Notes	Min	Max	Units	Sub- groups
		$I_L = 1mA$		-12	12	%	1
	Drangut Valtage	$I_L = 50 \text{mA}$		-12	12	%	1
vi - vO	Dropout voltage	$I_L = 100 \text{mA}$		-12	12	%	1
		$I_L = 250 \text{mA}$		-12	12	%	1
		$I_L = 1$ mA, $\pm 5\mu$ A or $\pm 10\%$ whichever is greater		-5.0	5.0	μΑ	1
	Ground Pin Current	I _L = 50mA, ±5μA or ±10% whichever is greater		-5.0	5.0	μΑ	1
I _{Gnd}	Ground Pin Current	I_L = 100mA, ±5 μ A or ±10% whichever is greater		-5.0	5.0	μΑ	1
		I_L = 250mA, ±5µA or ±10% whichever is greater		-5.0	5.0	μΑ	1
I _{Gnd}	Ground Pin Current at Dropout	$V_I = 4.5V$, $I_L = 100\mu A$, ±5 μA or ±10% whichever is greater		-5.0	5.0	μΑ	1
I _{Gnd}	Ground Pin Current at Shutdown	±5µA or ±10% whichever is greater		-5.0	5.0	μΑ	1
	Innut Offset Voltage	Referred to V _{Ref} SHUTDOWN Input		-1.0	1.0	mV	1
V _{IO}	Input Offset Voltage	Referred to V _{Ref} Auxillary Comparator		-1.0	1.0	mV	1
	Innut Diag Current	V _I Comp = 0 to 5V SHUTDOWN Input		-5.0	5.0	nA	1
I _{IB}	Input Bias Current	V _I Comp = 0 to 5V Auxillary Comparator		-5.0	5.0	nA	1

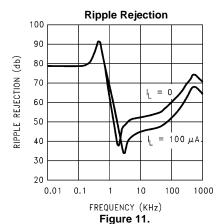



Typical Performance Characteristics


Unless otherwise specified: V_I = 6V, I_L = 1 mA, C_L = 2.2 μF , V_{SD} = 3V, T_A = 25°C, V_O = 5V.







Unless otherwise specified: $V_1 = 6V$, $I_L = 1$ mA, $C_L = 2.2 \mu F$, $V_{SD} = 3V$, $T_A = 25 ^{\circ}C$, $V_O = 5V$.

Line Transient Response $= 33 \mu F$ 80

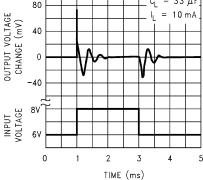
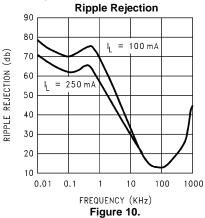



Figure 13.

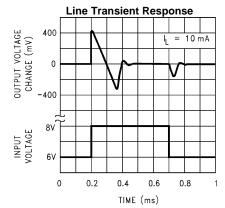


Figure 12.

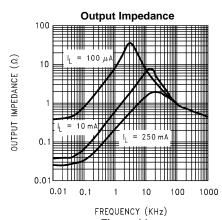


Figure 14.

Unless otherwise specified: V_{I} = 6V, I_{L} = 1 mA, C_{L} = 2.2 μ F, V_{SD} = 3V, T_{A} = 25°C, V_{O} = 5V.

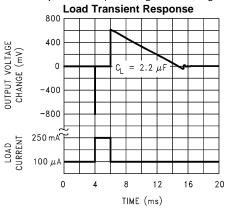
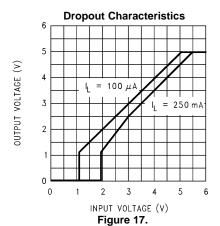



Figure 15.

OUTPUT VOLTAGE (V) $= 10 \, \text{mA}$ SHUTDOWN VOLTAGE (V)

Enable Transient

 $= 33 \mu$ F

TIME (ms) Figure 19.

2

3

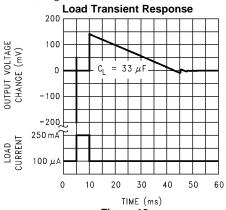
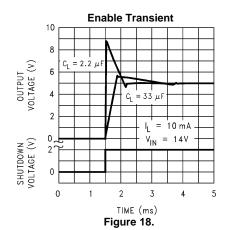



Figure 16.

Short-Circuit Output Current and Maximum Output Current

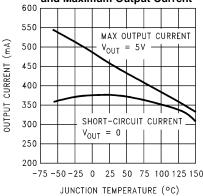
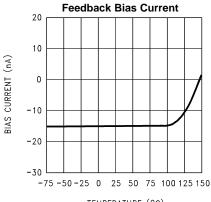
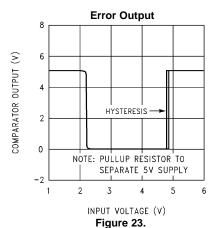
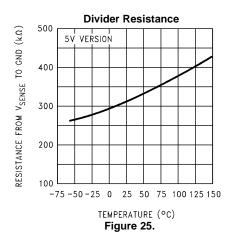
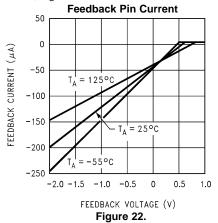
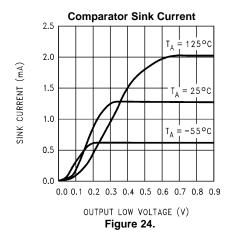



Figure 20.


0




Unless otherwise specified: V_I = 6V, I_L = 1 mA, C_L = 2.2 μ F, V_{SD} = 3V, T_A = 25°C, V_O = 5V.



TEMPERATURE (°C) Figure 21.

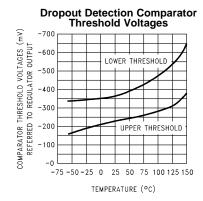


Figure 26.

Unless otherwise specified: V_{I} = 6V, I_{L} = 1 mA, C_{L} = 2.2 μ F, V_{SD} = 3V, T_{A} = 25°C, V_{O} = 5V.

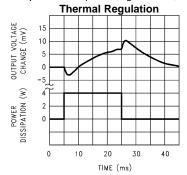


Figure 27.

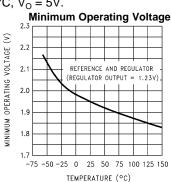
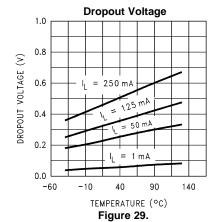



Figure 28.

APPLICATION HINTS

Ground Pins

For the LP2953 16-Pin Ceramic SOIC, Pins 1, 8, 9, 16 MUST BE SHORTED TOGETHER ON CUSTOMER'S P.C. BOARD APPLICATION.

Heatsink Requirements

The maximum allowable power dissipation for the LP2953 is limited by the maximum junction temperature (+150°C) and the two parameters that determine how quickly heat flows away from the die: the ambient temperature and the junction-to-ambient thermal resistance of the part.

The military parts which are manufactured in ceramic DIP packages contain a KOVAR lead frame (unlike the industrial parts, which have a copper lead frame). The KOVAR material is necessary to attain the hermetic seal required in military applications.

The KOVAR lead frame does not conduct heat as well as copper, which means that the PC board copper can not be used to significantly reduce the overall junction-to-ambient thermal resistance.

The power dissipation calculations are done using a fixed value for $\theta_{(J-A)}$, the junction-to-ambient thermal resistance, of 134°C/W and can not be changed by adding copper foil patterns to the PC board. This leads to an important fact: The *maximum allowable power dissipation in any application using the LP2953 is dependent only on the ambient temperature:*

$$P(max) = T_{R(max)} / \theta_{(J-A)}$$

$$P(max) = \frac{T_{J(max)} - T_{A(max)}}{\theta_{(J-A)}}$$

$$P(max) = \frac{150 - T_{A(max)}}{95}$$
(1)

External Capacitors

A 2.2 μ F (or greater) capacitor is required between the output pin and ground to assure stability when the output is set to 5V. Without this capacitor, the part will oscillate. Most type of tantalum or aluminum electrolytics will work here. Film types will work, but are more expensive. Many aluminum electrolytics contain electrolytes which freeze at -30° C, which requires the use of solid tantalums below -25° C. The important parameters of the capacitor are an ESR of about 5Ω or less and a resonant frequency above 500 kHz (the ESR may increase by a factor of 20 or 30 as the temperature is reduced from 25° C to -30° C). The value of this capacitor may be increased without limit.

At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to 0.68 μ F for currents below 10 mA or 0.22 μ F for currents below 1 mA.

Programming the output for voltages below 5V runs the error amplifier at lower gains requiring *more* output capacitance for stability. At 3.3V output, a minimum of 4.7 μ F is required. For the worst-case condition of 1.23V output and 250 mA of load current, a 6.8 μ F (or larger) capacitor should be used.

A 1 μ F capacitor should be placed from the input pin to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery input is used.

Stray capacitance to the Feedback terminal can cause instability. This problem is most likely to appear when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between the Output and Feedback pins and increasing the output capacitance to 6.8 μ F (or greater) will cure the problem.

Minimum Load

When setting the output voltage using an external resistive divider, a minimum current of 1 μ A is recommended through the resistors to provide a minimum load.

It should be noted that a minimum load current is specified in several of the electrical characteristic test conditions, so this value must be used to obtain correlation on these tested limits.

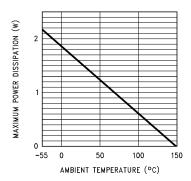
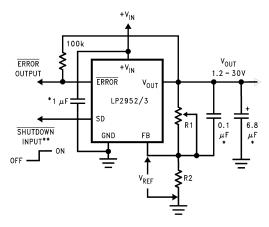


Figure 30. Power Derating Curve for LP2953


Programming the Output Voltage

The regulator may be pin-strapped for 5V operation using its internal resistive divider by tying the Output and Sense pins together and also tying the Feedback and 5V Tap pins together.

Alternatively, it may be programmed for any voltage between the 1.23V reference and the 30V maximum rating using an external pair of resistors (see Figure 31). The complete equation for the output voltage is:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right) + (I_{FB} \times R1)$$
(2)

where V_{REF} is the 1.23V reference and I_{FB} is the Feedback pin bias current (-20 nA typical). The minimum recommended load current of 1 μ A sets an upper limit of 1.2 $M\Omega$ on the value of R2 in cases where the regulator must work with no load (see Minimum Load). I_{FB} will produce a typical 2% error in V_O which can be eliminated at room temperature by trimming R1. For better accuracy, choosing R2 = 100 $k\Omega$ will reduce this error to 0.17% while increasing the resistor program current to 12 μ A. Since the typical quiescent current is 120 μ A, this added current is negligible.

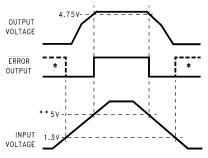
^{*} See Application Hints

Figure 31. Adjustable Regulator

Dropout Voltage

The dropout voltage of the regulator is defined as the minimum input-to-output voltage differential required for the output voltage to stay within 100 mV of the output voltage measured with a 1V differential. The dropout voltage is independent of the programmed output voltage.

^{**} Drive with TTL-low to shut down


Dropout Detection Comparator

This comparator produces a logic "LOW" whenever the output falls out of regulation by more than about 5%. This figure results from the comparator's built-in offset of 60 mV divided by the 1.23V reference (refer to Block Diagram). The 5% low trip level remains constant regardless of the programmed output voltage. An out-of-regulation condition can result from low input voltage, current limiting, or thermal limiting.

Figure 32 gives a timing diagram showing the relationship between the output voltage, the ERROR output, and input voltage as the input voltage is ramped up and down to a regulator programmed for 5V output. The ERROR signal becomes low at about 1.3V input. It goes high at about 5V input, where the output equals 4.75V. Since the dropout voltage is load dependent, the **input** voltage trip points will vary with load current. The **output** voltage trip point does not vary.

The comparator has an open-collector output which requires an external pull-up resistor. This resistor may be connected to the regulator output or some other supply voltage. Using the regulator output prevents an invalid "HIGH" on the comparator output which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below 1.3V. In selecting a value for the pull-up resistor, note that while the output can sink 400 μ A, this current adds to battery drain. Suggested values range from 100 k Ω to 1 M Ω . This resistor is not required if the output is unused.

When $V_{IN} \le 1.3V$, the error flag pin becomes a high impedance, allowing the error flag voltage to rise to its pull-up voltage. Using V_{OUT} as the pull-up voltage (rather than an external 5V source) will keep the error flag voltage below 1.2V (typical) in this condition. The user may wish to divide down the error flag voltage using equal-value resistors (10 k Ω suggested) to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

^{*} In shutdown mode, ERROR will go high if it has been pulled up to an external supply. To avoid this invalid response, pull up to regulator output.

Figure 32. ERROR Output Timing

Output Isolation

The regulator output can be left connected to an active voltage source (such as a battery) with the regulator input power shut off, as long as the regulator ground pin is connected to ground. If the ground pin is left floating, damage to the regulator can occur if the output is pulled up by an external voltage source.

Reducing Output Noise

In reference applications it may be advantageous to reduce the AC noise present on the output. One method is to reduce regulator bandwidth by increasing output capacitance. This is relatively inefficient, since large increases in capacitance are required to get significant improvement.

Noise can be reduced more effectively by a bypass capacitor placed across R1 (refer to Figure 31). The formula for selecting the capacitor to be used is:

$$C_{B} = \frac{1}{2\pi R1 \times 20 Hz} \tag{3}$$

^{**} Exact value depends on dropout voltage. (See Application Hints)

This gives a value of about 0.1 μ F. When this is used, the output capacitor must be 6.8 μ F (or greater) to maintain stability. The 0.1 μ F capacitor reduces the high frequency gain of the circuit to unity, lowering the output noise from 260 μ V to 80 μ V using a 10 Hz to 100 kHz bandwidth. Also, noise is no longer proportional to the output voltage, so improvements are more pronounced at high output voltages.

Auxiliary Comparator

The LP2953 contains an auxiliary comparator whose inverting input is connected to the 1.23V reference. The auxiliary comparator has an open-collector output whose electrical characteristics are similar to the dropout detection comparator. The non-inverting input and output are brought out for external connections.

SHUTDOWN Input

A logic-level signal will shut off the regulator output when a "LOW" (<1.2V) is applied to the Shutdown input.

To prevent possible mis-operation, the $\overline{\text{Shutdown}}$ input must be actively terminated. If the input is driven from open-collector logic, a pull-up resistor (20 k Ω to 100 k Ω recommended) should be connected from the $\overline{\text{Shutdown}}$ input to the regulator input.

If the Shutdown input is driven from a source that actively pulls high and low (like an op-amp), the pull-up resistor is not required, but may be used.

If the shutdown function is not to be used, the cost of the pull-up resistor can be saved by simply tying the Shutdown input directly to the regulator input.

IMPORTANT: Since the Absolute Maximum Ratings state that the Shutdown input can not go more than 0.3V below ground, the reverse-battery protection feature which protects the regulator input is sacrificed if the Shutdown input is tied directly to the regulator input.

If reverse-battery protection is required in an application, the pull-up resistor between the Shutdown input and the regulator input must be used.

Typical Applications

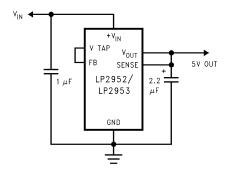
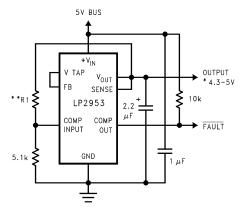



Figure 33. Basic 5V Regulator

- * Output voltage equals +V_{IN} minum dropout voltage, which varies with output current. Current limits at a maximum of 380 mA (typical).
- ** Select R1 so that the comparator input voltage is 1.23V at the output voltage which corresponds to the desired fault current value.

Figure 34. 5V Current Limiter with Load Fault Indicator

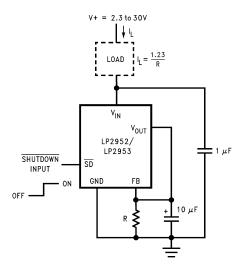
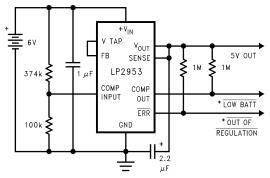
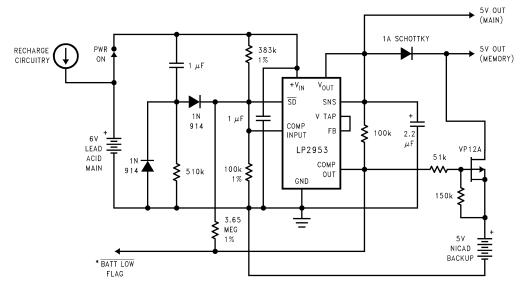



Figure 35. Low T.C. Current Sink



^{*} Connect to Logic or µP control inputs.

LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or power down some hardware with high power requirements. The output is still in regulation at this time. OUT OF REGULATION flag indicates when the battery is almost completely discharged, and can be used to initiate a power-down sequence.

Figure 36. 5V Regulator with Error Flags for LOW BATTERY and OUT OF REGULATION

The circuit switches to the NI-CAD backup battery when the main battery voltage drops below about 5.6V, and returns to the main battery when its voltage is recharged to about 6V.

The 5V MAIN output powers circuitry which requires no backup, and the 5V MEMORY output powers critical circuitry which can not be allowed to lose power.

Figure 37. 5V Battery Powered Supply with Backup and Low Battery Flag

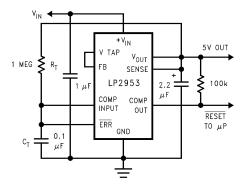
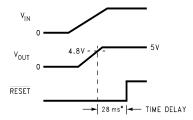
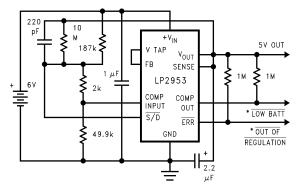



Figure 38. 5V Regulator with Timed Power-On Reset



^{*} $R_T = 1$ MEG, $C_T = 0.1 \mu F$

Figure 39. Timing Diagram for Timed Power-On Reset

^{*} The BATTERY LOW flag goes low whenever the circuit switches to the NI-CAD backup battery.

^{*} Connect to Logic or µP control inputs.

OUTPUT has SNAP-ON/SNAP-OFF feature.

LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or shut down hardware with high power requirements. The output is still in regulation at this time. OUT OF REGULATION flag goes low if the output goes below about 4.7V, which could occur from a load fault. OUTPUT has SNAP-ON/SNAP-OFF feature. Regulator snaps ON at about 5.7V input, and OFF at about 5.6V.

Figure 40. 5V Regulator with Error Flags for LOW BATTERY and OUT OF REGULATION with SNAP-ON/SNAP-OFF Output

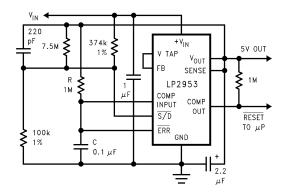
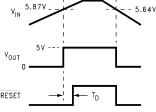



Figure 41. 5V Regulator with Timed Power-On Reset, Snap-On/Snap-Off Feature and Hysteresis

Td = (0.28) RC = 28 ms for components shown.

Figure 42. Timing Diagram

REVISION HISTORY SECTION

Released	Revision	Section	Changes
11/30/2010	А	New Release, Corporate format	1 MDS data sheet converted into one Corp. data sheet format. MNLP2953AM-X Rev 1A1 will be archived.
09/01/2011	В	Ordering Information, Absolute Maximum Ratings	Ordering Information — entered new 'GW' devices. Absolute Maximum Ratings — added new Theta JA and Theta JC numbers. LP2953QML Rev A will be archived.
09/20/2012	С	Connection Diagrams, Application Notes	Connection Diagrams and Applications Notes: Added: * Pins 1, 8, 9, 16 MUST BE SHORTED TOGETHER ON CUSTOMER'S P.C. BOARD APPLICATION. Rev B will be archived.

SNVS395C - NOVEMBER 2010-REVISED APRIL 2013

REVISION HISTORY

Cł	hanges from Revision B (April 2013) to Revision C	Pa	ge
•	Changed layout of National Data Sheet to TI format		17

27-Jul-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9233602QXA	ACTIVE	CFP	NAC	16	42	TBD	Call TI	Call TI	-55 to 125	LP2953AMGW /883 Q 5962-92336 02QXA ACO 02QXA >T	Samples
5962-9233602VXA	ACTIVE	CFP	NAC	16	42	TBD	Call TI	Call TI	-55 to 125	LP2953AMGW- QMLV Q 5962-92336 02VXA ACO 02VXA >T	Samples
LP2953 MDS	ACTIVE	DIESALE	Y	0	34	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LP2953AMGW-QMLV	ACTIVE	CFP	NAC	16	42	TBD	Call TI	Call TI	-55 to 125	LP2953AMGW- QMLV Q 5962-92336 02VXA ACO 02VXA >T	Samples
LP2953AMGW/883	ACTIVE	CFP	NAC	16	42	TBD	Call TI	Call TI	-55 to 125	LP2953AMGW /883 Q 5962-92336 02QXA ACO 02QXA >T	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

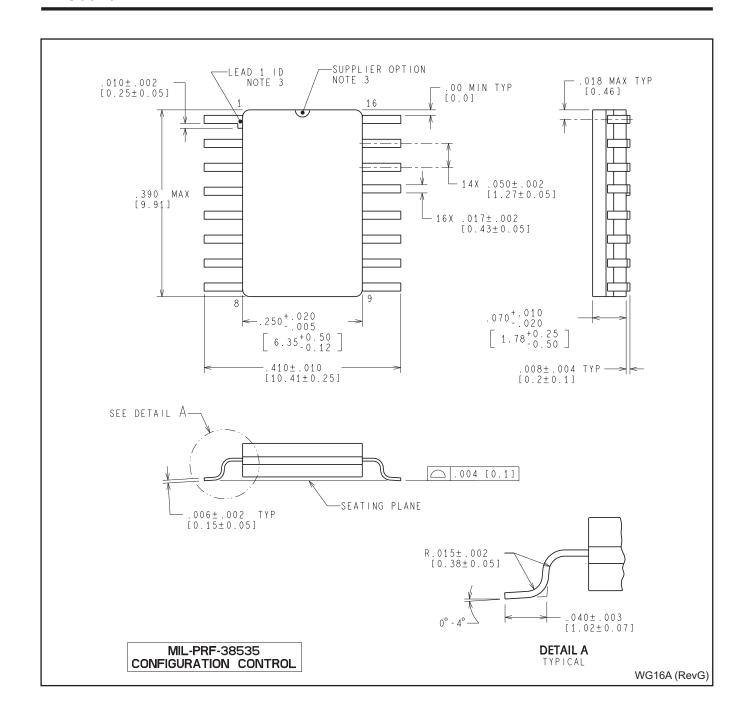
27-Jul-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


OTHER QUALIFIED VERSIONS OF LP2953QML, LP2953QML-SP:

Military: LP2953QML

Space: LP2953QML-SP

NOTE: Qualified Version Definitions:

- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity