www.fairchildsemi.com

AN-7732 FL7732 Design Tool Flow (Flyback)

Overview

This document is intended to provide in-depth guidance to using the Fairchild Design Tool for FL7732. Use the Design Tool with the product datasheet.

Figure 1. Design Flow

Step 1 — Enter Input Output Specification

Input Spec					
Min. Vin	90	Vac			
Max. Vin	140	Vac			
Output Spec					
Vout	22	V			
Max. Vout	28	V	✦		
Iout	380	mA			
Pout	8.36	W			

Step 2 — Transformer Design

				Max. duty is generally between $20 \sim 50\%$. High max. duty = \cdot Low conduction loss, Suitable for low-line Low max. duty = \cdot More Bmax margin, Suitable for high-line	
Trans	former De	sign		Max. Ton should be less than 10us	
Max. Duty	39	%		WRAX. TOH SHOULD OF TESS URALL FOUS.	
Max. Ton	6.500	us		This main this - Common is the second in Common and a second	
Switching freq.	60	kHz	<	This switching frequency is the operating frequency at the rated	
Max. Vcs	0.5	V		Vout condition.	
Efficiency	80	%		The switching frequency should be less than 65kHz.	
Ae	36.6	mm ²			
Bmax	0.3			Max. Vcs is max. peak CS voltage.	
Lm	0.982	mH		Enter Max. Vcs less than 0.67V because pulse by pulse CS	
Nps	3.223			voltage limit is 0.67V.	
Nas	0.821			Higher Nps makes higher max. Vcs in the primary side CC	
Nap	0.255			regulation.	
Np.min	75.347	т		So, when max. Vcs is highly set, Nps becomes higher.	
Np	76	Т			
Ns	23.578	T		Enter Np over Np min.	
Na	19.368	Т		If Np is too big to fit in transformer window reduce Max Duty	
Lik	10	uH		T The rest of to the manufacturer summons, residentially.	
				Make transformer according to the above spec. Then, enter Llk (Leakage inductance) after measuring.	

Step 3 — Snubber Design

Snubber Design			~		Vsn is snubber voltage. Vsn is generally set as 2∼2.5 times Nps∙Vo.
∆Vsn	5	V			
Rsn	242.7247	kohm		\sim	AVsn is generally set as 5% ripple of Vsn
Csn	2.746596	nF		E von is generally set as 570 hpple of 6	Z v sh is generally set as 570 hpple of v sh.

Step 4 — Control Circuit Design

Step 5 — Power Device Design

Related Resources

Locate the Design Tool at:

http://www.fairchildsemi.com/design_tools/led-driver-design-tool/

Consult the product datasheet at:

<u>FL7732 —Single-Stage PFC Primary-Side-Regulation Offline LED Driver</u>

Follow us on Twitter at:

<u>twitter.com/fairchildSemi</u>

View product and company videos, listen to podcasts, and comment on our blog at:

www.fairchildsemi.com/engineeringconnections

Visit us on Facebook at:

www.facebook.com/FairchildSemiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.