$\because \quad$ FREQUENCY

DEVICES"', INC.

Single Channel - C ϵ Certified

Description

Frequency Devices' Models 960 \& 960B instruments are single channel wideband highgain amplifier instruments. The bandwidth is adjustable from 10 Hz to 1 MHz wide and the gain can be set from 0 dB to 80 dB in 1 dB steps.

The Amplifier has an input impedance of $1 \mathrm{M} \Omega$ shunted by 47 pF in single ended mode and $2 \mathrm{M} \Omega$ shunted by 47 pF in differential ended mode. The common mode rejection ratio (CMRR) is greater than 55 dB in differential mode.

Standard operational features include:
Adjustable gain to 80 dB
Adjustable bandwidth to 1 MHz
Differential or single ended input
Differential or single ended output
Output can drive 50Ω load
Off-set adjustment
Overload indicator
BNC Connectors for all I/O
The optional battery powered 960B is particularly well suited to applications requiring isolation from an electrically noisy primary power source.

Compact size and manual rotary switch front panel controls makes the 960 amplifier a popular, cost effective, easy-to-use solution for signal conditioning applications in the following areas:

Biomedical Applications
Data Recording/Playback
EKG/EEG Data Amplification
Medical Research
Seismic Analysis
Vibration Analysis
Communications
The 960 \& 960B Amplifiers have a built in notch filter for 60 Hz or 50 Hz

Models

960 Standard AC Powered
960B AC Powered, with battery option

Location of Front Panel Terminals and Controls

A. POWER Status Lamp: This red LED indicates whether or not the amplifier power is on. On the 960B battery operated model this lamp will blink when the battery needs recharging.
B. dB Gain Switch: These selector switches allow the user to set the gain from 0 dB to 80 dB in 1 dB steps.
C. Bandwidth Switch: This switch changes the amplifier bandwidth from 10 Hz up to 1 MHz in decades.
D. Overload Lamp: This red LED comes on when the output of the amplifier is over driven and is no longer in linear gain mode. It will come on when the output is about 24 volts peak-to-peak. Reduce the gain or the input signal to turn this light off for best operation.
E. Input BNC: This is the input connector for the amplifier. In single input mode the input signal is applied to the center pin of the BNC connector and the shell of the BNC connector is grounded. In differential input mode the
non-inverting input is the center pin of the BNC connector and the inverting input is the shell of the BNC connector.
F. Single/Differential Switch: This switch selects whether the amplifier input is in single ended or differential mode.
G. GROUND Terminal: This "Banana" type test jack provides neat and secure access to the internal ground. This terminal is a convenient junction for grounding external system and measurement instrumentation and/or apparatus.
H. OFFSET Adjust: This adjustment is intended to zero the offset that results from the instrument's own internal circuitry.
I. Single/Differential Switch: This switch selects whether the amplifier output is in single ended or differential mode.
J. Output BNC: This is the output connector for the amplifier. In single output mode the output signal is applied to the center pin of
the BNC connector and the shell of the BNC connector is grounded. In differential output mode the non-inverting output is the center pin of the BNC connector and the inverting output is the shell of the BNC connector. When this switch is in differential mode the gain of the amplifier is automatically adjusted to correct the output gain.

Single Channel - C \in Certified

Model 960 Series

Input Characteristics	
Input Impedance:	
Differential	$2 \mathrm{M} \Omega$ Shunted by 47pF
Single Ended	$1 \mathrm{M} \Omega$ Shunted by 47pF
Coupling	DC
Input Voltage:	
Linear Differential	20 V p-p (Gain Set at 0 dB)
Max Safe	Any Continuous Value
Differential Voltage	between $\pm 40 \mathrm{~V}$
Bias Current	1 nA typ.; 2 nA max.
Common Mode	> 80 dB @ 1 kHz
Rejection ratio	$>70 \mathrm{~dB}$ @ 10 kHz
(0 dB Gain)	> 55 dB @ 100 kHz
Noise Voltage Density	
1 MHz Bandwidth	
Minimum Discernable	
Signal*	
@ 1 kHz with	1 mV @ 0 dB Gain
1 MHz Bandwidth	$20 \mu \mathrm{~V} @ 40 \mathrm{~dB}$ Gain
	$13 \mu \mathrm{~V} @ 70 \mathrm{~dB}$ Gain
@ 1 kHz with	1 mV @ 0 dB Gain
10 kHz Bandwidth	$10 \mu \mathrm{~V} @ 40 \mathrm{~dB}$ Gain
	$2 \mu \mathrm{~V} @ 70 \mathrm{~dB}$ Gain

Output Characteristics:	
Small Signal	
Bandwidth	>1 MHz @ 3 dB down
Output Max Voltage (Single Output)	20 V p-p for RL-2K Ω 10 V p-p for RL=50 (DC to 500 kHz)
	10 V p-p for RL=2K Ω 5 V p-p for $\mathrm{RL}=50 \Omega$ (500 kHz to 1 MHz)
Output Max Power	0.25 Watt for RL=50
Output Protection	Short Circuit to Ground
Output Impedance	50Ω Single 100Ω Differential
Gain Settings	0 to 80 dB in 1 dB Steps
Gain Accuracy	$\pm 0.2 \mathrm{~dB}$
Distortion @ 3.5 Vrms	$\begin{aligned} & >90 \mathrm{~dB} 1 \mathrm{kHz}-10 \mathrm{kHz} \\ & \text { (at } 0 \mathrm{~dB} \text { Gain) } \end{aligned}$
Overload Light	lights at $\approx 24 \mathrm{~V}$-p
Transfer Function of Filters	Bessel with Constant Delay in the Pass-Band
Offset Voltage	Adjustable to Zero
Offset Voltage Range	
0-60 dB Gain Setting	$\pm 0.5 \mathrm{VDC}$
70 dB Gain Setting	$\pm 1.5 \mathrm{VDC}$

[^0] $\because \quad$ FREQUENCY DEVICES"', INC.

Power Supply

AC Line Power Operation	960	10 Watts max.
	$960 B$	15 Wats max.

960B 15 Watts max.
Voltage Frequency Range-Rear Panel:
115 V
230 V
Fuse

Battery Operation (960B)

Time for full Charge
Battery Life
Battery Charger
Charge Status Indicator (Front Panel)
Battery Operation

Temperature

Operating Temperature:
Storage Temperature:
Mechanical
Dimensions
Weight 960
960B
Case Material
Color

105 to 125Vac @ 50/60Hz
210 to 250Vac @ 50Hz
$115 \mathrm{~V}=0.2$ Amp., $230 \mathrm{~V}=2 \mathrm{X}-0.1$ Amp.

10-12 hours
Approx. 500 Charge/Discharge Cycles
Automatic Uninterruptible
3 Status Levels
8 Hours typ.
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
3.7"H x 8.66"W x 10.6"D
$9.4 \mathrm{cmH} \times 22.0 \mathrm{cmW} \times 27.0 \mathrm{cmD}$
$3.5 \mathrm{lbs} ; 1.58 \mathrm{kgs}$
$5.4 \mathrm{lbs} ; 2.45 \mathrm{kgs}$
ABS plastic
Light Gray
A. AVAILABLE MODELS

1. 960*
2. $960 \mathrm{~B}^{*}$

Standard AC powered model ${ }^{1}$
AC powered with battery powered option ${ }^{1}$
*Please specify if you want the internal notch filter at 60 Hz or 50 Hz .

NOTE:

1. See page 3, item "Q" Voltage selector Module. At time of shipment, Voltage is pre-selected in the $115 \mathrm{~V}_{\mathrm{AC}} \mathrm{position} .\mathrm{For} 230 \mathrm{~V}_{\mathrm{AC}}$ operation, this module must be rotated 180 degrees and an additional fuse must be added.

[^0]: * Minimum Discernable Signal is that signal that makes the output of the 960 Amplifier increase by 3 dB when measured with a wideband (2 MHz) True RMS Voltmeter.

