# **Q0PACK Module**

The NXH80T120L2Q0S2/P2G is a power module containing a T-type neutral point clamped (NPC) three level inverter stage. The integrated field stop trench IGBTs and fast recovery diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

#### Features

- Low Switching Loss
- Low V<sub>CESAT</sub>
- Compact 65.9 mm x 32.5 mm x 12 mm Package
- Thermistor
- Options with pre–applied thermal interface material (TIM) and without pre–applied TIM
- Options with solderable pins and press-fit pins

#### **Typical Applications**

- Solar Inverter
- Uninterruptable Power Supplies

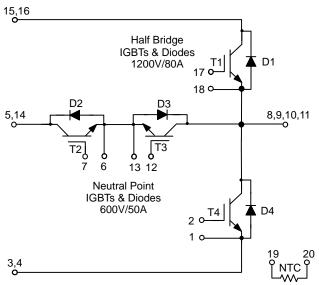
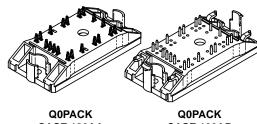



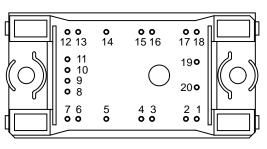

Figure 1. Schematic Diagram





Q0PACK CASE 180AA PRESS-FIT PINS

Q0PACK CASE 180AB SOLDERABLE PINS






NXH80T120L2Q0S2G = Specific Device Code G = Pb-free Package A = Assembly Site Code T = Test Site Code

YYWW = Year and Work Week Code

#### PIN ASSIGNMENTS



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the dimensions section on page 13 of this data sheet.

#### **Table 1. MAXIMUM RATINGS**

| Rating                                                                                          | Symbol              | Value      | Unit            |
|-------------------------------------------------------------------------------------------------|---------------------|------------|-----------------|
| HALF BRIDGE IGBT                                                                                |                     |            |                 |
| Collector-Emitter Voltage                                                                       | V <sub>CES</sub>    | 1200       | V               |
| Gate-Emitter Voltage                                                                            | V <sub>GE</sub>     | ±20        | V               |
| Continuous Collector Current @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                         | Ι <sub>C</sub>      | 67         | А               |
| Pulsed Collector Current ( $T_J = 175^{\circ}C$ )                                               | I <sub>Cpulse</sub> | 201        | А               |
| Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                            | P <sub>tot</sub>    | 158        | W               |
| Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, T_J $\leq~150^\circ C$            | T <sub>sc</sub>     | 5          | μs              |
| Minimum Operating Junction Temperature                                                          | T <sub>JMIN</sub>   | -40        | °C              |
| Maximum Operating Junction Temperature                                                          | T <sub>JMAX</sub>   | 150        | °C              |
| NEUTRAL POINT IGBT                                                                              |                     |            |                 |
| Collector–Emitter Voltage                                                                       | V <sub>CES</sub>    | 600        | V               |
| Gate-Emitter Voltage                                                                            | V <sub>GE</sub>     | ±20        | V               |
| Continuous Collector Current @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                         | Ι <sub>C</sub>      | 49         | А               |
| Pulsed Collector Current ( $T_J = 175^{\circ}C$ )                                               | I <sub>Cpulse</sub> | 147        | А               |
| Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                            | P <sub>tot</sub>    | 86         | W               |
| Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 400 V, T_J \le 150^\circ C               | T <sub>sc</sub>     | 5          | μs              |
| Minimum Operating Junction Temperature                                                          | T <sub>JMIN</sub>   | -40        | °C              |
| Maximum Operating Junction Temperature                                                          | T <sub>JMAX</sub>   | 150        | °C              |
| HALF BRIDGE DIODE                                                                               |                     |            |                 |
| Peak Repetitive Reverse Voltage                                                                 | V <sub>RRM</sub>    | 1200       | V               |
| Continuous Forward Current @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                           | l <sub>F</sub>      | 28         | А               |
| Repetitive Peak Forward Current (T <sub>J</sub> = 175°C, t <sub>p</sub> limited by $T_{Jmax}$ ) | I <sub>FRM</sub>    | 84         | А               |
| Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                            | P <sub>tot</sub>    | 73         | W               |
| Minimum Operating Junction Temperature                                                          | T <sub>JMIN</sub>   | -40        | °C              |
| Maximum Operating Junction Temperature                                                          | T <sub>JMAX</sub>   | 150        | °C              |
| NEUTRAL POINT DIODE                                                                             |                     |            |                 |
| Peak Repetitive Reverse Voltage                                                                 | V <sub>RRM</sub>    | 600        | V               |
| Continuous Forward Current @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                           | I <sub>F</sub>      | 33         | А               |
| Repetitive Peak Forward Current (T <sub>J</sub> = 175°C, $t_p$ limited by T <sub>Jmax</sub> )   | I <sub>FRM</sub>    | 99         | А               |
| Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$                            | P <sub>tot</sub>    | 63         | W               |
| Minimum Operating Junction Temperature                                                          | T <sub>JMIN</sub>   | -40        | °C              |
| Maximum Operating Junction Temperature                                                          | T <sub>JMAX</sub>   | 150        | °C              |
| THERMAL PROPERTIES                                                                              |                     |            |                 |
| Storage Temperature range                                                                       | T <sub>stg</sub>    | -40 to 125 | °C              |
| INSULATION PROPERTIES                                                                           |                     |            | -               |
| Isolation test voltage, t = 1 sec, 60 Hz                                                        | V <sub>is</sub>     | 3000       | V <sub>RM</sub> |
| Creepage distance                                                                               |                     | 12.7       | mm              |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

#### **Table 2. RECOMMENDED OPERATING RANGES**

| Rating                                | Symbol         | Min | Max | Unit |
|---------------------------------------|----------------|-----|-----|------|
| Module Operating Junction Temperature | Т <sub>Ј</sub> | -40 | 150 | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

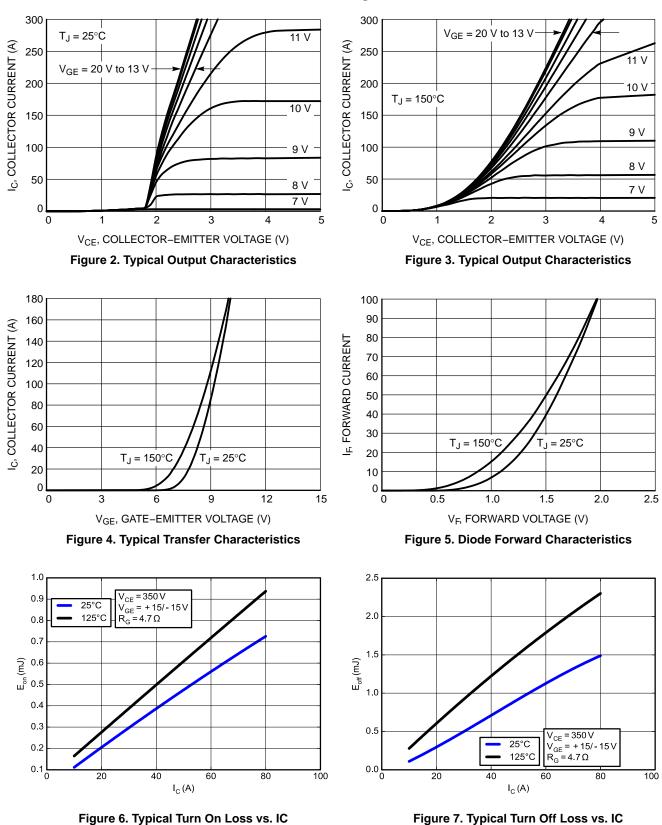
| Parameter                             | Test Conditions                                                                        | Symbol               | Min | Тур   | Max  | Unit |
|---------------------------------------|----------------------------------------------------------------------------------------|----------------------|-----|-------|------|------|
| HALF BRIDGE IGBT CHARACTERISTICS      |                                                                                        |                      |     | •     |      |      |
| Collector-Emitter Cutoff Current      | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 1200 V                                        | ICES                 | -   | _     | 300  | μΑ   |
| Collector-Emitter Saturation Voltage  | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 80 A, T <sub>J</sub> = 25°C                   | V <sub>CE(sat)</sub> | -   | 2.05  | 2.85 | V    |
|                                       | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 80 A, T <sub>J</sub> = 150°C                  |                      | -   | 2.10  | -    | 1    |
| Gate-Emitter Threshold Voltage        | $V_{GE} = V_{CE}$ , $I_C = 1.5$ mA                                                     | V <sub>GE(TH)</sub>  | -   | 5.45  | 6.4  | V    |
| Gate Leakage Current                  | V <sub>GE</sub> = 20 V, V <sub>CE</sub> = 0 V                                          | I <sub>GES</sub>     | -   | -     | 300  | nA   |
| Turn-on Delay Time                    | $T_J = 25^{\circ}C$                                                                    | t <sub>d(on)</sub>   | -   | 61    | -    | ns   |
| Rise Time                             | $V_{CE} = 350 \text{ V}, I_C = 60 \text{ A}$                                           | tr                   | -   | 28    | -    |      |
| Turn-off Delay Time                   | $V_{GE}$ = ±15V, $R_G$ = 4.7 $\Omega$                                                  | t <sub>d(off)</sub>  | -   | 205   | -    |      |
| Fall Time                             | -                                                                                      | t <sub>f</sub>       | -   | 41    | -    | 1    |
| Turn-on Switching Loss per Pulse      |                                                                                        | Eon                  | -   | 550   | -    | μJ   |
| Turn off Switching Loss per Pulse     |                                                                                        | E <sub>off</sub>     | -   | 1100  | -    |      |
| Turn-on Delay Time                    | T <sub>J</sub> = 125°C                                                                 | t <sub>d(on)</sub>   | -   | 58    | -    | ns   |
| Rise Time                             | $V_{CE} = 350 \text{ V}, I_{C} = 60 \text{ A}$                                         | t <sub>r</sub>       | -   | 30    | -    |      |
| Turn-off Delay Time                   | $V_{GE}$ = ±15 V, $R_G$ = 4.7 $\Omega$                                                 | t <sub>d(off)</sub>  | -   | 230   | -    | 1    |
| Fall Time                             | -                                                                                      | t <sub>f</sub>       | -   | 63    | -    | 1    |
| Turn-on Switching Loss per Pulse      |                                                                                        | E <sub>on</sub>      | -   | 720   | -    | μJ   |
| Turn off Switching Loss per Pulse     | 7                                                                                      | E <sub>off</sub>     | -   | 1700  | -    |      |
| Input Capacitance                     | V <sub>CE</sub> = 20 V, V <sub>GE</sub> = 0 V, f = 10 kHz                              | C <sub>ies</sub>     | -   | 19400 | -    | pF   |
| Output Capacitance                    | -                                                                                      | C <sub>oes</sub>     | -   | 400   | -    |      |
| Reverse Transfer Capacitance          | -                                                                                      | C <sub>res</sub>     | -   | 340   | _    |      |
| Total Gate Charge                     | $V_{CE} = 600 \text{ V}, \text{ I}_{C} = 80 \text{ A}, \text{ V}_{GE} = +15 \text{ V}$ | Qq                   | -   | 800   | _    | nC   |
| Thermal Resistance – chip-to-heatsink | Thermal grease, Thickness = 76 $\mu$ m ±2%, $\lambda$ = 2.9 W/mK                       | R <sub>thJH</sub>    | _   | 0.60  | _    | °C/W |
| NEUTRAL POINT DIODE CHARACTERIS       | rics                                                                                   | -                    |     | -     |      | •    |
| Diode Forward Voltage                 | I <sub>F</sub> = 60 A, T <sub>J</sub> = 25°C                                           | VF                   | -   | 1.7   | 2.2  | V    |
|                                       | I <sub>F</sub> = 60 A, T <sub>J</sub> = 150°C                                          | 1 1                  | -   | 1.6   | -    | 1    |
| Reverse Recovery Time                 | $T_J = 25^{\circ}C$                                                                    | t <sub>rr</sub>      | -   | 39    | -    | ns   |
| Reverse Recovery Charge               | $V_{CE} = 350 \text{ V}, I_{C} = 60 \text{ A}$                                         | Q <sub>rr</sub>      | -   | 1.1   | -    | μC   |
| Peak Reverse Recovery Current         | $V_{GE}$ = ±15 V, R <sub>G</sub> = 4.7 $\Omega$                                        | I <sub>RRM</sub>     | -   | 48    | -    | А    |
| Peak Rate of Fall of Recovery Current |                                                                                        | di/dt                | -   | 3400  | -    | A/μs |
| Reverse Recovery Energy               | -                                                                                      | E <sub>rr</sub>      | -   | 400   | -    | μJ   |
| Reverse Recovery Time                 | T <sub>J</sub> = 125°C                                                                 | t <sub>rr</sub>      | -   | 78    | -    | ns   |
| Reverse Recovery Charge               | $V_{CE} = 350 \text{ V}, I_{C} = 60 \text{ A}$                                         | Q <sub>rr</sub>      | -   | 2.0   | -    | μC   |
| Peak Reverse Recovery Current         | $V_{GE}$ = ±15 V, $R_G$ = 4.7 $\Omega$                                                 | I <sub>RRM</sub>     | -   | 59    | -    | А    |
| Peak Rate of Fall of Recovery Current |                                                                                        | di/dt                | -   | 1600  | -    | A/μs |
| Reverse Recovery Energy               |                                                                                        | E <sub>rr</sub>      | -   | 550   | -    | μJ   |
| Thermal Resistance – chip-to-heatsink | Thermal grease,<br>Thickness = 76 $\mu$ m ±2%, $\lambda$ = 2.9 W/mK                    | R <sub>thJH</sub>    | -   | 1.50  | -    | °C/W |
| NEUTRAL POINT IGBT CHARACTERISTI      | cs                                                                                     |                      |     | -     |      |      |
| Collector-Emitter Cutoff Current      | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 600 V                                         | I <sub>CES</sub>     | _   | -     | 200  | μΑ   |
| Collector–Emitter Saturation Voltage  | $V_{GE} = 15 \text{ V}, I_C = 50 \text{ A}, T_J = 25^{\circ}\text{C}$                  | V <sub>CE(sat)</sub> | -   | 1.40  | 1.75 | V    |
|                                       | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 50 A, T <sub>J</sub> = 150°C                  | (000)                | _   | 1.50  | -    | 1    |
| Gate-Emitter Threshold Voltage        | $V_{GE} = V_{CE}, I_{C} = 1.2 \text{ mA}$                                              | V <sub>GE(TH)</sub>  | _   | 5.45  | 6.4  | V    |
| Gate Leakage Current                  | $V_{GE} = 20 \text{ V}, V_{CE} = 0 \text{ V}$                                          | I <sub>GES</sub>     | _   | _     | 200  | nA   |

#### Test Conditions Unit Parameter Symbol Min Тур Max **NEUTRAL POINT IGBT CHARACTERISTICS** T」= 25°C Turn-on Delay Time 30 ns t<sub>d(on)</sub> $V_{CE}$ = 350 V, $I_C$ = 60 A **Rise Time** \_ tr 19 $V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 4.7 \Omega$ Turn-off Delay Time t<sub>d(off)</sub> 110 Fall Time tf \_ 23 \_ Turn-on Switching Loss per Pulse $\mathsf{E}_{\mathsf{on}}$ μJ 800 Turn off Switching Loss per Pulse Eoff \_ 480 Turn-on Delay Time T<sub>J</sub> = 125°C \_ \_ ns t<sub>d(on)</sub> 32 $V_{CE} = 350 \text{ V}, I_{C} = 60 \text{ A}$ **Rise Time** \_ \_ tr 18 $V_{GE}$ = ±15 V, $R_{G}$ = 4.7 $\Omega$ Turn-off Delay Time t<sub>d(off)</sub> \_ 120 \_ Fall Time tf \_ \_ 35 Turn-on Switching Loss per Pulse Eon μJ \_ \_ 1100 Turn off Switching Loss per Pulse Eoff \_ 880 \_ V<sub>CE</sub> = 20 V, V<sub>GE</sub> = 0 V, f = 10 kHz pF Input Capacitance Cies \_ 9400 \_ Coes **Output Capacitance** \_ 280 \_ **Reverse Transfer Capacitance** 250 Cres \_ \_ Qg $V_{CE} = 480 \text{ V}, I_{C} = 50 \text{ A}, V_{GE} = +15 \text{ V}$ **Total Gate Charge** 395 \_ nC °C/W Thermal Resistance - chip-to-heatsink Thermal grease, R<sub>thJH</sub> 1.10 Thickness = 76 $\mu$ m ±2%, $\lambda$ = 2.9 W/mK HALF BRIDGE DIODE CHARACTERISTICS **Diode Forward Voltage** $I_{\rm F} = 40 \text{ A}, T_{\rm J} = 25^{\circ}\text{C}$ VF 2.11 3.10 V $I_F = 40 \text{ A}, T_J = 150^{\circ}\text{C}$ 1.50 \_ \_ $T_J = 25^{\circ}C$ Reverse recovery time 45 trr \_ \_ ns $V_{CE} = 350 \text{ V}, I_{C} = 60 \text{ A}$ Reverse recovery charge Q<sub>rr</sub> 2.7 μC \_ \_ $V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 4.7 \Omega$ Peak reverse recovery current 110 \_ А IRRM Peak rate of fall of recovery current di/dt \_ 7100 \_ A/μs Reverse recovery energy Err \_ 1000 \_ μJ T<sub>.1</sub> = 125°C 185 Reverse recovery time ns t<sub>rr</sub> \_ $V_{CE} = 350 \text{ V}, I_{C} = 60 \text{ A}$ Q<sub>rr</sub> Reverse recovery charge 6 \_ μC $V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 4.7 \Omega$ \_ Peak reverse recovery current I<sub>RRM</sub> \_ 150 А di/dt Peak rate of fall of recovery current 5900 A/μs \_ \_ Reverse recovery energy Err 1900 μJ Thermal grease, °C/W Thermal Resistance - chip-to-heatsink $\mathsf{R}_{\mathsf{thJH}}$ 1.30 Thickness = 76 $\mu$ m ±2%, $\lambda$ = 2.9 W/mK THERMISTOR CHARACTERISTICS Nominal resistance T = 25°C R<sub>25</sub> 22 kΩ T = 100°C 1486 Nominal resistance R<sub>100</sub> \_ 0 Deviation of R25 $\Delta R/R$ -5 \_ 5 % Power dissipation 200 mW $P_D$ \_ \_ Power dissipation constant 2 mW/K Κ B-value B(25/50), tolerance ±3% \_ 3950 \_

#### Table 3. ELECTRICAL CHARACTERISTICS T<sub>J</sub> = 25°C unless otherwise noted

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3998


\_

\_

Κ

B(25/100), tolerance ±3%

**B**-value



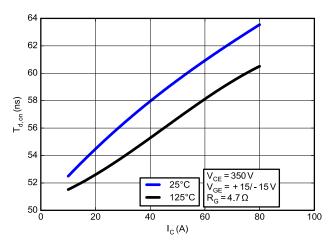



Figure 8. Typical On Switching Times vs. IC

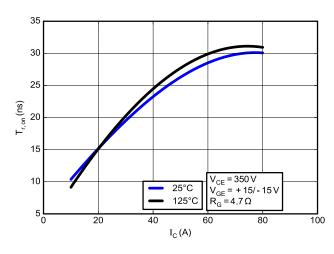
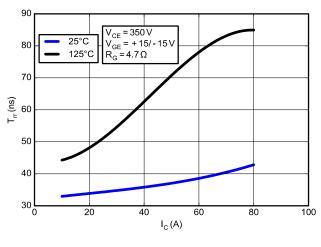




Figure 10. Typical On Rise Times vs. IC





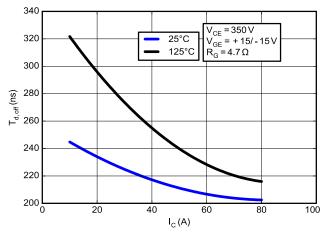
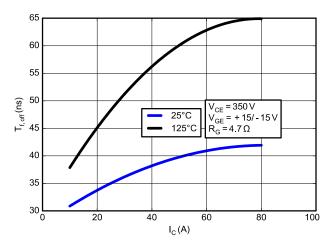
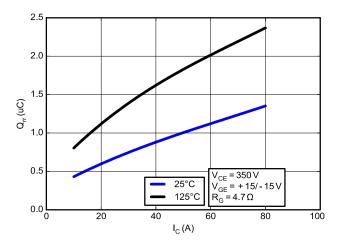
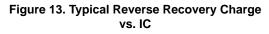
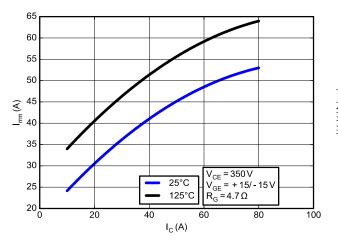
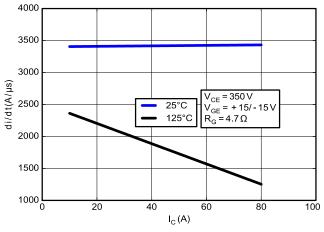
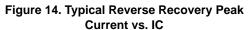



Figure 9. Typical Off Switching Times vs. IC



Figure 11. Typical Off Fall Times vs. IC











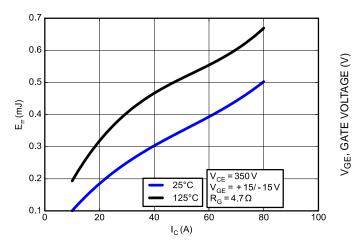



Figure 16. Typical Reverse Recovery Energy vs. IC

Figure 15. Typical Diode Current Slope vs. IC

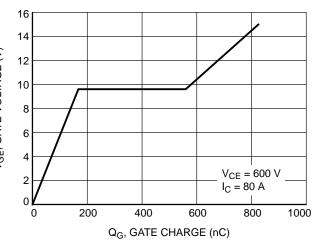
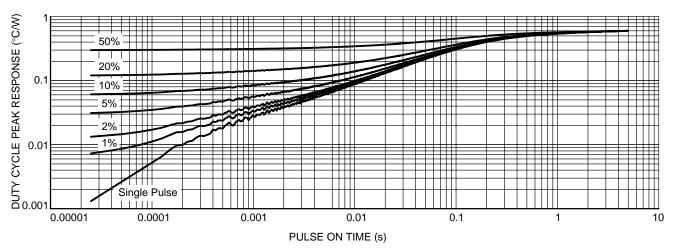




Figure 17. Gate Voltage vs. Gate Charge



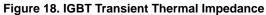
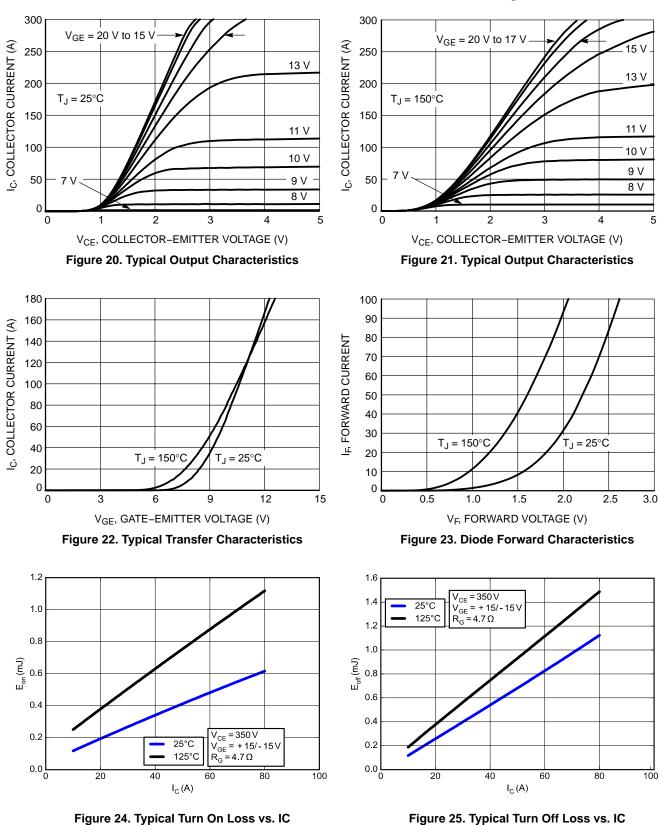






Figure 19. Diode Transient Thermal Impedance



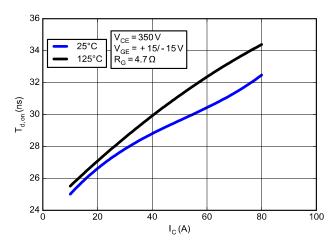



Figure 26. Typical On Switching Times vs. IC

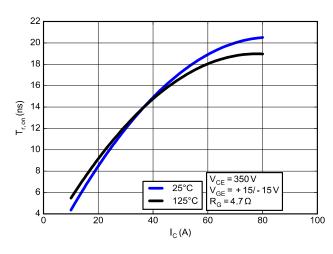
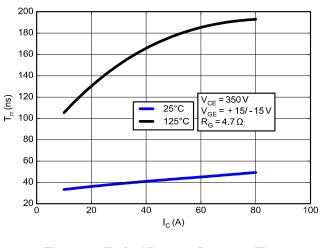




Figure 28. Typical On Rise Times vs. IC





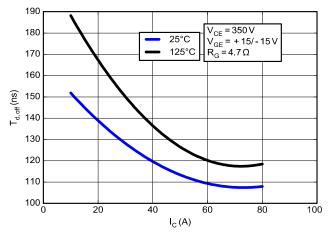
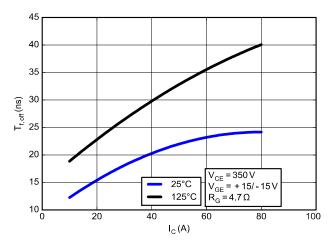
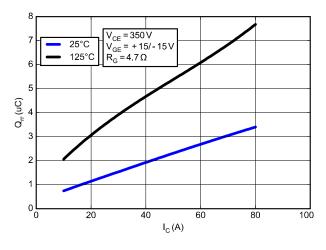
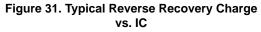
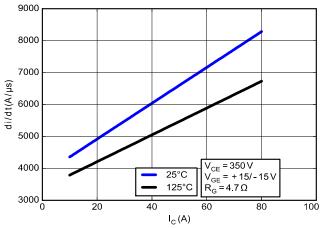
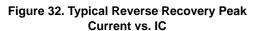



Figure 27. Typical Off Switching Times vs. IC



Figure 29. Typical Off Fall Times vs. IC











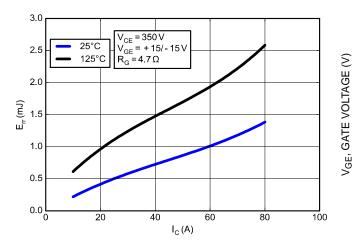



Figure 34. Typical Reverse Recovery Energy vs. IC

Figure 33. Typical Diode Current Slope vs. IC

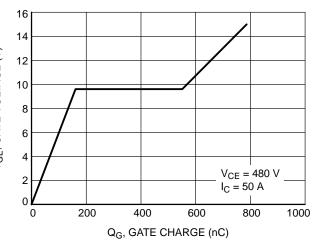
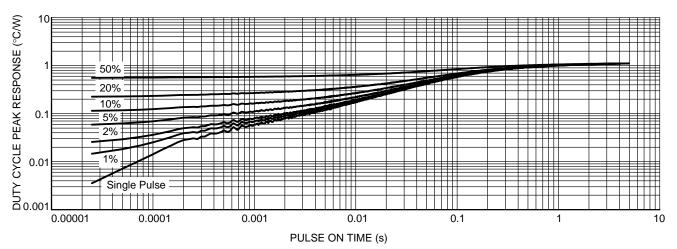
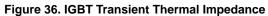





Figure 35. Gate Voltage vs. Gate Charge





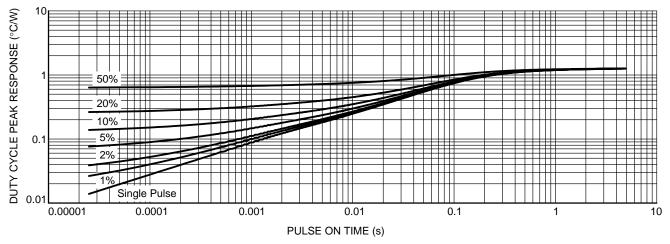
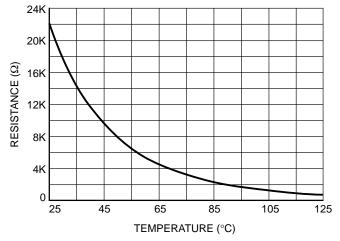
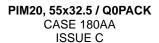
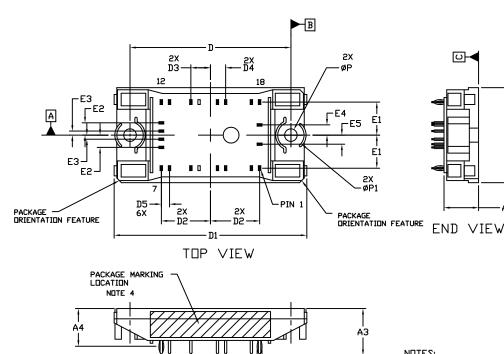




Figure 37. Diode Transient Thermal Impedance

### **TYPICAL CHARACTERISTICS – Thermistor**




#### ORDERING INFORMATION

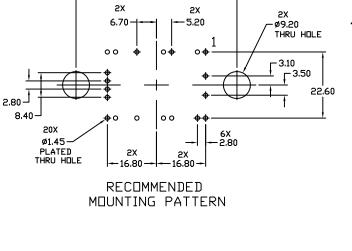
| Orderable Part Number | Marking           | Package                                                                                                  | Shipping                |
|-----------------------|-------------------|----------------------------------------------------------------------------------------------------------|-------------------------|
| NXH80T120L2Q0P2G      | NXH80T120L2Q0P2G  | Q0PACK – Case 180AA<br>(Pb–Free and Halide–Free)                                                         | 24 Units / Blister Tray |
| NXH80T120L2Q0S2G      | NXH80T120L2Q0S2G  | Q0PACK – Case 180AB<br>(Pb–Free and Halide–Free)                                                         | 24 Units / Blister Tray |
| NXH80T120L2Q0S2TG     | NXH80T120L2Q0S2TG | Q0PACK – Case 180AB<br>with pre–applied thermal interface material<br>(TIM)<br>(Pb–Free and Halide–Free) | 24 Units / Blister Tray |

#### PACKAGE DIMENSIONS





-20X b


NDTE 3

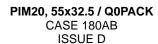
0.40 C A B

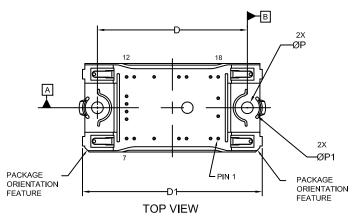
|   |     | MILLIMETERS |         |  |  |
|---|-----|-------------|---------|--|--|
|   | DIM | MIN.        | MAX.    |  |  |
|   | Α   | 11.33       | 12.33   |  |  |
|   | A3  | 15.50       | 16.50   |  |  |
| - | A4  | 12.88       | B BSC   |  |  |
| 1 | ю   | 1.61        | 1.71    |  |  |
|   | b1  | 0.75        | 0.85    |  |  |
| F | D   | 54.80       | 55.20   |  |  |
| Ī | D1  | 65.70       | 70.10   |  |  |
|   | D2  | 16.80 BSC   |         |  |  |
|   | D3  | 6.70 BSC    |         |  |  |
| - | D4  | 5.20 BSC    |         |  |  |
| A | D5  | 2.80        | BSC BSC |  |  |
|   | E   | 32.30       | 32.70   |  |  |
| 1 | E1  | 11.30       | BSC     |  |  |
|   | E2  | 4.20 BSC    |         |  |  |
|   | E3  | 1.40 BSC    |         |  |  |
|   | E4  | 3.50 BSC    |         |  |  |
|   | E5  | 3.10 BSC    |         |  |  |
|   | Р   | 4.10        | 4.50    |  |  |
|   | P1  | 8.50        | 9.50    |  |  |

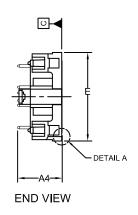
NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS 6 AND 61 APPLY TO THE PLATED З. TERMINALS AND ARE MEASURED AT DIMENSION A4.
- PACKAGE MARKING IS LOCATED AS SHOWN ON 4. THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

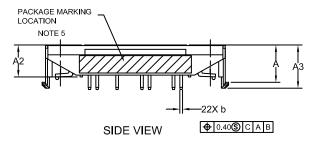



SIDE VIEW


55.00


20X b1

NDTE 3


#### PACKAGE DIMENSIONS





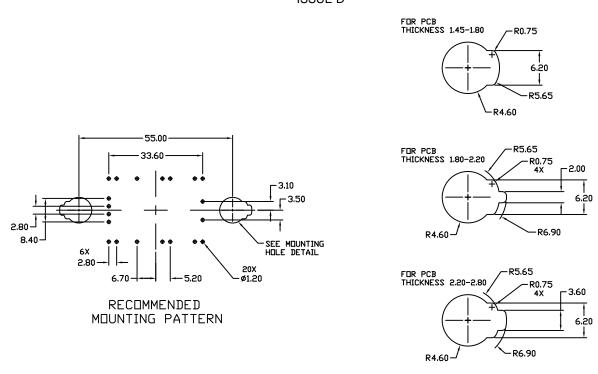


|     | MILLIMETERS |       |  |  |
|-----|-------------|-------|--|--|
| DIM | MIN.        | NOM.  |  |  |
| А   | 13.50       | 13.90 |  |  |
| A1  | 0.10        | 0.30  |  |  |
| A2  | 11.50       | 11.90 |  |  |
| A3  | 15.65       | 16.05 |  |  |
| A4  | 16.35 REF   |       |  |  |
| b   | 0.95        | 1.05  |  |  |
| D   | 54.80       | 55.20 |  |  |
| D1  | 65.60       | 66.20 |  |  |
| Е   | 32.20       | 32.80 |  |  |
| Р   | 4.20        | 4.40  |  |  |
| P1  | 8.90        | 9.10  |  |  |



|        | <b> </b> -−−A1 |
|--------|----------------|
| DETAIL | . A            |

NOTE 4


|     | PIN POSITION |        |     | PIN POS | SITION |
|-----|--------------|--------|-----|---------|--------|
| PIN | Х            | Y      | PIN | Х       | Y      |
| 1   | 16.80        | -11.30 | 11  | -16.80  | 4.20   |
| 2   | 14.00        | -11.30 | 12  | -16.80  | 11.30  |
| 3   | 5.20         | -11.30 | 13  | -14.00  | 11.30  |
| 4   | 2.40         | -11.30 | 14  | -6.70   | 11.30  |
| 5   | -6.70        | -11.30 | 15  | 2.40    | 11.30  |
| 6   | -14.00       | -11.30 | 16  | 5.20    | 11.30  |
| 7   | -16.80       | -11.30 | 17  | 14.00   | 11.30  |
| 8   | -16.80       | -4.20  | 18  | 16.80   | 11.30  |
| 9   | -16.80       | -1.40  | 19  | 16.80   | 3.50   |
| 10  | -16.80       | 1.40   | 20  | 16.80   | -3.10  |
| -   |              |        |     |         |        |

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION b APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

#### PACKAGE DIMENSIONS

PIM20, 55x32.5 / Q0PACK CASE 180AB ISSUE D



MOUNTING HOLE DETAIL

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all aws, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Furone, Middle Fast and Africa Technical Support: ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

For additional information, please contact your local Sales Representative