74HC7403-Q100; 74HCT7403-Q100

4-bit x 64-word FIFO register; 3-state

Rev. 1 — 21 September 2012

Product data sheet

1. General description

The 74HC7403-Q100; 74HCT7403-Q100 is an expandable, First-In First-Out (FIFO) memory organized as 64 words by 4 bits. A guaranteed 15 MHz data-rate makes it ideal for high-speed applications. A higher data-rate can be obtained in applications where the status flags are not used (burst-mode). With separate controls for shift-in (SI) and shift-out (\overline{SO}), reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a master-reset input (\overline{MR}), an output enable input (\overline{OE}) and flags. The data-in-ready (DIR) and data-out-ready (DOR) flags indicate the status of the device. Inputs include clamp diodes that enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

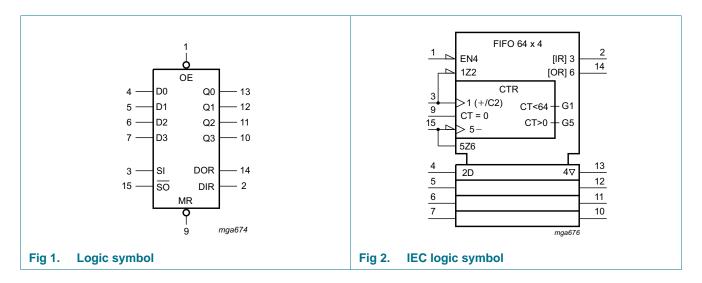
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Synchronous or asynchronous operation
- 30 MHz (typical) shift-in and shift-out rates
- Readily expandable in word and bit dimensions
- Pinning arranged for easy board layout: input pins directly opposite output pins
- Input levels:
 - ◆ For 74HC7403-Q100: CMOS level
 - ◆ For 74HCT7403-Q100: TTL level
- 3-state outputs
- Complies with JEDEC standard JESD7A
- ESD protection:
 - ◆ MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

3. Applications

- High-speed disc or tape controller
- Communications buffer



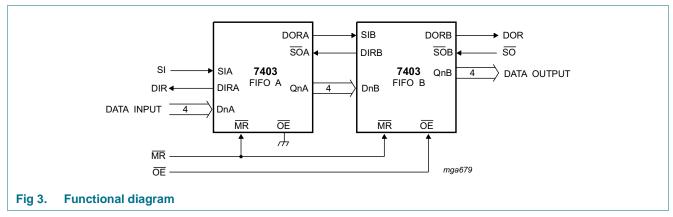
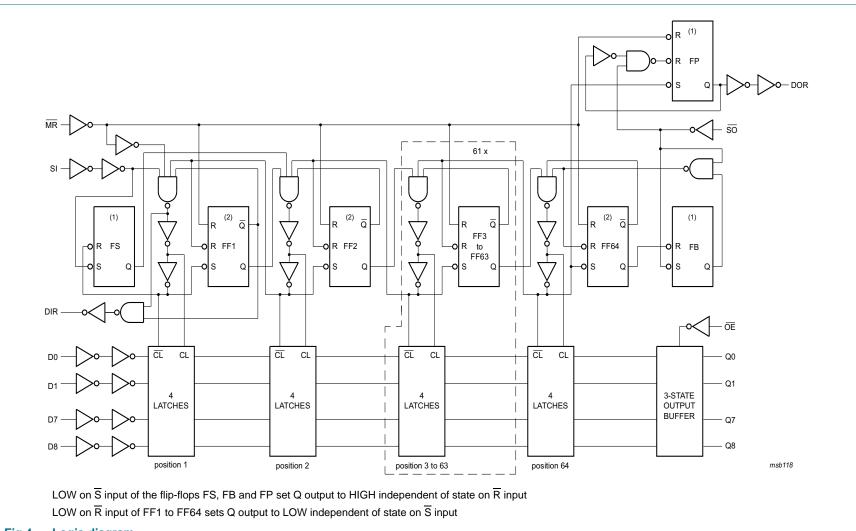
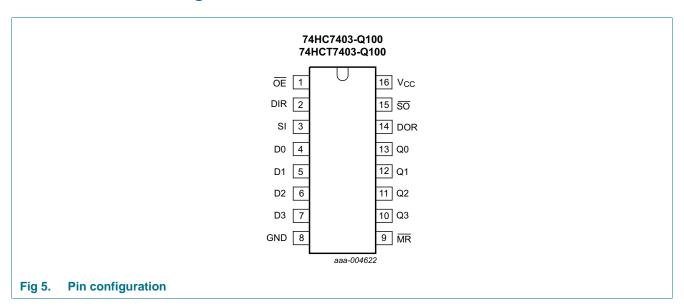

4. Ordering information

Table 1. Ordering information

Type number	Package											
	Temperature range	Name	Description	Version								
74HC7403D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1								
74HCT7403D-Q100			body width 3.9 mm									


5. Functional diagram


All information provided in this document is subject to legal disclaime

Rev. 1 —

Product data sheet

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

I GOIO E.	i iii accomptioni	
Symbol	Pin	Description
ŌĒ	1	output enable input (active LOW)
DIR	2	data-in-ready output
SI	3	shift-in input (active HIGH)
D0 to D3	4, 5, 6, 7	parallel data input
GND	8	ground (0 V)
MR	9	asynchronous master-reset input (active LOW)
Q0 to Q3	13, 12, 11, 10	data output
DOR	14	data-out-ready output
SO	15	shift-out input (active LOW)
V _{CC}	16	supply voltage

7. Functional description

A DIR flag indicates the input stage status, either empty and ready to receive data (DIR = HIGH) or full and busy (DIR = LOW). When DIR and SI are HIGH, data present at D0 to D3 is shifted into the input stage; once complete DIR goes LOW. When SI is set LOW, data is automatically shifted to the output stage or to the last empty location. DIR set HIGH indicates a FIFO which can receive data.

A DOR flag indicates the output stage status, either data available (DOR = HIGH) or busy (DOR = LOW). When \overline{SO} and DOR are HIGH, data is available at the outputs (Q0 to Q3). When \overline{SO} is set LOW new data may be shifted into the output stage, once complete DOR is set HIGH.

7.1 Expanded format

The DOR and DIR signals are used to allow the 74HC7403-Q100; 74HCT7403-Q100 to be cascaded. Both parallel and serial expansion is possible. (see Figure 18).

Serial expansion is only possible with typical devices.

7.1.1 Parallel expension

Parallel expension is accomplished by logically ANDing the DOR and DIR signals to form a composite signal.

7.1.2 Serial expension

Parallel expension is accomplished by:

- Tying the data outputs of the first device to the data inputs of the second device.
- Connecting the DOR pin of the first device to the SI pin of the second device.
- Connecting the SO pin of the first device to the DIR pin of the second device.

8. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	-	±20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-	±35	mA
I _{CC}	supply current		-	+70	mA
I_{GND}	ground current		-	-70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[1] -	500	mW

^[1] For SO16 packages: above 70 °C the value of Ptot derates linearly with 8 mW/K.

9. Recommended operating conditions

Table 4. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC74	403-Q10	0	74HCT7403-Q100			Unit
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T_{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 5. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC74	03-Q100						'		1	
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	4.2	-	V
V_{IL}	LOW-level	$V_{CC} = 2.0 \text{ V}$	-	8.0	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 \text{ V}$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -10 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		I_O = 20 μ A; V_{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 10 mA; V_{CC} = 6.0 V	-	0.15	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
l _{oz}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.5	-	±5.0	-	±10.0	μА

74HC_HCT7403_Q100

 Table 5.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	50	-	500	-	1000	μΑ
Cı	input capacitance		-	3.5	-					pF
74HCT7	403-Q100									
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_{O} = -20 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -8 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_{O} = 20 \mu A$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 8 \text{ mA}$	-	0.15	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND per input pin; other inputs at V_{CC} or GND; $I_O = 0$ A	-	-	±0.5	-	±5.0	-	±10	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	50	-	500	-	1000	μΑ
Δl _{CC}	additional supply current	$\begin{aligned} &V_{I} = V_{CC} - 2.1 \text{ V;} \\ &\text{other inputs at } V_{CC} \text{ or GND;} \\ &V_{CC} = 4.5 \text{ V to } 5.5 \text{ V;} \\ &I_{O} = 0 \text{ A} \end{aligned}$								
		per input pin; Dn inputs	-	75	270	-	338	-	368	μΑ
		per input pin; OE input	-	100	360	-	450	-	490	μΑ
		per input pin; SI input	-	150	540	-	675	-	735	μΑ
		per input pin; MR input	-	150	540	-	675	-	735	μΑ
		per input pin; SO input	-	150	540	-	675	-	735	μΑ
C _I	input capacitance		-	3.5	-					pF

11. Dynamic characteristics

Table 6. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit see Figure 17.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HC74	03-Q100				'		•	'			
t _{pd}	propagation delay	MR to DIR or DOR; see Figure 8	<u>[1]</u>								
		$V_{CC} = 2.0 \text{ V}$		-	69	210	-	265	-	315	ns
		$V_{CC} = 4.5 \text{ V}$		-	25	42	-	53	-	63	ns
		$V_{CC} = 6.0 \text{ V}$		-	20	36	-	45	-	54	ns
		SI to DIR; see Figure 6	[1]								
		$V_{CC} = 2.0 \text{ V}$		-	66	205	-	255	-	310	ns
		$V_{CC} = 4.5 \text{ V}$		-	24	41	-	51	-	62	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	15	-	-	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}$		-	19	35	-	43	-	53	ns
		SO to DOR; see Figure 9	[1]								
		$V_{CC} = 2.0 \text{ V}$		-	94	290	-	365	-	435	ns
		$V_{CC} = 4.5 \text{ V}$		-	34	58	-	73	-	87	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	15	-	-	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}$		-	27	49	-	62	-	74	ns
		DOR to Qn; see Figure 10	[1]								
		$V_{CC} = 2.0 \text{ V}$		-	11	35	-	45	-	55	ns
		$V_{CC} = 4.5 \text{ V}$		-	4	7	-	9	-	11	ns
		$V_{CC} = 6.0 \text{ V}$		-	3	6	-	8	-	9	ns
		SO to Qn; see Figure 14	[1]								
		$V_{CC} = 2.0 \text{ V}$		-	105	325	-	406	-	488	ns
		$V_{CC} = 4.5 V$		-	38	65	-	81	-	98	ns
		$V_{CC} = 6.0 \text{ V}$		-	30	55	-	69	-	83	ns
t _{PHL}	HIGH to	MR to Qn; see Figure 8									
	LOW propagation	$V_{CC} = 2.0 \text{ V}$		-	52	160	-	200	-	240	ns
	delay	$V_{CC} = 4.5 V$		-	19	32	-	40	-	48	ns
		$V_{CC} = 6.0 \text{ V}$		-	15	27	-	34	-	41	ns
t _{PLH}	LOW to	SI to DOR; see Figure 10	[5]								
	HIGH propagation	$V_{CC} = 2.0 \text{ V}$		-	2.2	7	-	8.8	-	10.5	ns
	delay	$V_{CC} = 4.5 \text{ V}$		-	0.8	1.4	-	1.8	-	2.1	ns
	•	$V_{CC} = 6.0 \text{ V}$		-	0.6	1.2	-	1.5	-	1.8	ns
		SO to DIR; see Figure 7	[6]								
		$V_{CC} = 2.0 \text{ V}$		-	2.8	9	-	11.2	-	13.5	ns
		V _{CC} = 4.5 V		-	1.0	1.8	-	2.2	-	2.7	ns
		$V_{CC} = 6.0 \text{ V}$		-	8.0	1.5	-	1.9	-	2.3	ns

74HC_HCT7403_Q100

 Table 6.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50$ pF unless otherwise specified; for test circuit see Figure 17.

Symbol	Parameter	Conditions			25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
t _{en}	enable time	OE to Qn; see Figure 16	[2]						ı		
		$V_{CC} = 2.0 \text{ V}$		-	44	150	-	190	-	225	ns
		$V_{CC} = 4.5 \text{ V}$		-	16	30	-	38	-	45	ns
		$V_{CC} = 6.0 \text{ V}$		-	13	26	-	32	-	38	ns
t _{dis}	disable time	OE to Qn; see Figure 16	[3]								
		$V_{CC} = 2.0 \text{ V}$		-	50	150	-	190	-	225	ns
		$V_{CC} = 4.5 \text{ V}$		-	18	30	-	38	-	45	ns
		$V_{CC} = 6.0 \text{ V}$		-	14	26	-	33	-	38	ns
t _t	transition	Qn; see Figure 14	[4]								
	time	$V_{CC} = 2.0 \text{ V}$		-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
		$V_{CC} = 6.0 \text{ V}$		-	4	10	-	13	-	15	ns
t _W	pulse width	SI HIGH or LOW; see Figure 6									
		V _{CC} = 2.0 V		35	11	-	45	-	55	-	ns
		$V_{CC} = 4.5 \text{ V}$		7	4	-	9	-	11	-	ns
		$V_{CC} = 6.0 \text{ V}$		6	3	-	8	-	9	-	ns
		SO HIGH or LOW; see Figure 9									
		$V_{CC} = 2.0 \text{ V}$		70	22	-	90	-	105	-	ns
		$V_{CC} = 4.5 \text{ V}$		14	8	-	18	-	21	-	ns
		$V_{CC} = 6.0 \text{ V}$		12	6	-	15	-	18	-	ns
		DIR HIGH; see Figure 7									
		$V_{CC} = 2.0 \text{ V}$		10	41	130	8	165	8	195	ns
		$V_{CC} = 4.5 \text{ V}$		5	15	26	4	33	4	39	ns
		$V_{CC} = 6.0 \text{ V}$		4	12	22	3	28	3	23	ns
		DOR HIGH; see Figure 10									
		$V_{CC} = 2.0 \text{ V}$		14	52	160	12	200	12	240	ns
		V _{CC} = 4.5 V		7	19	32	6	40	6	48	ns
		$V_{CC} = 6.0 \text{ V}$		6	15	27	5	34	5	41	ns
		MR LOW; see Figure 8									
		$V_{CC} = 2.0 \text{ V}$		120	39	-	150	-	180	-	ns
		V _{CC} = 4.5 V		24	14	-	30	-	36	-	ns
		$V_{CC} = 6.0 \text{ V}$		20	11	-	26	-	31	-	ns
t _{rec}	recovery	MR to SI; see Figure 15									
	time	V _{CC} = 2.0 V		80	24	-	100	-	120	-	ns
		V _{CC} = 4.5 V		16	8	-	20	-	24	-	ns
		V _{CC} = 6.0 V		14	7	-	17	-	20	-	ns

 Table 6.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit see Figure 17.

Symbol	Parameter	Conditions		25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Uni
			Min	Тур	Max	Min	Max	Min	Max	
t _{su}	set-up time	Dn to SI; see Figure 13					I	I		
		$V_{CC} = 2.0 \text{ V}$	-8	-36	-	-6	-	-6	-	ns
		$V_{CC} = 4.5 \text{ V}$	-4	-13	-	-3	-	-3	-	ns
		$V_{CC} = 6.0 \text{ V}$	-3	-10	-	-3	-	-3	-	ns
t _h	hold time	Dn to SI; see Figure 13								
		$V_{CC} = 2.0 \text{ V}$	135	44	-	170	-	205	-	ns
		$V_{CC} = 4.5 \text{ V}$	27	16	-	34	-	12	-	ns
		$V_{CC} = 6.0 \text{ V}$	5	13	-	29	-	14	-	ns
f _{max}	maximum frequency	SI, SO burst mode; see Figure 11 and Figure 12								
		$V_{CC} = 2.0 \text{ V}$	3.6	9.9	-	2.8	-	2.4	-	МН
		$V_{CC} = 4.5 \text{ V}$	18	30	-	14	-	12	-	МН
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$	-	30	-	-	-	-	-	МН
		$V_{CC} = 6.0 \text{ V}$	21	36	-	16	-	14	-	МН
		SI, SO using flags; see Figure 6 and Figure 9								
		$V_{CC} = 2.0 \text{ V}$	3.6	9.9	-	2.8	-	2.4	-	МН
		$V_{CC} = 4.5 \text{ V}$	18	30	-	14	-	12	-	МН
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$	-	30	-	-	-	-	-	МН
		$V_{CC} = 6.0 \text{ V}$	21	36	-	16	-	14	-	МН
		SI, SO cascaded; see Figure 6 and Figure 9								
		V _{CC} = 2.0 V	-	7.6	-	-	-	-	-	МН
		$V_{CC} = 4.5 \text{ V}$	-	23	-	-	-	-	-	МН
		$V_{CC} = 6.0 \text{ V}$	-	27	-	-	-	-	-	МН
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	<u>[7]</u> -	475	-	-	-	-	-	pF

 Table 6.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50$ pF unless otherwise specified; for test circuit see Figure 17.

	03-Q100 propagation delay	MR to DIR or DOR; see		Min	Тур	Max	Min	Max	Min	Max	
t _{pd}	propagation	MR to DIR or DOR; see				Max		IVIAA	IVIIII	IVIGA	
		MR to DIR or DOR; see						I	I		
	-	Figure 8	<u>[1]</u>								
		V _{CC} = 4.5 V		-	30	51	-	53	-	63	ns
		SI to DIR; see Figure 6	[1]								
		V _{CC} = 4.5 V		-	25	43	-	54	-	65	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	17	-	-	-	-	-	ns
		SO to DOR; see Figure 9	<u>[1]</u>								
		V _{CC} = 4.5 V		-	36	61	-	76	-	92	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	17	-	-	-	-	-	ns
		DOR to Qn; see Figure 10	[1]								
		V _{CC} = 4.5 V		-	7	12	-	15	-	18	ns
		SO to Qn; see Figure 14	[1]								
		V _{CC} = 4.5 V		-	42	72	-	90	-	108	ns
	HIGH to	MR to Qn; see Figure 8									
	LOW propagation delay	$V_{CC} = 4.5 \text{ V}$		-	22	38	-	48	-	57	ns
	LOW to	SI to DOR; see Figure 10	[5]								
	HIGH	$V_{CC} = 4.5 \text{ V}$		-	0.8	1.4	-	1.75	-	2.1	ns
	propagation delay	SO to DIR; see Figure 7	[6]								
	,	$V_{CC} = 4.5 \text{ V}$		-	1.0	1.8	-	2.25	-	2.7	ns
t _{en}	enable time	OE to Qn; see Figure 16	[2]								
		V _{CC} = 4.5 V		-	16	30	-	38	-	45	ns
t _{dis}	disable time	OE to Qn; see Figure 16	[3]								
		V _{CC} = 4.5 V		-	19	30	-	38	-	45	ns
-	transition	Qn; see Figure 14	<u>[4]</u>								
•	time	$V_{CC} = 4.5 \text{ V}$		-	5	12	-	15	-	18	ns
t_W	pulse width	SI HIGH or LOW; see Figure 6									
		V _{CC} = 4.5 V		9	5	-	6	-	8	-	ns
		SO HIGH or LOW; see Figure 9									
		$V_{CC} = 4.5 \text{ V}$		14	8	-	18	-	21	-	ns
		DIR HIGH; see Figure 7									
		V _{CC} = 4.5 V		5	17	29	4	36	4	44	ns
		DOR HIGH; see Figure 10									
		V _{CC} = 4.5 V		7	21	36	6	45	6	54	ns
		MR LOW; see Figure 8									
		V _{CC} = 4.5 V		26	15	-	33	-	39	-	ns

74HC_HCT7403_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

 Table 6.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 17.

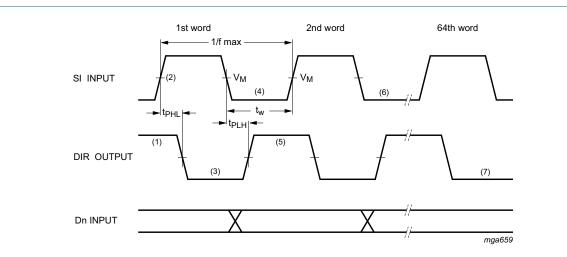
Symbol	Parameter	Conditions			25 °C		-40 °C 1	to +85 °C	-40 °C 1	to +125 °C	Unit
			r	Min	Тур	Max	Min	Max	Min	Max	
t _{rec}	recovery	MR to SI; see Figure 15	'			'	'		'		
	time	$V_{CC} = 4.5 \text{ V}$		18	10	-	23	-	27	-	ns
t _{su}	set-up time	Dn to SI; see Figure 13									
		$V_{CC} = 4.5 \text{ V}$		-5	-16	-	-4	-	-4	-	ns
t _h	hold time	Dn to SI; see Figure 13									
		$V_{CC} = 4.5 \text{ V}$		30	18	-	38	-	45	-	ns
f _{max}	maximum frequency	SI, SO burst mode; see Figure 11 and Figure 12									
		$V_{CC} = 4.5 \text{ V}$		18	30	-	14	-	12	-	MHz
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	30	-	-	-	-	-	MHz
		SI, SO using flags; see Figure 6 and Figure 9									
		$V_{CC} = 4.5 \text{ V}$		18	30	-	14	-	12	-	MHz
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	30	-	-	-	-	-	MHz
		SI, SO cascaded; see Figure 6 and Figure 9									
		V _{CC} = 4.5 V		-	23	-	-	-	-	-	MHz
C_{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC} - 1.5 \text{ V}$	[7]	-	490	-	-	-	-	-	pF

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_{en} is the same as t_{PZH} and t_{PZL} .
- [3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [4] t_t is the same as t_{THL} and t_{TLH} .
- [5] This is the ripple through delay.
- [6] This is the bubble-up delay.
- [7] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;


C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

12. Waveforms

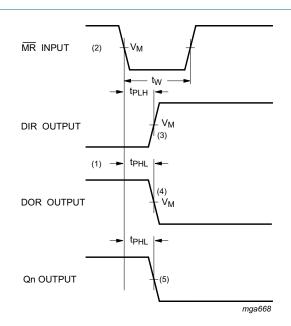

Measurement points are given in Table 7.

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical voltage output levels that occur with the output load.

Shifting in sequence FIFO empty to FIFO full

- (1) DIR initially HIGH; FIFO is prepared for valid data
- (2) SI set HIGH; data loaded into input stage
- (3) DIR goes LOW; input stage "busy"
- (4) SI set LOW; data from first location "ripple through"
- (5) DIR goes HIGH; status flag indicates FIFO prepared for additional data
- (6) Repeat process to load 2nd word through to 64th word into FIFO; DIR remains LOW; with attempt to shift into full FIFO, no data transfer occurs.

Fig 6. Propagation delay SI input to DIR output, the SI pulse width and the SI maximum frequency

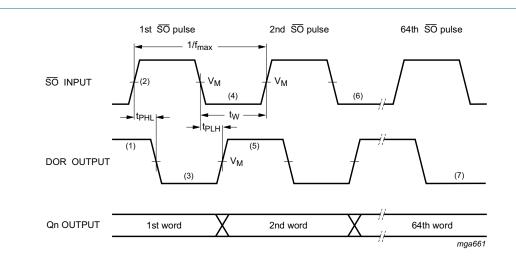

Measurement points are given in Table 7.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

With FIFO full; SI held HIGH in anticipation of empty location

- (1) FIFO is initially full, shift-in is held HIGH
- (2) SO pulse; data in output stage is unloaded, "bubble-up" process of empty location begins
- (3) DIR HIGH; when empty location reaches input stage, flag indicates that FIFO is prepared for data input
- (4) DIR returns to LOW; data returns to LOW; data shift-in to empty location is complete, FIFO is full again
- (5) SI set LOW; necessary to complete shift-in process, DIR remains LOW, because FIFO is full

Fig 7. Bubble-up delay SO input to DIR output and the DIR pulse width.

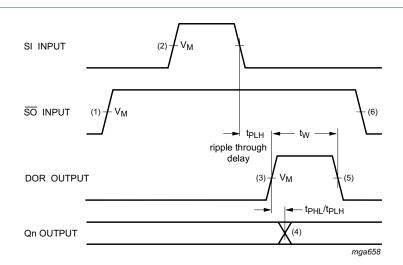

Measurement points are given in Table 7.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Master reset applied with FIFO full

- (1) DIR LOW; output ready HIGH; assume that FIFO is full
- (2) MR pulse LOW; clears FIFO
- (3) DIR goes HIGH; flag indicates input prepared for valid data
- (4) DOR goes LOW; flag indicates FIFO empty
- (5) Qn outputs go LOW (only last bit is reset)

Fig 8. Propagation delay MR input to DIR output, DOR output and Qn outputs and the MR pulse width.

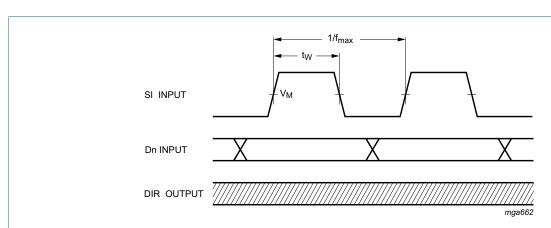


Measurement points are given in Table 7.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

- (1) DOR HIGH; no data transfer in progress, valid data is present at the output stage
- (2) SO set HIGH; result in DOR going LOW
- (3) DOR goes LOW; output stage "busy"
- (4) SO set LOW; data in the input stage is unloaded, and new data replaces it as empty location "bubbles-up" to input stage
- (5) DOR goes HIGH; transfer process completed, valid data present at output after the specified propagation delay
- (6) Repeat process to unload the 3rd through the 64th word from FIFO
- (7) DOR remains LOW; FIFO is empty

Fig 9. Propagation delay \overline{SO} input to DOR output, the \overline{SO} pulse width and the \overline{SO} maximum frequency.


Measurement points are given in Table 7.

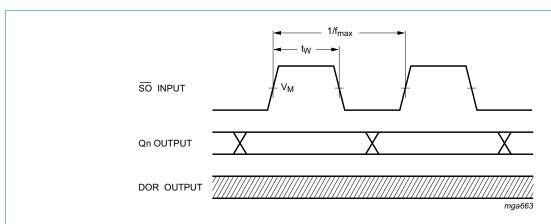
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

With FIFO empty; SO is held HIGH in anticipation

- (1) FIFO is initially empty. SO is held HIGH.
- (2) SI pulse; loads data into FIFO and initiates ripple through process
- (3) DOR flag signals the arrival of valid data at the output stage
- (4) Output transition; data arrives at output stage after the specified propagation delay between the rising and falling edge of the DOR pulse to the Qn output
- (5) DOR goes LOW; data shift-out is completed, FIFO is empty again
- (6) SO set LOW; necessary to complete shift-out process. DOR remains LOW, because FIFO is empty

Fig 10. Ripple through delay SI input to DOR output, propagation delay DOR input to Qn outputs and the DOR pulse width

Measurement points are given in Table 7.

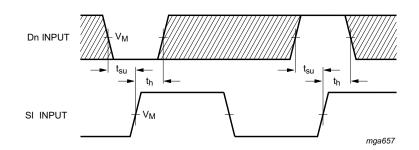

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Shift-in operation; high speed burst mode

In the high-speed mode, the burst-in rate is determined by the minimum shift-in HIGH and shift-in LOW specifications. The DIR status flag is a "don't care" condition, and a shift-in pulse can be applied regardless of the flag. An SI pulse which would overflow the storage capacity of the FIFO is ignored.

Fig 11. Shift-in (SI) pulse width and maximum frequency (SI)

74HC_HCT7403_Q100

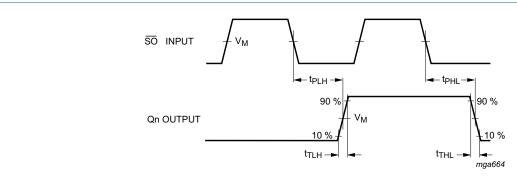

Measurement points are given in Table 7.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Shift-out operation; high speed burst mode

In the high-speed mode, the burst-out rate is determined by the minimum shift-out HIGH and shift-out LOW specifications. The DOR flag is a "don't care" condition, and an SO pulse can be applied without regard to the flag.

Fig 12. Shift-in (SO) pulse width and maximum frequency (SO)



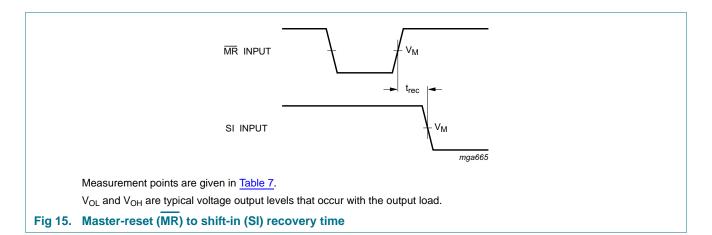
Measurement points are given in Table 7.

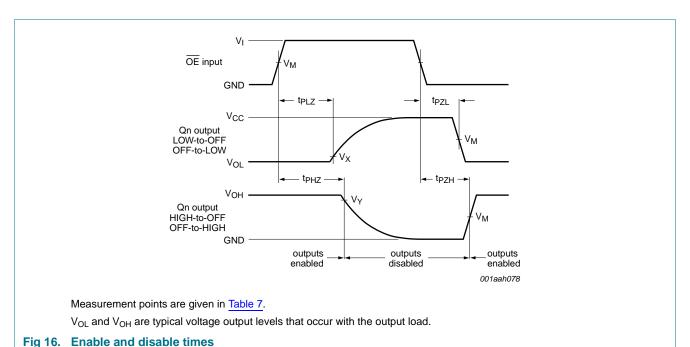
 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

The shaded areas indicate when the output is permitted to change for predictable output performance

Fig 13. Set-up and hold times

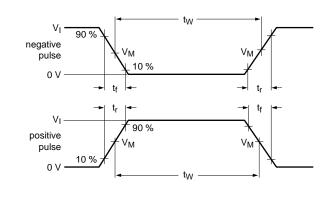
Measurement points are given in $\underline{\text{Table 7}}$.

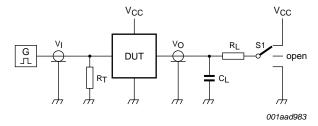

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical voltage output levels that occur with the output load.


Fig 14. Propagation delay shift-out input (SO) to data outputs (Qn) and output transition time

74HC_HCT7403_Q100

All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2012. All rights reserved.



Measurement points Input Output Type V_{M} V_{M} V_{X} V_{Y} $0.1V_{CC}$ 74HC7403-Q100 $0.5V_{CC}$ $0.5V_{CC}$ 0.9V_{CC} 74HCT7403-Q100 1.3 V 1.3 V $0.1 V_{CC}$ $0.9V_{CC}$

Table 7.

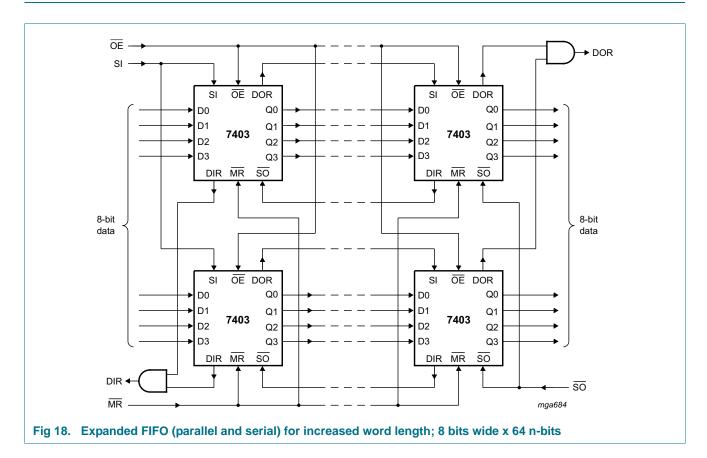
Test data is given in Table 8.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_I = Load resistance.


S1 = Test selection switch.

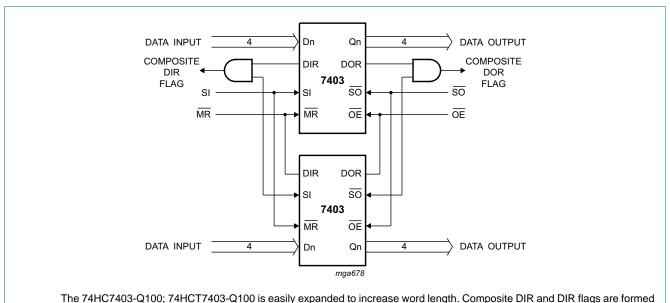
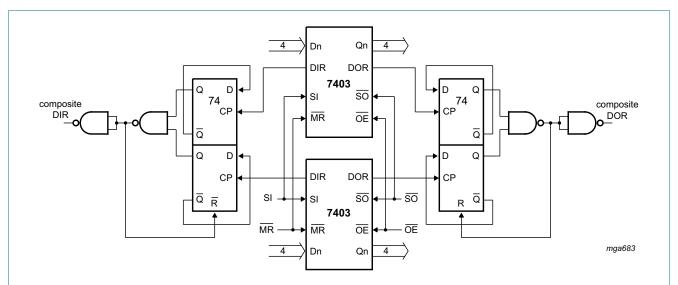

Fig 17. Test circuit for measuring switching times

Table 8. Test data

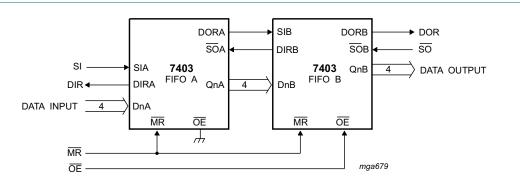
Туре	Input		Load		S1 position			
	VI	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC7403-Q100	V_{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V_{CC}	
74HCT7403-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	


13. Application information

with the addition of an AND gate. The basic operation and timing are identical to a single FIFO, with the exception of an added

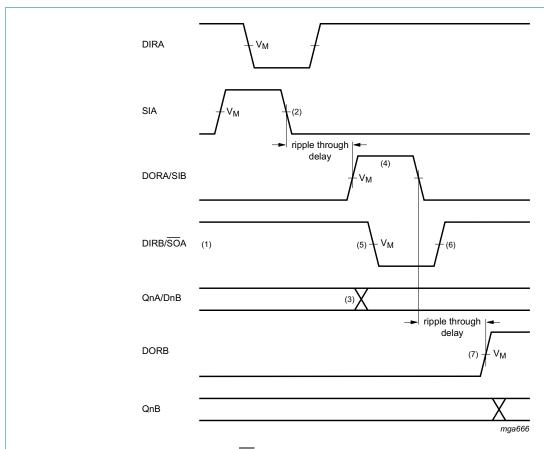
gate delay on the flags.

This circuit is only required if the SI input is constantly held HIGH, when the FIFO is empty and the automatic shift-in cycles are started or if the SO output is constantly held HIGH, when the FIFO is full and the automatic shift-out cycles are started (see Figure 7 and Figure 10).


Fig 20. Expanded FIFO for increased word length

13.1 Expanded format

Figure 21 shows two cascaded FIFOs providing a capacity of 128 words x 4 bits.


Figure 22 shows the signals on the nodes of both FIFOs after the application of the SI pulse, when both FIFOs are initially empty. After a ripple through delay, data arrives at the output of FIFOA. Due to SOA being HIGH, a DORA pulse is generated. The requirements od SIB and DnB are satisfied by the DORA pulse width and the timing between the rising edge of DORA and QnA. After a second ripple through delay data arrives at the output of FIFOB.

<u>Figure 23</u> shows the signals on the nodes of both FIFOs after the application of the SOB pulse, when both FIFOs are initially full. After a bubble-up delay, a DIRB pulse is generated, which acts as a SOA pulse for FIFOA. One word is transferred from the output of FIFOA to the input of FIFOB. The requirements of the SOA pulse for FIFOA is satisfied by the pulse width of DORB. After a second bubble-up delay an empty space arrives at DnA, at which time DIRA goes HIGH. <u>Figure 24</u> shows the waveforms at all external nodes of both FIFOs during a complete shift-in and shift-out sequence.

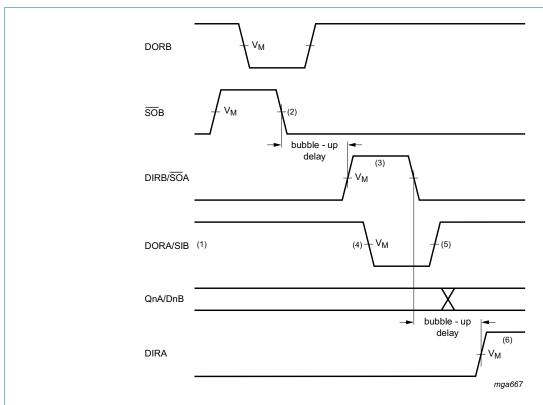

The 74HC7403-Q100; 74HCT7403-Q100 is easily cascaded to increase word capacity without external circuitry. In cascaded format, all necessary communications are handled by the FIFOs. Figure 22 and Figure 23 demonstrate the communication timing between FIFOA and FIFOB. Figure 24 provides an overview of pulses and timing of two cascaded FIFOs, when shifted full and shifted empty again.

Fig 21. Cascading for increased word capacity; 128 words x 4 bits

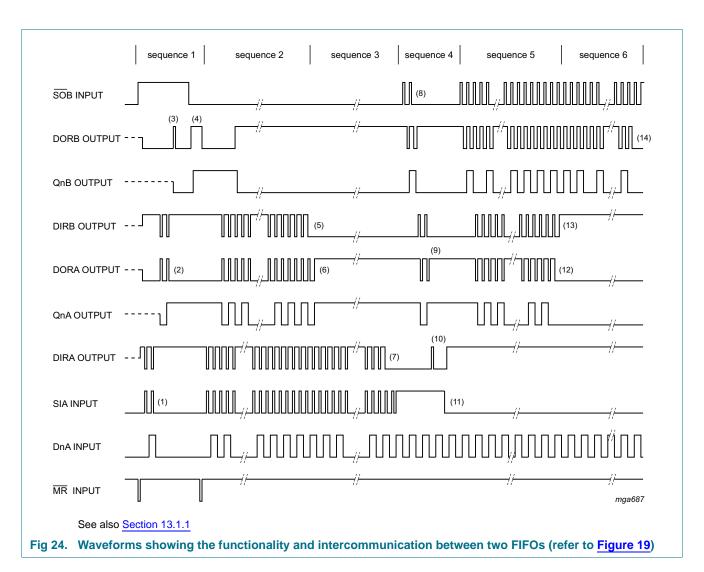

- (1) FIFOA and FIFOB are initially empty, SOA held HIGH in anticipation of data
- (2) Load one word into FIFOA; SI pulse; applied. results in DIR pulse
- (3) Data-out A/ data-in B transition; valid data arrives at FIFOA output stage after a specified delay of the DOR flag, meeting data input set-up requirements of FIFOB.
- (4) DORA and SIB pulse HIGH; (ripple through delay after SIA LOW) data is unloaded from FIFOA as a result of the data output ready pulse, data is shifted into FIFOB
- (5) DIRB and SOA go LOW; flag indicates that input stage of FIFOB is busy, shift-out of FIFOA is complete
- (6) DIRB and \$\overline{SO}\$A go HIGH automatically; the input stage of FIFOB is again able to receive data, \$\overline{SO}\$ is held HIGH in anticipation of additional data
- (7) DORB goes HIGH; (ripple through delay after SIB LOW) valid data is present one propagation delay later at the FIFOB output stage

Fig 22. FIFO to FIFO communication; input timing under empty condition

- (1) FIFOA and FIFOB initially full, SIB held HIGH in anticipation of shifting in new data as an empty location bubbles-up
- (2) Unload one word from FIFOB; SO pulse applied, results in DOR pulse
- (3) DIRB and SOA pulse HIGH; (bubble-up delay after SOB LOW) data is loaded into FIFOB as a result of the DIR pulse, data is shifted out of FIFOA
- (4) DORA and SIB go LOW; flag indicates that the output stage of FIFOA is busy, shift-in of FIFOB is complete
- (5) DORA and SIB go HIGH; flag indicates that valid data is again available at FIFOA output stage, SIB is held HIGH, awaiting bubble-up of empty location.
- (6) DIRA goes HIGH; (bubble-up delay after SOA LOW) an empty location is present at input stage of FIFOA

Fig 23. FIFO to FIFO communication; output timing under full condition

13.1.1 Sequence 1 (both FIFOs empty, starting SHIFT-IN process)

After an MR pulse has been applied, FIFOA and FIFOB are empty. The DOR flags of FIFOA and FIFOB go LOW due to no valid data being present at the outputs. The DIR flags are set HIGH due to the FIFOs being ready to accept data. SOB is held HIGH and two SIA pulses are applied (1). These pulses allow two data words to ripple through the output stage of FIFOA and the input stage of FIFIB (2). When data arrives at the output of FIFOB, a DORB pulse is generated (3). When SOB goes LOW, the first bit is shifted out and a second bit ripples through to the output after which DORB goes high (4).

13.1.2 Sequence 2 (FIFOB runs full)

After the MR pulse, a series of 64 SI pulses are applied. When 64 words are shifted in, DIRB remains LOW due to FIFOB being full (5). DORA goes LOW due to FIFOA being empty.

13.1.3 Sequence 3 (FIFOA runs full)

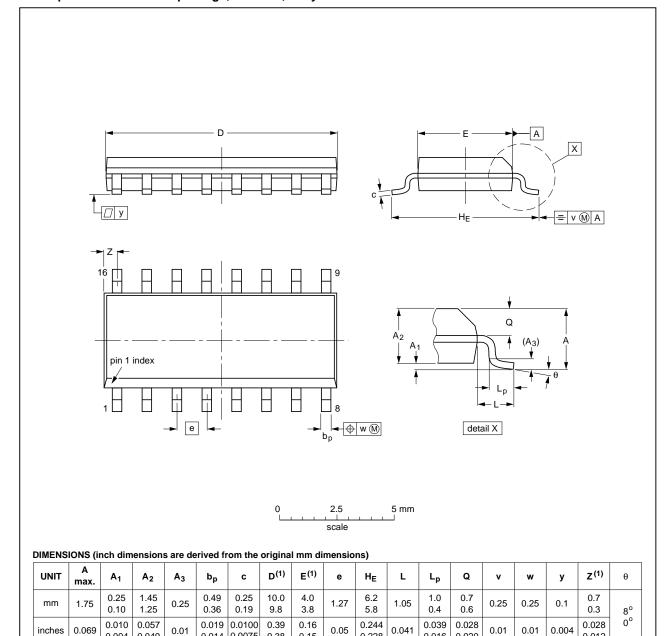
When 65 words are shifted in, DORA remains HIGH due to valid data remaining at the output of FIFOA. QnA remains HIGH, being the polarity of the 65th word (6). After the 128th SI pulse, DIR remains LOW and both FIFOs are full (7). Additional pulses have no effect.

13.1.4 Sequence 4 (both FIFOs full, starting SHIFT-OUT)

SIA is held HIGH and two SOB pulses are applied (8). These pulses shift out two words and thus allow two empty locations to bubble-up to the input stage of FIFOB, and proceed to FIFOA (9). When the first empty location arrives at the input of FIFOA, a DIRA pulse is generated (10) and a new word is shifted into FIFOA. SIA is made LOW and now the second empty location reaches the input stage of FIFOA, after which DIRA remains HIGH (11).

13.1.5 Sequence 5 (FIFOA runs empty)

At the start of sequence 5, FIFOA contains 63 valid words due to two wor<u>ds</u> being shifted out and one wor<u>d</u> being shifted in, in sequence 4. And additional series of <u>SOB</u> pulses are applied. After 63 <u>SOB</u> pulses, all words from FIFOA are shifted in FIFOB. DORA remains LOW (12).


13.1.6 Sequence 6 (FIFOB runs empty)

After the next SOB pulse, DIRB remains HIGH due to the input stage of FIFOB being empty. After another 63 SOB pulses, DORB remains LOW due to both FIFOS being empty (14). Additional SOB pulses have no effect. The last word remains available at the output Qn.

14. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014 0.0075

0.38

0.15

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19

0.228

0.020

Fig 25. Package outline SOT109-1 (SO16)

0.004

0.049

74HC_HCT7403_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

15. Abbreviations

Table 9. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic
FIFO	First In First Out
MIL	Military

16. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT7403_Q100 v.1	20120921	Product data sheet	-	-

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

Suitability for use in automotive applications — This NXP

inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

damage. NXP Semiconductors and its suppliers accept no liability for

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

applications and products.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

74HC_HCT7403_Q100

74HC7403-Q100; 74HCT7403-Q100

4-bit x 64-word FIFO register; 3-state

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

NXP Semiconductors

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

19. Contents

1	General description	. 1
2	Features and benefits	. 1
3	Applications	. 1
4	Ordering information	
5	Functional diagram	. 2
6	Pinning information	4
6.1	Pinning	. 4
6.2	Pin description	
7	Functional description	. 4
7.1	Expanded format	. 5
7.1.1	Parallel expension	
7.1.2	Serial expension	
8	Limiting values	
9	Recommended operating conditions	. 6
10	Static characteristics	. 6
11	Dynamic characteristics	. 8
12	Waveforms	13
13	Application information	21
13.1	Expanded format	23
13.1.1	Sequence 1 (both FIFOs empty, starting	
	SHIFT-IN process)	
13.1.2	Sequence 2 (FIFOB runs full)	
13.1.3 13.1.4	Sequence 3 (FIFOA runs full)	27
13.1.4	Sequence 4 (both FIFOs full, starting SHIFT-OUT)	27
13.1.5	Sequence 5 (FIFOA runs empty)	27
13.1.6	Sequence 6 (FIFOB runs empty)	27
14	Package outline	28
15	Abbreviations	29
16	Revision history	29
17	Legal information	30
17.1	Data sheet status	30
17.2	Definitions	30
17.3	Disclaimers	30
17.4	Trademarks	31
18	Contact information	31
10	Contents	22

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.