TPP5XGFLRx000E2A

Product Description

The TPP5XGFLRx000E2A is an enhanced small form factor pluggable (SFP+) fiber optic transceiver with digital diagnostics monitoring functionality (DDM). Compliance with Ethernet standard makes it ideally suited for 10Gbps data-com applications. DDM functionality (alarm and warning features) is integrated into the design via an I²C serial interface per the Multi-Source Agreement (MSA) SFF-8472, Rev. 10.4.

The transceiver supports data rates from 11.3Gbps down to 8Gbps. It provides an excellent solution for data transmission at 1310nm over up to 10km single mode fiber. The sub-watt power consumption and excellent EMI performance allow system design with high port density. The product is RoHS compliant and is designed and tested in accordance with industry safety standards. The transceiver is Class 1 Laser product per U.S. FDA/CDRH and international IEC-60825 standards.

The TPP5XGFLRx000E2A transceiver connects to standard 20-pad SFP+ connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different transceivers without removing the power supply from the host system. The transmitter and receiver DATA interfaces are internally AC-coupled. LV-TTL Transmitter Disable control input and Loss of Signal (LOS) output interfaces are also provided.

The transceiver has bail-type latch, which offers an easy and convenient way to release the modules. The latch is compliant with the SFP MSA.

The transceiver operates from a single +3.3V power supply over a case operating temperature range of -5° C to $+70^{\circ}$ C (Commercial), or -5° C to $+85^{\circ}$ C (Extended) or -40° C to $+85^{\circ}$ C (Industrial). The housing is made of metal for EMI immunity.

Features

☑ Transmission distance up to 10km (SM fiber)

- ☑ Low power consumption
- ☑ Wide case operating temperature range
- ☑ Compliant to SFP+ Electrical MSA SFF-8431
- ☑ Compliant to SFP+ Mechanical MSA SFF-8432
- ☑ Compliant to 10GBASE-L specifications
- Digital Diagnostics Monitoring (DDM) through Serial Interface compliant with SFF-8472, Rev. 10.4
- ☑ RoHS 6/6 Compliant
- ☑ Laser Class 1 IEC/CDRH Compliant

Parameter		Symbol	Minimum	Maximum	Units
Storage Temperature Range		T_{ST}	- 40	+ 85	°C
Case Operating Temperature ¹	"Commercial"		- 5	+ 70	°C
	"Extended"	T _{OP}	- 5	+ 85	
	"Industrial"		- 40	+ 85	
Operating Relative Humidity ²		RH	0	85	%
Supply Voltage Range		V_{cc}	- 0.5	+ 3.6	V
¹ Measured on top side of SFP+ modu ² Non condensing	le at the front center ve	nt hole of the cage.			

Absolute Maximum Ratings

TPP5XGFLRx000E2A

Transmitter Electrical Characteristics (Over Operating Case Temperature. V_{cc} = 3.13 to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Differential Input Impedance	Z _d	-	100	-	Ω
Differential Input Voltage Swing	V _{PP-DIFF}	180	-	700	mV
Input HIGH Voltage (TX Disable) ¹	$V_{_{I\!H}}$	2.0	-	V _{cc}	V
Input LOW Voltage (TX Disable) ¹	V_{IL}	0	-	0.8	V
Output HIGH Voltage (TX Fault) ²	V _{OH}	2.0	-	V _{cc} + 0.3	V
Output LOW Voltage (TX Fault) ²	V _{OL}	0	-	0.8	V
¹ There is an internal 4.7k to 10k pull-up resistor to VccT.					

Open collector compatible, 4.7k to 10k pull-up resistor to Vcc (Host Supply Voltage).

(Over Operating Case Temperature. V_{cc} = 3.13 to 3.47V) **Receiver Electrical Characteristics**

Parameter	Symbol	Minimum	Typical	Maximum	Units
Differential Output Impedance	Z_d	-	100	-	Ω
Differential Output Swing	V _{PP-DIFF}	300	-	850	mV
Output Rise and Fall time (20% to 80%)	$t_{RH'} t_{FH}$	24	-	-	ps
Output HIGH Voltage (LOS) ¹	V _{OH}	2.0	-	V _{CC} + 0.3	V
Output LOW Voltage (LOS) 1	V _{OL}	0	-	0.8	V
¹ Open collector compatible, 4,7k to 10k pull-up resistor to Vcc (Host Supply Voltage).					

Electrical Power Supply Characteristics (Over Operating Case Temperature. V_{cc} = 3.13 to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply Voltage	V _{cc}	3.13	3.30	3.47	V
DC Common Mode Voltage	V _{CM}	0	-	3.60	V
Supply Current	I_{VCC}	-	-	300	mA
Maximum Sustained Peak Current	-	-	-	400	mA
Power Consumption	P _w	-	-	1	W

Note: The specified characteristics are met within the recommended range of operation. Unless otherwise noted typical data are quoted at nominal voltage and +25°C ambient temperature.

Connector Pin-out

Electrical Pin Description

Pin	Logic	Symbol	Description
1	-	VeeT	Module Transmitter Ground
2	LVTTL-O	TX_Fault	Module Transmitter Fault
3	LVTTL-I	TX_Disable	Transmitter Disable; Turns off transmitter laser output
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line
5	LVTTL-I/O	SCL	2-Wire Serial Interface Clock
6	-	MOD-ABS	Module Definition, Grounded in the module
7	LVTTL-I	RSO	No function implemented
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication
9	LVTTL-I	RS1	No function implemented
10	-	VeeR	Module Receiver Ground
11	-	VeeR	Module Receiver Ground
12	CML-O	RD-	Receiver Inverted Data Output
13	CML-O	RD+	Receiver Non-Inverted Data Output
14	-	VeeR	Module Receiver Ground
15	-	VccR	Module Receiver 3.3V Supply
16	-	VccT	Module Transmitter 3.3V Supply
17	-	VeeT	Module Transmitter Ground
18	CML-I	TD+	Transmitter Non-Inverted Data Input
19	CML-I	TD-	Transmitter Inverted Data Input
20	-	VeeT	Module Transmitter Ground

Application Notes

Electrical Interface: All signal interfaces are compliant with the SFP+ MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a 4.7 – 10 k Ω resistor on the host board.

Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates logic HIGH when an insufficient photocurrent is produced.

TX_Fault: The output indicates LOW when the transmitter is operating normally and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output and should be pulled up with a $4.7 - 10 \text{ k}\Omega$ resistor on the host board.

TX_Disable: : When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled. The laser is also disabled if this line is left floating, as it is pulled high inside the transceiver.

Serial Identification and Monitoring: The module definition of SFP is indicated by the MOD_ABS pin and the 2-wrie serial

interface. Upon power up, the 2-wrie interface appears as NC (no connection), and MOD_ABS is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal (SCL). The positive edge clocks data into the EEPROM segments of the device that are not write protected, and the negative edge clocks data from the device. The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software monitoring of TX Fault/LOS. The device is internally calibrated.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA, and SFF-8472, Rev. 10.4.

Power Supply and Grounding: The power supply line should be well-filtered. All power supply bypass capacitors should be as close to the transceiver module as possible.