

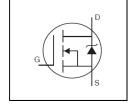
HEXFET® Power MOSFET

Features

- Advanced Planar Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching

DescriptionSpecifically

Repetitive Avalanche Allowed up to Timax


designed for Automotive applications,

HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction

operating temperature, fast switching speed and improved

repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications

- Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{DSS}	75V
R _{DS(on)} max.	4.5mΩ
I _D (Silicon Limited)	170A
D (Package Limited)	75A

TO-220AB AUIRF2907Z

G	D	S
Gate	Drain	Source

Base part number	Packago Typo	Standard Pack		Orderable Part Number
base part number	Package Type	Form Quantity		Orderable Part Nulliber
AUIRF2907Z	TO-220	Tube	50	AUIRF2907Z

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	170		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	120	A	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited) 75			
I _{DM}	Pulsed Drain Current ①	600		
P _D @T _C = 25°C	Maximum Power Dissipation	300	W	
	Linear Derating Factor	2.0	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ② 270		I	
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ♡	690	- mJ	
I _{AR}	Avalanche Current ①	See Fig.15,16, 12a, 12b	Α	
E _{AR}	Repetitive Avalanche Energy ®		mJ	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds (1.6mm from case)	300		
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.509	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface ②	0.50		°C/W
$R_{ heta JA}$	Junction-to-Ambient ⑦		62	

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.069		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.5	4.5	mΩ	V _{GS} = 10V, I _D = 75A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	180			S	$V_{DS} = 10V, I_{D} = 75A$
ı	Drain to Source Leakage Current			20		$V_{DS} = 75V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 75V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			200	n ^	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-	•	_	-		
Q_g	Total Gate Charge	 180	270		I _D = 75A
Q_{gs}	Gate-to-Source Charge	 46		nC	$V_{DS} = 60V$
Q_{gd}	Gate-to-Drain Charge	 65			V _{GS} = 10V ④
$t_{d(on)}$	Turn-On Delay Time	 19			$V_{DD} = 38V$
t _r	Rise Time	 140			I _D = 75A
$t_{d(off)}$	Turn-Off Delay Time	 97		ns	$R_G = 2.5\Omega$
t _f	Fall Time	 100			V _{GS} = 10V ④
L_D	Internal Drain Inductance	 5.0			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance	 13			from package and center of die contact
C _{iss}	Input Capacitance	 7500			$V_{GS} = 0V$
C _{oss}	Output Capacitance	 970			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	 510			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance	 3640		pF	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$
Coss	Output Capacitance	 650			$V_{GS} = 0V, V_{DS} = 60V f = 1.0MHz$
Coss eff.	Effective Output Capacitance	 1020			V_{GS} = 0V, V_{DS} = 0V to 60V

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			75		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			680		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		41	61	ns	$T_J = 25^{\circ}C$, $I_F = 75A$, $V_{DD} = 38V$
Q_{rr}	Reverse Recovery Charge		59	89	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.095mH, $R_G = 25\Omega$, $I_{AS} = 75$ A, $V_{GS} = 10$ V. Part not recommended for use above this value.
- ③ $I_{SD} \le 75A$, di/dt $\le 340A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175$ °C.
- 4 Pulse width ≤ 1.0 ms; duty cycle $\leq 2\%$.
- © Coss eff. is a fixed capacitance that gives the same charging time as Coss while V_{DS} is rising from 0 to 80% V_{DSS}.
- ⑥ Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- \odot This value determined from sample failure population, starting $T_J = 25^{\circ}C$, L = 0.095mH, $R_G = 25\Omega$, $I_{AS} = 75A$, $V_{GS} = 10V$.
- ® R_θ is measured at T_J of approximately 90°C.
- 9 TO-220 device will have an Rth of 0.45°C/W.

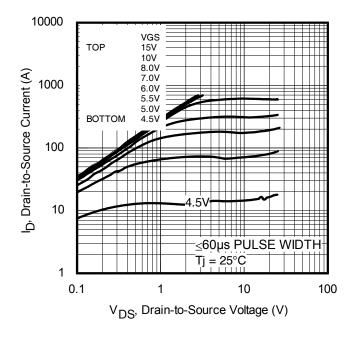


Fig. 1 Typical Output Characteristics

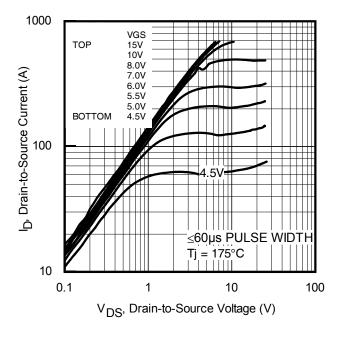
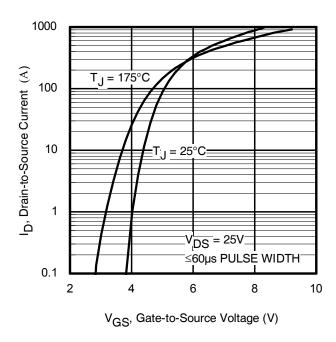
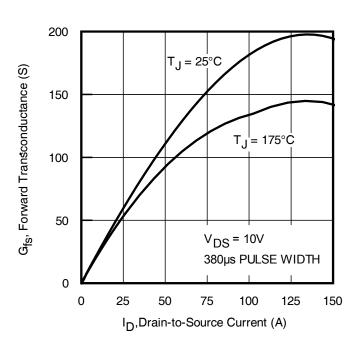
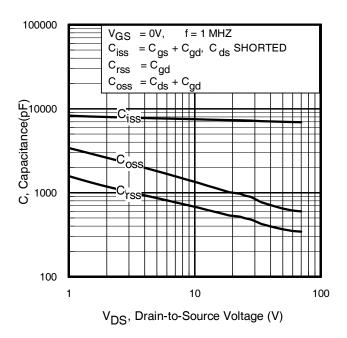


Fig. 2 Typical Output Characteristics

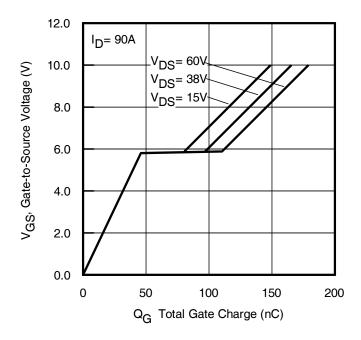

Fig. 3 Typical Transfer Characteristics

Fig. 4 Typical Forward Transconductance Vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

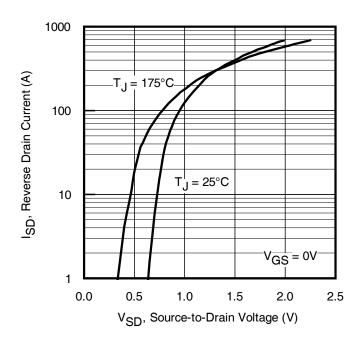


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

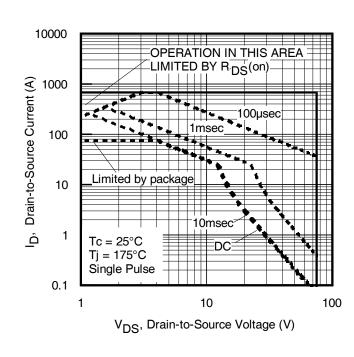
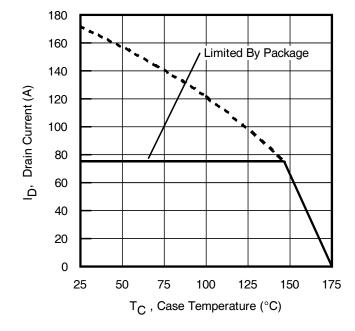



Fig 8. Maximum Safe Operating Area

4

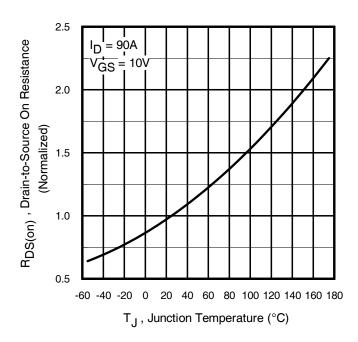


Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

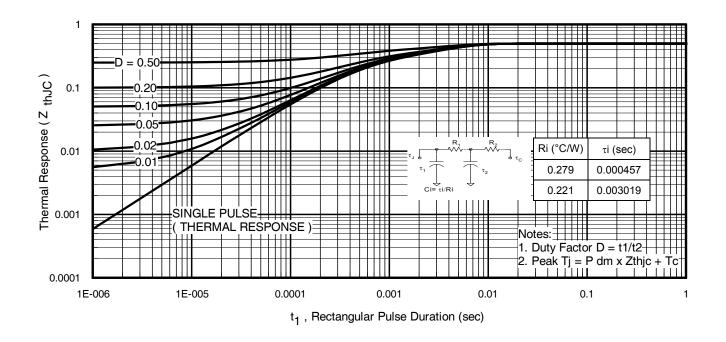


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

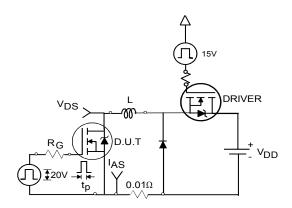


Fig 12a. Unclamped Inductive Test Circuit

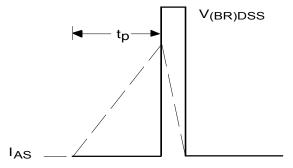


Fig 12b. Unclamped Inductive Waveforms

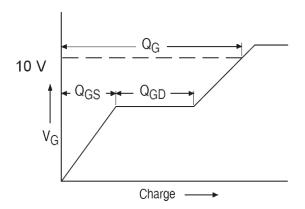


Fig 13a. Gate Charge Waveform

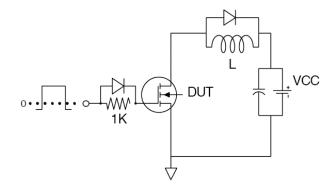


Fig 13b. Gate Charge Test Circuit

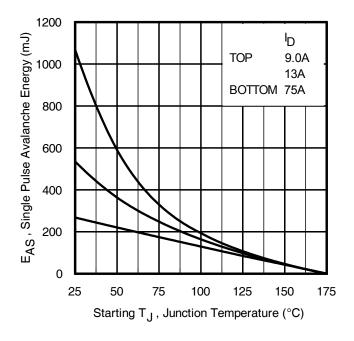


Fig 12c. Maximum Avalanche Energy vs. Drain Current

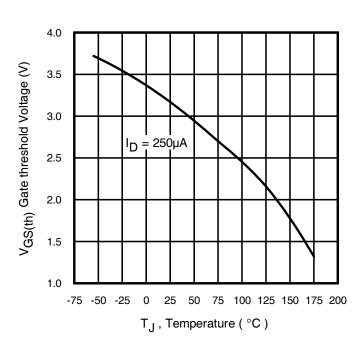


Fig 14. Threshold Voltage vs. Temperature

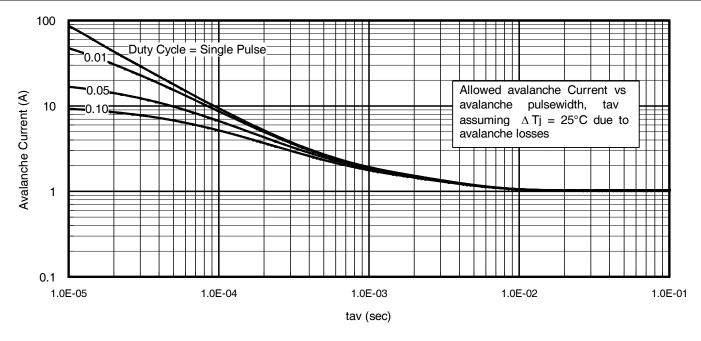
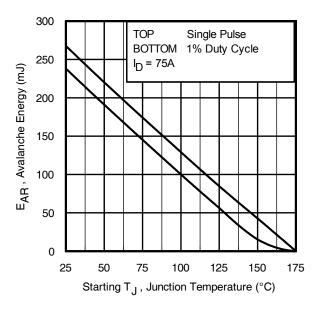



Fig 15. Typical Avalanche Current vs. Pulse width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:

 Dividing the real phenomenon and failure of the real phenomenon and the r
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

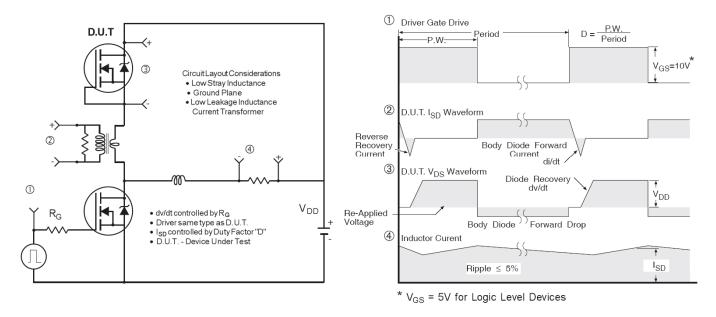


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

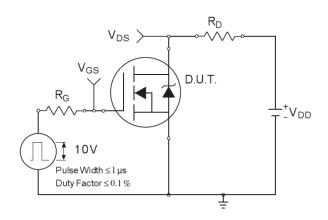


Fig 18a. Switching Time Test Circuit

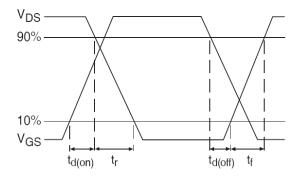
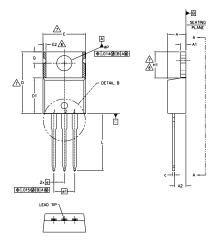
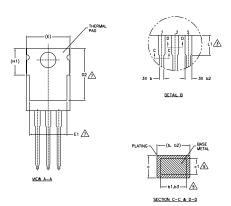




Fig 18b. Switching Time Waveforms

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.

- DIMENSIONING AND TOLERANGING AS PER ASME 114.5 M = 1994.

 DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].

 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

 DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH

 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.

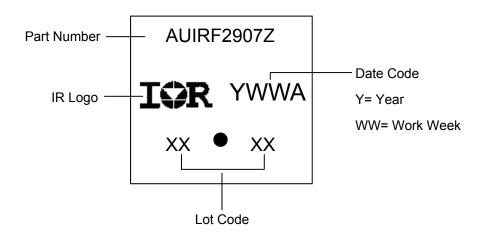
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	INC	HES	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1.14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
e	2.54	BSC	.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
ØΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN 3.- SOURCE


IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

- 1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application.

2017-09-21

Qualification Information

		Automotive (per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture	Sensitivity Level	TO-220AB	N/A			
	Machine Model		Class M4 (+/- 425V) [†]			
	Machine Model	AEC-Q101-002				
FCD	Lluman Dady Madal	Class H2 (+/- 4000V) [†]				
ESD	Human Body Model	AEC-Q101-001				
			Class C4 (+/- 1000V) [†]			
Charged Device Model		AEC-Q101-005				
RoHS Compliant			Yes			

[†] Highest passing voltage.

Revision History

Date	Comments			
9/21/2017	 Updated datasheet with corporate template. Corrected typo error on package outline and part marking on page 9. 			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.