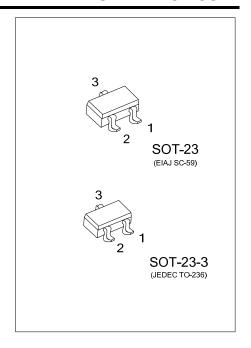
ULVH431

Preliminary

LINEAR INTEGRATED CIRCUIT

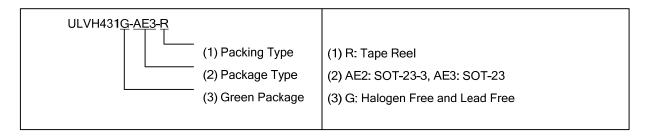

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR

DESCRIPTION

The UTC **ULVH431** is a low-voltage 3-terminal programmable shunt regulator with guaranteed thermal stability over full applicable industrial and commercial temperature ranges.

The output voltage of UTC **ULVH431** can be set to any value between V_{REF} (1.24V) and the corresponding maximum cathode voltage (18V) with two external resistors. The device operates from a lower voltage (1.24V) than the widely used TL431 and TL1431 shunt-regulator references.

The UTC **ULVH431** is an ideal voltage reference in isolated feedback circuits for 3-V to 3.3-V switching-mode power supplies when it is used with an opto-coupler. It has a typical output impedance of 0.25Ω . Active output circuitry supplies a very sharp turn-on characteristic, which makes the UTC **ULVH431** very good substitute for low-voltage Zener diode in many applications such as adjustable power supplies and on-board regulation.

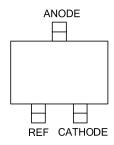


■ FEATURES

- * Adjustable output voltage, Vo=VREF to 18 V
- * Low-Voltage operation: V_{REF}= 1.24 V
- * Wide operating cathode current range: 100µA to 50mA
- * Reference voltage tolerances at 25°C
- * 0.25-Ω typical output impedance
- * -40°C ~ 125°C specifications

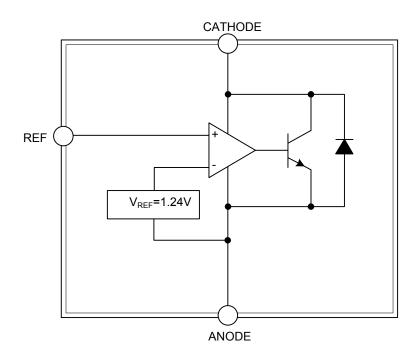
■ ORDERING INFORMATION

Ordering Number	Package	Pin Assignment			Dooking	
		1	2	3	Packing	
ULVH431G-AE2-R	SOT-23-3	K	R	Α	Tape Reel	
ULVH431G-AE3-R	SOT-23	K	R	A	Tape Reel	



<u>www.unisonic.com.tw</u> 1 of 6

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION				
1	CATHODE	Cathode voltage				
2	REF	Reference voltage				
3	ANODE	Anode voltage				

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Cathode Voltage (Note 1)	V_{KA}	20	V
Cathode Current Range	I _K	-25 ~ 50	mA
Reference Current Range	I_{REF}	-0.05 ~ 3	mA
Operating Virtual Junction Temperature	T_J	150	°C
Storage Temperature Range	T_{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Package Thermal Impedance (Note 2)	θ_{JA}	206	°C/W

Note: Voltage values are with respect to the anode terminal, unless otherwise noted.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Cathode Voltage	V_{KA}	V_{REF}		18	V
Cathode Current (Continuous)	I _K	0.1		50	mA
Operating Free-Air Temperature Range	T_A	-40		125	°C

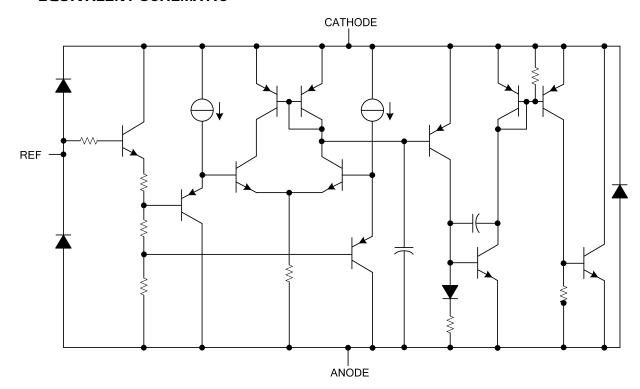
■ ELECTRICAL CHARACTERISTICS (T_A=25°C free-air temperature, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Reference Voltage	V_{REF}		T _A =25°C	ULVH431-A	1.234	1.24	1.246	٧
		V _{KA} =V _{REF} , I _K =10mA		ULVH431-1	1.228	1.24	1.252	V
				ULVH431-2	1.252		1.265	V
				ULVH431-3	1.215		1.228	V
V _{REF} Deviation Over Full Temperature Range (Note 2)	$V_{REF(dev)}$	V _{KA} =V _{REF} , I _K =10mA (Note 1 and Figure 1)				11	31	mV
Ratio of V _{REF} Change to Cathode Voltage Change	$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	I _K =10mA (see Figure 2), V _{KA} =V _{REF} ~18V				-1.5	-2.7	mV/V
Reference Terminal Current	I _{ref}	I_K =10mA, R1=10kΩ, R2=OPEN (see Figure 2)				0.1	0.5	μΑ
I _{ref} Deviation Over Full Temperature Range (Note 2)	I _{ref(dev)}	I _K =10mA, R1=10kΩ, R2=Open (see Note 1 and Figure 2)				0.15	0.5	μΑ
Minimum Cathode Current for Regulation	I _{K(min)}	V _{KA} =V _{REF} (see Figure 1)				60	100	μΑ
Off-State Cathode Current	I _{K(off)}	V _{REF} =0, V _{KA} =18V (see Figure 3)				0.02	0.1	μΑ
Dynamic Impedance (Note 3)	z _{KA}	V _{KA} =V _{REF} , f≤1kHz, I _K =0.1mA~50mA (see Figure 1)				0.25	0.4	Ω

Notes: 1. Full temperature ranges are: -40°C~125°C for ULVH431.

2. The deviation parameters $V_{\text{REF(dev)}}$ and $I_{\text{ref(dev)}}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature

coefficient of the reference input voltage, αV_{REF} , is defined as: $\left|\alpha V_{REF}\right| (\frac{ppm}{^{\circ}C}) = \frac{(\frac{V_{REF(dev)}}{V_{REF}(T_A = 25^{\circ}C)}) \times 10^6}{\Delta T_A}$


where ΔT_A is the rated operating free-air temperature range of the device.

 αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature.

3. The dynamic impedance is defined as: $\left|z_{ka}\right| = \frac{\Delta V_{KA}}{\Delta l_{k}}$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as: $\left|z_{ka}\right| = \frac{\Delta V}{\Delta I} \approx \left|z_{ka}\right| \times (1 + \frac{R1}{R2})$

■ EQUIVALENT SCHEMATIC

■ PARAMETER MEASUREMENT INFORMATION

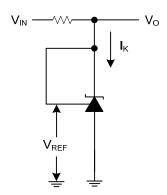


Figure 1. Test Circuit for $V_{KA}=V_{REF}$, $V_O=V_{KA}=V_{REF}$

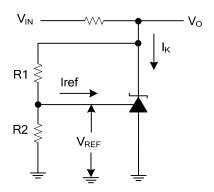


Figure 2. Test Circuit for $V_{KA} > V_{REF}$, $V_O = V_{KA} = V_{REF} \times (1 + R1/R2) + Iref \times R1$

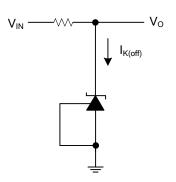


Figure 3. Test Circuit for I_{K(off)}

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.